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Abstract 

Background:  Kyasanur forest disease (KFD), known as monkey fever, was for the first time reported in 1957 from 
the Shivamogga district of Karnataka. But since 2011, it has been spreading to the neighbouring state of Kerala, Goa, 
Maharashtra, and Tamil Nadu. The disease is transmitted to humans, monkeys and by the infected bite of ticks Haema-
physalis spinigera. It is known that deforestation and ecological changes are the main reasons for KFD emergence, but 
the bio-climatic understanding and emerging pathways remain unknown.

Methods:  The present study aims to understand the bio-climatic determinants of distribution of tick vector of KFD 
in southern India using the Maximum Entropy (MaxEnt) model. The analysis was done using 34 locations of Haema-
physalis spinigera occurrence and nineteen bio-climatic variables from WorldClim. Climatic variables contribution was 
assessed using the Jackknife test and mean AUC 0.859, indicating the model performs with very high accuracy.

Results:  Most influential variables affecting the spatial distribution of Haemaphysalis spinigera were the average 
temperature of the warmest quarter (bio10, contributed 32.5%), average diurnal temperature range (bio2, contributed 
21%), precipitation of wettest period (bio13, contributed 17.6%), and annual precipitation (bio12, contributed 11.1%). 
The highest probability of Haemaphysalis spinigera presence was found when the mean warmest quarter tempera-
ture ranged between 25.4 and 30 °C. The risk of availability of the tick increased noticeably when the mean diurnal 
temperature ranged between 8 and 10 °C. The tick also preferred habitat having an annual mean temperature (bio1) 
between 23 and 26.2 °C, mean temperature of the driest quarter (bio9) between 20 and 28 °C, and mean temperature 
of the wettest quarter (bio8) between 22.5 and 25 °C.

Conclusions:  The results have established the relationship between bioclimatic variables and KFD tick distribution 
and mapped the potential areas for KFD in adjacent areas wherein surveillance for the disease is warranted for early 
preparedness before the occurrence of outbreaks etc. The modelling approach helps link bio-climatic variables with 
the present and predicted distribution of Haemaphysalis spinigera tick.

Keywords:  Bio-climatic envelope model, Kyasanur forest disease, Haemaphysalis spinigera tick, Monkey disease, Tick-
borne disease, Hemorrhagic fever
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Introduction
Kyasanur forest disease (KFD) is a zoonotic tick-borne 
viral disease, first reported from the forested area of Shi-
vamogga district, Karnataka, in 1957 [1]. The disease is 
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caused by the KFD virus belonging to the family Flavi-
viridae and genus Flavivirus, measuring about 40–60 nm 
in diameter [2–4]. The KFD virus genome consists of 
10,774 nucleotides of single-stranded, positive-sense 
RNA encoding a single polyprotein [3]. The virus genome 
is very similar to that of Alkhurma Hemorrhagic Fever 
Virus (> 92% homologous), which is primarily found in 
Saudi Arabia [4]. These two species both belong to the 
family Flaviviridae and diverged over 700 years ago and 
have thus remained geographically separated [4].

The virus was found to be highly infectious, as evi-
denced by several infections in laboratory and field staff 
[5, 6], which resulted in work suspension until a proper 
Biosafety Level-3 laboratory was established at ICMR-
National Institute of Virology in 2004. In nature, the virus 
is found in ticks, monkeys, shrews, bats and small mam-
mals [7, 8]. KFD is transmitted to animals and humans 
by the infected tick bites, mainly Haemaphysalis spini-
gera [9–12]. The incubation period of the KFD virus is 
~ 3–8  days [13]. The symptoms of KFD include a high 
fever with frontal headaches, severe muscle pain, vom-
iting, chills, and other gastrointestinal symptoms [13]. 
Bleeding problems can occur 3–4  days after the onset 
of the initial symptom. Patients may have unusually low 
blood pressure as well as low red and white blood cell, 
and platelet counts [13].

A variety of animals are thought to be reservoir hosts 
for the disease, including rats, porcupines squirrels, 
shrews, and mice. Monkeys are the main amplifying host 
of KFD, they come out to human dwellings and their 
death signals the outbreak in human beings [7, 14]. Mon-
keys (red-faced Macaca radiata and black-faced Presby-
tis entellus) are the reservoirs of KFD, but they also die 
due to KFD [8]. The KFD virus is highly contagious in 
the bonnet macaques and surili Presbytis entellus. They 
become extremely virulent and infect ticks. Haemaphys-
alis spinigera, a forest tick, serves as the disease’s vector 
[11]. The bite of tick nymphs causes infection in humans. 
Because the human domestic environment does not sup-
port ticks, man is a terminal host, and there is no human-
to-human transmission [9, 12].

It frequently occurs in semi-evergreen, evergreen, 
deciduous and moist forests in southern India only [14] 
and has also been related to developmental activities 
resulting in deforestation [15] and ecological changes 
[8]. Population with occupational exposure to outdoor 
or rural settings (i.e., herders, hunters, farmers, and 
forest workers) in the villages are potentially at risk 
of the disease if they contact infected Haemaphysa-
lis spinigera ticks [3, 8]. The disease prevails in the dry 
months from November to May, when the nymphs’ 
density is maximum in the forest due to favourable 
moisture in the soil of forest areas [16–18]. The average 

temperature in the dry months has increased substan-
tially over the years and this has led to water crisis in 
the region [15]. The disease is localized in several dis-
tricts, namely Chikmagalur, Shivamogga, Udupi, Dak-
shina Kannada, and  Uttar Kannada of the Karnataka 
state, India [6, 12]. Since the first reporting of the dis-
ease from the Shivamogga district in 1957, several spo-
radic cases and outbreaks have been reported every 
year in the same region [4, 7, 19, 20]. But, in the past 
few years (i.e., 2013 onwards), the geographical range of 
the disease has extended to the districts in Kerala, Goa, 
Maharashtra, and Tamil Nadu (Fig. 1).

The reason for the spread of KFD to nearby areas 
is not known. It is assumed that ecology and biocli-
matic variables are responding to such spatial distri-
bution. Previous studies by Ajesh et  al. [14], Banerjee 
and Bhatt [5] showed that the disease extends, ranges 
and changes happen due to the influence of ecologi-
cal destructions and by the eventual effects of result-
ing climate change [5, 14]. But, the climatic factors are 
not fully understood. Therefore, to prove this hypoth-
esis, we have used Ecological Niche to establish the cli-
matic predictors of tick distribution in the study region 
based on presence/absence data [24, 25]. The model 
has been devised by Phillips et  al. [24] and Yang et  al. 
[25], based on the MaxEnt entropy algorithm [24] can 
evaluate the predictors role as well as predict the dis-
tribution of a species, even with the very limited pres-
ence data [26, 29]. It is a well-established algorithm to 
identify the potential suitability of different epidemic 
diseases, vectors, and fauna & flora species [26–30]. 
The risk assessments and prediction of hosts and vec-
tors using the MaxEnt algorithm have been investigated 
in other vector-borne diseases like malaria, leishmania-
sis, Rift Valley fever virus, dengue, West Nile virus, and 
japanese encephalitis [31–35]. The results of the species 
distribution model can help improve tick monitoring, 
surveillance and guide for implementing control pro-
grammes [31, 36, 37].

It was thought prudent to understand the bioclimatic 
factors responsible for present distribution as well as 
the potential distribution of Haemaphysalis spinigera in 
India. Therefore, the present study used the ecological 
niche modelling (MaxEnt) approach to determine the 
risk areas of KFD and climatic sensitivity of Haemaphys-
alis spinigera for southern India based on field survey 
and existing occurrence data. In addition, our modelling 
results explained the link between model-based favour-
able climatic conditions and the possibility of monkey 
death and KFD tick expansion in the endemic and poten-
tial areas in other parts of India. The tool is the only effi-
cient strategy for controlling and preventing the disease 
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to find out the biological and climatic risk of Haemaphys-
alis spinigera and KFD.

Materials and methods
Haemaphysalis spinigera tick occurrence data
Data on reported availability of Haemaphysalis spini-
gera were collated by systematic and comprehensive 
literature retrieval from the google scholar, Cochrane 
library, PubMed and the Web of science database, by 

Fig. 1  Locations of reported distribution of Haemaphysalis spinigera tick, KFD endemic areas till 2011 and afterwards
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using the keywords Kyasanur forest disease, Haema-
physalis spinigera occurrence, monkey death by KFD 
virus, KFD in India, human cases of KFD (Additional 
file  1). The literature dealing with the availability of 
Haemaphysalis spinigera, the occurrence of KFD cases 
or monkey death from 1957 onwards were considered 
to ascertain the coordinates. Location of confirmed 
cases (human cases and monkey death) were con-
verted into point features (exact latitude and longitude, 
1  km × 1  km) or polygon features (i.e., localities, vil-
lages, districts) georeferenced using Google Earth and 
Arc-GIS for the rectification of latitude and longitude 
[38]. When the name of the locality or village could not 
be identified at the administrative level, the coordinates 
were overlaid in a geographic information system (GIS) 
and assigned to the appropriate polygon feature [38]. 
All the locations of the occurrence of Haemaphysalis 
spinigera tick were transformed into WGS 84 datum 
using Arc-GIS software. Since the present study was 
conducted by the resolution of 30 arc-second (approxi-
mately 1  km × 1  km resolution), localities within one 
pixel were selected as one occurrence point. Altogether, 
34 locations with confirmed human cases, monkey 
deaths or availability of Haemaphysalis spinigera ticks 
were georeferenced from all the reported areas of Kar-
nataka, Maharashtra, Kerala, Goa, and Tamil Nadu 
(Fig.  1) (Additional file  1: Table  S1). These occurrence 
locations were used for the MaxEnt model input, as the 
model predicts very accurately with very limited pres-
ence and absence datasets [26, 29, 36].

Bio‑climatic variables
Bio-climatic variables are biologically more significant 
to identifying plants and animals’ physio-ecological 
resistance than simple temperature and rainfall [39, 40]. 
Therefore, these variables are commonly used in bio-
climate envelope modelling [31, 41]. The study used 19 
bio-climatic variables as potential predictors of Haema-
physalis spinigera distribution (as shown in Additional 
file 1: Table S2). Raster-based bio-climatic variables were 
collected from the WorldClim Version2 (http://​www.​
world​clim.​com/​versi​on2). The spatial resolution of these 
bio-climatic layers is ∼ 1 km (30 arc seconds) and show 
extremity and seasonality of temperature, annual trends 
of precipitation and temperature parameters.

Of 19 bio-climatic variables, five extremely correlated 
variables, having a negligible effect on the model, were 
removed to reduce the masking effect and produce a 
model with better predictability [42]. The test was run by 
Pearson’s correlation coefficient (r) using ENM Tool (ver-
sion 1.3), and a cross-correlation ‘r’ value of more than 
0.80 was taken as a cut of threshold [25, 42] (Additional 

file  1: Table  S3). Finally, the remaining 14 bio-climatic 
variables with a higher permutation significance and 
percent contribution were used for modelling. Based on 
the MaxEnt produced response curves, the relationship 
between bioclimatic variables and habitat suitability for 
Haemaphysalis spinigera occurrence were evaluated.

Predictive modelling
The ArcGIS 10.3 and ENVI 5.1 softwares were used to 
generate raster-based spatial layers of the bio-climatic 
variables. The maximum entropy (MaxEnt) model-
ling is a machine learning algorithm [24] that calculates 
the probability distribution for a vector or species loca-
tion based on different environmental restraints. The 
model executes well even with fewer sampling points 
than other machine learning methods [43]. Using pres-
ence-only vector/species location points to predict the 
potential distribution based on MaxEnt theory [24]. The 
basic principle of this algorithm is to ensure that approxi-
mation meets any limitations on the unknown points, 
meaning that the calculated probability of unknown dis-
tribution represents less number of constraints with a set 
of extra choices [44, 45]. However, in this study, we used 
34 locations’ data about the presence of Haemaphysalis 
spinigera and generated pseudo-absences. The maximum 
entropy algorithm randomly selected about 10,000 back-
ground points. Data on the presence of ticks were divided 
into 75% random samples to calibrate the model, and the 
25% random samples were utilized to assess the model 
performance. We used the subsampling method to create 
a stable model because it has advantages over bootstrap 
and cross-validation [46, 47], and 50 replicates were cho-
sen to run the model.

The model also suggests settings to assess the complex-
ity of the model by altering regularization multipliers and 
feature classes. Sixteen different combinations of the fea-
ture classes were created to identify the appropriate fea-
ture by retaining the linear function in each feature, then 
used for model performance. In order to balance the fit of 
the model and avoid overfitting, regularization multipli-
ers were used [48]. The selected default value for model 
calibration is 1.0. In total, 123 models combinations were 
created for choosing the best fit model in different set-
tings. Other values of the model were set as default to get 
better results.

Threshold identification
For model results indicating the probability of pres-
ence (suitability of a species), the logistic value ranging 
from 0 (unsuitable) to 1 (max. probability of presence) 
was used [24]. By applying ‘max SSS’ (maximum test 
sensitivity with specificity) logistic threshold value, 

http://www.worldclim.com/version2
http://www.worldclim.com/version2


Page 5 of 15Pramanik et al. BMC Infectious Diseases         (2021) 21:1226 	

binary unsuitable/maximum suitable map has been 
prepared. Specificity (Sp) and Sensitivity (Se), which 
are independent, implies the likelihood of a model that 
adequately forecasts a species absence and presence in 
any location and measures the commission and omis-
sion errors. Sp and Se are distincts and not influenced 
by predominant across models [49]. In the ROC curve, 
the ‘max SSS” identifies a point in which the tangent 
slope is 1 that demonstrates 1-specificity and sensitiv-
ity for maximizing TSS value. The value can be utilized 
as an efficient threshold value when the only occur-
rence or target species presence data are available and 
used extensively [50–52]. This binary raster was used to 
show the potential distribution of the Haemaphysalis 
spinigera ticks using SDM toolbox  2.0. A bias file has 
corrected the selection of backgrounds for latitudinal 
changes resulting from the geographical coordinate 
systems [53].

Model assessment and validation
To estimate the goodness of fit of the model, the Area 
Under the receiver operating characteristics Curve 
(AUC) was used, and the highest value was indicated as 
the best performer. The AUC is a threshold-independ-
ent technique of a model assessment to discriminate 

outcomes of presence/absence [54]. AUC values vary 
from least value 0 to the highest value 1. The 0.5 value 
signifies that the model findings were less than random, 
while the 1.0 value indicates complete discrimination 
[54, 55]. In the Jackknife test, the contribution of the 
bio-climatic factors was also measured. The detailed 
methodological flow diagram in this work is shown in 
Fig. 2.

Results
Model performance
The logistic results for the presence of tick suitabil-
ity and the distribution of Kyasanur forest disease were 
found highly significant. The AUC results for the train-
ing sample are 0.898, and for the test, the sample is 0.859 
(Fig. 3). This suggests that the bio-climatic variables set, 
used for the prediction model, and interpreted the pre-
dicted potential suitability very well with very high accu-
racy. The optimum threshold value, which provides equal 
weight to specificity and sensitivity, was selected to clas-
sify suitable areas of Haemaphysalis spinigera.

Identified bio‑climatic variables for distribution 
of Haemaphysalis spinigera
Of 14 bio-climatic variables used for modelling, more 
influential variables affecting the spatial distribution 

Fig. 2  Methodological flow diagram showing the link between suitable climatic conditions and disease transmission of Kyasanur forest disease
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of Haemaphysalis spinigera were the average tempera-
ture of the warmest quarter (bio10, contributed 32.5%), 
average diurnal temperature range (bio2, contributed 
21%), precipitation of wettest period (bio13, contrib-
uted 17.6%), and annual precipitation (bio12, con-
tributed 11.1%). The cumulative contribution of these 
variables was 82.2%. The variable having high permu-
tation importance was the average temperature of the 
warmest quarter (40.1%). The remaining 12 variables, 

i.e., annual mean temperature (Bio1), average tempera-
ture of the driest quarter (bio9), average temperature 
of the coldest quarter (bio11), rainfall of the warm-
est quarter (bio18), mean temperature of the wettest 
quarter (bio8), precipitation of wettest quarter (bio16), 
rainfall of driest quarter (bio17), precipitation of driest 
period (bio14), and precipitation seasonality (bio15) 
contributed 17.8% altogether to the suitability model 
(Table  1). Therefore, the average temperature of the 
warmest quarter and mean diurnal temperature change 
are very significant variables contributing to the risk 

Fig. 3  The ROC curve for Haemaphysalis spinigera tick showing different AUC values

Table 1  Selected set of bio-climatic variables after PCA results and their contribution to the KFD suitability

Id of bioclimatic variable Selected bio-climatic variable Contribution (%) Optimum 
bio-climatic 
conditions

Bio1 Annual mean temperature 0.1 23–26.2 °C

Bio2 Mean diurnal temperature range 21 8–10 °C

Bio8 Mean temperature of wettest quarter 2.4 22.5–25 °C

Bio9 Mean temperature of driest quarter 0.5 20–28 °C

Bio10 Mean temperature of warmest quarter 32.5 25.4–30 °C

Bio11 Mean temperature of coldest quarter 3.9 16.5°–24 C

Bio12 Annual precipitation 11.1 > 1400 mm

Bio13 Precipitation of wettest period 17.6 500–650 mm
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area mapping of KFD. Both variables generate the best 
prediction results when used individually from Jack-
knife analysis. Figure 4 shows the Jackknife test results 
of the climatic variable importance as estimated by the 
model.

Association of Haemaphysalis spinigera tick to climatic 
variables
Figure  5a–n indicates individual response curves of the 
association between each bio-climatic variable and the 
possibility of Haemaphysalis spinigera tick presence as 
estimated by the model. The response curves from the 
model’s performance show the differences in the logis-
tic value conveyed by alteration in each parameter if 
the mean value of all other variables is preserved. How-
ever, there is an overall non-linear negative relationship 
detected for the annual average temperature (bio1), the 
average temperature of the warmest quarter (bio10), the 
average temperature of the driest quarter (bio9), and 
mean temperature of the wettest quarter (bio8) indi-
cating that higher the temperature intensity, the lower 
would be the Haemaphysalis spinigera tick distribution. 
Haemaphysalis spinigera tick preferred habitat hav-
ing an annual mean temperature (bio1) between 23 and 
26.2  °C, mean temperature of the driest quarter (bio9) 
between 20 and 28 °C, and mean temperature of the wet-
test quarter (bio8) between 22.5 and 25 °C. Precipitation 
of the wettest period and annual precipitation showed a 
non-linear positive response, indicating that the higher 
the precipitation intensity, the higher the Haemaphysalis 

spinigera tick distribution. The mean temperature of the 
warmest quarter (bio10) represented the temperature in 
the warmest season and revealed a significant probability 
of Haemaphysalis spinigera presence between 25.4 and 
30 °C. The mean diurnal temperature range is the differ-
ence between daily maximum and daily minimum tem-
perature, and it revealed a very high probability of tick 
presence between 8 and 10  °C. The response to precipi-
tation of the wettest period (bio13) showed that precipi-
tation of 500–650  mm highly favoured the presence of 
Haemaphysalis spinigera tick. The other optimum bio-
climatic parameters for Haemaphysalis spinigera tick 
suitability are shown in Table  1. Subsequently, the high 
tick population could be a cause for monkey death and 
the human case.

Potential risk areas of Haemaphysalis spinigera
We converted the predicted probability map of Haem-
aphysalis spinigera tick suitability from the MaxEnt 
model to presence and absence using the ‘max SSS’ 
logistic threshold value. The predicted presence areas 
were classified as very high to moderately suitable 
areas, and the absence areas were classified as non-suit-
able areas for Haemaphysalis spinigera. Based on the 
proportion of bioclimatic suitability areas, the poten-
tial suitability map was classified into five different 
suitability categories, i.e., ‘very high suitability’ (0.80–
1.0), ‘high suitability’ (0.79–0.60), ‘moderate suitabil-
ity’ (0.59–0.40), ‘low suitability’ (0.39–0.20), and ‘very 
low suitable’ class (0–0.19). The predicted potential 

Fig. 4  The Jackknife test results indicating the relative importance of bio-climatic variables
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Fig. 5  Relationship between selected climatic variables and probability of the presence of Haemaphysalis spinigera ticks. a Annual mean 
temperature (bio1, °C), b mean diurnal temperature range (bio2, °C), c mean temperature of wettest quarter (bio8, °C), d mean temperature of 
driest quarter (bio9, mm), e mean temperature of warmest quarter (bio10, mm), f mean temperature of coldest quarter (bio11, CV), g annual 
precipitation (bio12, mm), h precipitation of wettest period (bio13, mm), i precipitation of driest month (bio14, mm), j precipitation seasonality 
(bio15, CV), k precipitation of wettest quarter (bio16, mm), l precipitation of driest quarter (bio17, mm), m precipitation of warmest quarter (bio18, 
mm), n precipitation of coldest quarter (bio19, mm). Red curves indicate the average response and blue margins signify ± SD estimated over 50 
replicates
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areas of Haemaphysalis spinigera under present bio-
climatic settings are shown in Fig.  6. As per results, 
about 26,429  km2 (4%) area comes under ‘very high 
potential’ for Haemaphysalis spinigera, followed by 
‘high potential’ at 18,258 (3%) and ‘moderate potential’ 
at 45,759  km2 (7%) (Table 2). The results further show 
that Karnataka is the most potential region, followed by 
Maharashtra, Kerala, Goa, and Tamil Nadu. The high to 
very high suitable areas are Shivamogga, Chamrajnagar, 
Chikmagalur in Karnataka; Kozhikode and Wayanad 
districts in Kerala; Raigad, Ratnagiri districts in Maha-
rashtra; Nilgiris district in Tamil Nadu; North Goa dis-
trict in Goa, requiring continuous vigilance (Fig.  6). 

The district-wise suitability map shows linear spatial 
clustering along the western Ghats as a very high-risk 
zone of the potential distribution of Haemaphysalis 
spinigera. In those districts, extensive survey, continu-
ous vigilance is required, especially from November to 
March, when most KFD cases occur. The percentage of 
the risk area in each state is shown in Table 3.

Discussion
This is the first study to link the bioclimatic variables with 
the potential distribution of Haemaphysalis spinigera tick 
in South India. Based on tick occurrence records, Max-
Ent modelled the potential distribution of Haemaphysalis 

Fig. 5  continued
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spinigera tick as 23,265 sq. km (58.66%) spread over the 
Shivamogga, Chamrajnagar, and Chikmagalur districts in 
Karnataka; 4765 sq. km (12.02%) in Kozhikode and Way-
anad districts of Kerala; 7198 sq. km (18.15%) in Raigad, 
Ratnagiri districts of Maharashtra; the Nilgiris districts 
in Tamil Nadu; North Goa district in Goa (Fig.  6). The 
region is characterized by the mix of wet and dry cli-
matic conditions, but most of the KFD affected regions 
are located in the eastern regions of the Western Ghats. 
These locations lie in the rain shadow region, receive far 

Fig. 6  Map of the predicted potential distribution of Haemaphysalis spinigera tick

Table 2  Area under different risk classes for KFD tick

Risk categories Area (sq. km) Area in %

Very low risk 359,767 53

Low risk 220,650 33

Medium risk 45,769 7

High risk 18,258 3

Very high risk 26,429 4

Total 670,873 100
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less rainfall and long dry spells [36]. Therefore, most of 
the districts in Karnataka as well as southern India are 
suitable for KFD in present climatic conditions as they 
are located in the rain shadow [36].

The relationship between the growing distribution of 
Haemaphysalis spinigera tick and variations in the mean 
temperature of warmest quarter (bio10) and mean diur-
nal temperature range (bio2) means dry and warmer 
climatic conditions were evident in the model results 
[16–18]. The risk areas of Haemaphysalis spinigera tick 
were more intense in the locations with precipitation of 
wettest period 500–650  mm, mean diurnal temperature 
range 8–10  °C and mean temperature of the warmest 
quarter 25.4–30  °C, which is relatively hot and dry over 
the study region. KFD’s transmission occurs during the 
non-rainy season as the nymphs of Haemaphysalis spini-
gera ticks are active during this season (Fig. 2).

Human encroachment and deforestation in the affected 
area increases the encounters with infected Haema-
physalis spinigera ticks. Furthermore, deforestation 
affects the local precipitation pattern, thus impacting 
the micro-climate of the region. The results shows that 
the predicted risk areas are expanding in hot and drier 
climatic conditions, as the tick’s distribution and lifecy-
cle heavily depend on the precipitation and temperature 
of this region [15]. Human activity peaks post monsoon 
for the paddy harvest, gathering firewood, forest prod-
ucts and the collection of other livelihoods [8, 15]. The 
expansion in areas of the tick population in Africa was 
related to variations in temperature and precipitation 
[56]. Moreover, a warmer temperature has been found as 
the most influential factor for the geographic range shift-
ing of some tick species [57, 58]. According to the pre-
vious studies, climatic variables have contributed to the 
expanded range of ticks, potentially increasing the risk 
of Lyme disease e.g. in areas of Canada where ticks were 
previously unable to survive [59]. Temperature has a sig-
nificant impact on the life cycle and prevalence of deer 
ticks [60].

In the states of Karnataka, Goa, Maharashtra, Kerala, 
Tamil Nadu, the increasing distribution of Haemaphysa-
lis spinigera tick mainly was seen in the deciduous and 
neighbouring semi-evergreen and evergreen areas [61] 
(Fig.  1). Studies showed that these forested lands were 
more prone to dry climate with decreasing precipitation 
[62]. The decrease in precipitation during the pre-mon-
soon (southwest) resulted in short-term meteorologi-
cal droughts in this region [63, 64], which increases the 
suitable areas of Haemaphysalis spinigera tick. Secondly 
in the areas with reported KFD cases, annual rainfall 
was relatively lower, and temperature somewhat higher 
than KFD cases free areas. Human get infected through 
the bite of nymphal ticks, which are mostly active during 
the hot and dry season in the study region [62]. Accord-
ing to Raj and Azeez [65], and Nair et  al. [66] the arid-
ity index increases significantly in the region, therefore 
the risk areas of Haemaphysalis spinigera tick may influ-
ence the significant rise in KFD cases in the region. The 
results of the present study indicates that the potential 
tick suitability increases, when the mean temperature of 
the warmest quarter ranges between 25.4 and 30 °C, and 
more than 30 °C is not suitable. Even ticks die because of 
water loss due to destruction in the integument. Moreo-
ver, the endemic areas of KFD in the Shivamogga district 
are also shifting from Shivamogga to Thirthahalli, Hosan-
gara taluka, which are presently the most endemic region 
in Shivamogga district (Fig. 7). According to bio-climatic 
data, a suitable diurnal temperature range and mean 
warmest month temperature with low precipitation was 
found in the high endemic talukas, as mentioned earlier 
than the low endemic areas of Shivamogga taluka which 
can explain the reason for the high endemicity of KFD 
(Fig. 2).

Accordingly, our results also indicate a significant 
increase in distribution of Haemaphysalis spinigera or 
risk areas of KFD with favourable climatic conditions 
(warmest month temperature and diurnal temperature 
range) in seven regions, namely Shivamogga, Chamara-
janagar, Bandipur National Park, Madurai Tiger Reserve, 

Table 3  State-wise high risk area for KFD tick

States High suitable area (km2) % of very highly suitable area in the total 
suitability

% of very highly 
suitable area in the 
state

Goa 2056 5.18 55.66

Karnataka 23,265 58.66 12.16

Kerala 4765 12.02 12.64

Maharashtra 7198 18.15 2.34

Tamil Nadu 2376 5.99 1.82

Total area 39,660 100
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Wayanad, Sattari, Malappuram, where the highest num-
ber of monkey death and human cases were observed.

Moreover socio-economic factors may also be hav-
ing an influence on KFD transmission in Shivamogga, 
which need further study. Other factors like, migration of 
ticks and reservoir hosts, increased human contact with 
infected animals, migratory birds and bats including the 
climate change may play an important role to understand 
the threat of KFD cases.

Species distribution modelling is known as ‘habitat 
suitability, ‘ecological niche’, and ‘potential distribution’ 

modelling and these are used to predict the suitable hab-
itats [67] of a tick species. In this study, we limited the 
increasing distribution of Haemaphysalis spinigera tick 
potentiality in terms of climatic variables and tick occur-
rences’ to identify the climatic determinants in the habi-
tat alteration in southern India. The role of deforestation 
has been found in hot spots of KFD in western Ghats [68] 
which may further be elucidated using satellite remote 
sensing.

We omitted land use and land cover variables because 
the ticks’ distribution is associated with deciduous, 

Fig. 7  Predicted potential distribution of Haemaphysalis spinigera tick in endemic region of Shivamogga district
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evergreen, and semi-evergreen forest [61]. The role of low 
mammalian richness has also been found in outbreaks of 
KFD [69].

Soil characteristics were also excluded from this study 
since the high resolution and more accurate data were 
not available. Moreover, we also excluded the role of 
host-agent-environment factors due to the lack of proper 
information over this region. Regardless, further spread 
of Haemaphysalis spinigera tick may be affected by cli-
mate change, emphasizing the need for further studies.

It has been observed that the improvement in diagnos-
tic assay through Virus Research Diagnostic Lab estab-
lished in Shivamogga and tick monitoring are affecting 
disease awareness and better reporting.

Our study used Maxent bio-climatic model and study-
ing the ecology was not the main aim. However, detailed 
ecological studies using remote sensing, forestry, anthro-
pology and veterinary domains for threat of KFD are war-
ranted. Understanding the ecology and epidemiology of 
a tick-borne disease is indeed multifactorial which can-
not be answered by one study. That is why One Health 
approach is being adopted to address such zoonotic dis-
eases comprehensively.

Conclusion
The bio-climate envelop modelling approach has been 
found as a useful tool to link bio-climatic variables with 
the present and predicted distribution of Kyasanur forest 
disease. It has predicted the potential climatic suitability 
of KFD in Shivamogga, Chamrajnagar, Chikmagalur in 
Karnataka; Kozhikode and Wayanad districts in Kerala; 
Raigad, Ratnagiri districts in Maharashtra; the Nilgiris 
district in Tamil Nadu; North Goa district in Goa. These 
districts are categorized as dry and hot climates than 
other districts of the study area. The predicted potential 
risk map emphasized the significance of climatic vari-
ables in identifying the potential risk district for KFD 
warranting surveillance for KFD in hitherto KFD-free 
contiguous areas. Better understanding of KFD emer-
gence linking with climatic factors with ecology using 
satellite remote sensing, deforestation and mammalian 
population density will help to build accurate surveil-
lance system allowing to track spread and emerging 
pathways. Future studies should be designed incorporat-
ing further risk variables (i.e. monkey dispersal pattern, 
seasonal forest characteristics, climate change, socio-
economic factors host-agent-environment factors (One 
Health approach) in Shivamogga district, western Ghats 
and the southern states of India.
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