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Abstract 

Background  Falls impact over 25% of older adults annually, making fall prevention a critical public health focus. 
We aimed to develop and validate a machine learning-based prediction model for serious fall-related injuries (FRIs) 
among community-dwelling older adults, incorporating various medication factors.

Methods  Utilizing annual national patient sample data, we segmented outpatient older adults without FRIs 
in the preceding three months into development and validation cohorts based on data from 2018 and 2019, respec‑
tively. The outcome of interest was serious FRIs, which we defined operationally as incidents necessitating an emer‑
gency department visit or hospital admission, identified by the diagnostic codes of injuries that are likely associated 
with falls. We developed four machine-learning models (light gradient boosting machine, Catboost, eXtreme Gradient 
Boosting, and Random forest), along with a logistic regression model as a reference.

Results  In both cohorts, FRIs leading to hospitalization/emergency department visits occurred in approximately 2% 
of patients. After selecting features from initial set of 187, we retained 26, with 15 of them being medication-related. 
Catboost emerged as the top model, with area under the receiver operating characteristic of 0.700, along with sen‑
sitivity and specificity rates around 65%. The high-risk group showed more than threefold greater risk of FRIs 
than the low-risk group, and model interpretations aligned with clinical intuition.

Conclusion  We developed and validated an explainable machine-learning model for predicting serious FRIs in com‑
munity-dwelling older adults. With prospective validation, this model could facilitate targeted fall prevention strate‑
gies in primary care or community-pharmacy settings.
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Introduction
Falls in older adults are a major public health problem 
[1]. They can occur in any age, but the incidence and 
severity of fall and fall-related injuries increase with 
age [2, 3]. More than one out of four older adults fall 
annually, 10% of older adults reported an injury from 
a fall [2], and falls are a leading cause of death from 
unintentional injury [4]. Problems caused by falls are 
not limited to physical problem. Traumatic falls can 
develop into fear of falls, which subsequently leads to 
complications, such as restriction of activities, anxi-
ety, and depression, negatively affecting an individual’s 
quality of life [5]. Moreover, fear of falls is an independ-
ent risk factor for falls among older adults [6]. As the 
population is aging and the burden of falls is expected 
to increase, establishing effective fall prevention strate-
gies is an urgent task in the healthcare system.

Fall-risk-increasing drugs (FRIDs) include antihyper-
tensives, diuretics, analgesics, antidepressants, antipsy-
chotics, and hypnotics [7, 8]. Polypharmacy and FRIDs, 
especially psychotropic drugs, are the drug-related 
risk factors for falls. Lotta et al. performed an adjusted 
meta-analysis of 248 studies and found that antipsy-
chotics, benzodiazepines, and antidepressants increased 
the odds of falls by 1.54 (95% confidence interval [CI], 
1.28–1.85), 1.57 (95% CI, 1.43–1.74), and 1.42 (95% CI, 
1.22–1.65), respectively [9]. Moreover, Dalwhani et  al. 
observed increased incidence rates of falls with 20% 
and 50% higher in patients receiving > 4 and > 10 drugs, 
respectively [10].

Interventions for medications that increase/decrease 
fall risk are some of the most effective fall prevention 
strategies [11]. The American Geriatrics Society and 
British Geriatrics Society guidelines on fall prevention 
recommend withdrawal or minimization of psychoac-
tive medications and total number of medications [11]. A 
previous study that performed a meta-analysis on 14 ran-
domized controlled trials to evaluate the effects of medi-
cation review on fall prevention in community-dwelling 
older adults revealed that adjusting medications that 
were associated with falls could decrease the risk of falls, 
although the risk difference was modest [12]. However, 
according to a recent randomized clinical trial, which 
aimed to determine the clinical efficacy of a multifactorial 
intervention in a primary care setting on fall prevention, 
the multifactorial intervention did not result in a signifi-
cantly lower rate of serious falls than enhanced user care 
among older adults with risk factors for falls [13]. The 
fact that there were little interventions on FRIDs could 
be the reason why the multifactorial intervention was not 
effective. In this study, only 29% of the participants who 
were taking FRIDs agreed to address medication-related 
risk factors and were the least prioritized risk factor.

Several tools have been validated and widely used to 
predict and prevent falls in the primary care setting [14–
20]. The guidelines on fall prevention recommend that 
these tools be used to assess the risk of falling, but there 
is no clear guide to which tools to use [21]. Recently, with 
the development of technology, predictive models using 
advanced analytics are being actively developed, but only 
a limited number of studies have used machine learn-
ing to predict falls in community-dwelling older adults 
[22–26]. Ikeda et  al. developed a prediction model with 
eXtreme Gradient Boosting (XGBoost) algorithm using 
prospectively collected survey data [22]. Makino et  al. 
also used survey data and developed a decision tree 
model [23]. Ye et  al. fitted five different machine learn-
ing algorithms using electronic health record data with 
features comprising demographics, clinical utilization, 
disease diagnosis, and medication prescriptions [24]. 
Mishra et al. also used electronic health record data to fit 
four different machine learning algorithms with features 
comprising gait measurements, demographics, and sev-
eral geriatric assessment scores [25]. Engels et al. fitted an 
ensemble machine learning model using administrative 
claims database with features comprising demograph-
ics, fall history, and medication use [26]. However, pre-
vious studies have several key limitations, such as not 
considering medications as risk factors (or including only 
polypharmacy as a risk factor) [22, 23, 25], not attempt-
ing to interpret the model [26] or interpret the model 
solely based on the result of univariate odds ratio [24], 
and having small sample sizes that limited generalizabil-
ity to the entire population [25]. In addition, no study has 
attempted to validate the machine learning algorithms on 
external cohorts with different time periods.

We aimed to develop and externally validate an inter-
pretable machine learning-based fall-related injury (FRI) 
prediction model using claims database especially focus-
ing on extensive range of medications. Using this tool, 
we expect to identify patients at high risk for FRIs and to 
provide medication intervention strategies for fall pre-
vention in older adults.

Methods
Data source
This retrospective cohort study was conducted with the 
data obtained from the Korean Health Insurance Review 
and Assessment Service – Aged Patient Sample (HIRA-
APS) databases sampled annually for the year 2018 and 
2019. In Korea, the national health insurance system 
provides coverage for 98% of the populations, and the 
HIRA database contains claims data for over 90% of the 
population assuring generalizability of analysis [27]. The 
HIRA-APS dataset is a 10% stratified random sample 
of claims data for patients aged > 65  years and contains 
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comprehensive information on patient demographics, 
disease diagnoses based on the International Statistical 
Classification of diseases Tenth Revision, procedures, 
and prescriptions details.

Cohort description
From July to September of each year, we identified older 
adults in the outpatient setting and set the cohort entry 
date as the date when the patient received a prescrip-
tion for medications lasting > 30 days in ambulatory care. 
For robust operational definition, following criteria were 
applied to register patients: (a) patients were excluded if 
there was no ambulatory prescription prior to 6 months 
from cohort entry date; (b) patients were excluded if they 
had been hospitalized for > 150  days out of 6  months 
before the cohort entry date, (c) patients were excluded 
if evidence of recent FRI (diagnostic code of FRIs at any 
position) presented 3 months prior to entry date, and (d) 
patients who died without observation of any FRIs within 
3 months from entry date were excluded (Supplementary 
Figure S1). To note, exclusion criteria (c) was specifically 
applied to reduce the misclassification of individuals 
undergoing treatment for previous FRI as incident fall, in 
line with methodologies from prior studies [28].

Outcome and follow‑up
The outcome of interest was the incidence of serious FRI. 
We operationally defined outcome as presence of emer-
gency department (ED) visit or admission with primary 
or first secondary diagnostic code of non-pathological 
fracture of the skull, face, cervical region, clavicle, thorax, 
lumbar region, humerus, forearm, pelvis, hip fibula, tibia, 
and ankle or brain injury or dislocation of the lumbar 
region, pelvis, hip, knee, shoulder, elbow, cervical region, 
thorax, or jaw (Supplementary Table S1). Although the 
operational definition was determined with reference 
to previous studies [29, 30], external codes indicative 
of FRIs could not be utilized because they were masked 
from the data for privacy and security reasons. Patients 
were followed up from entry date until either of the fol-
lowing, whichever occurred earlier: (a) occurrence of 
FRI, (b) death, and (c) study end date (the last day of each 
year).

Candidate features
We collected 187 candidate features previously 
reported as risk factors for falls and were captured at 
claims database (Supplementary Table S2) [9, 24, 26, 
31–37]. They included demographics (age, sex, insur-
ance status), healthcare utilization pattern, prior FRIs, 
specific diagnoses, exposure to FRIDs and other medi-
cations that increase/decrease the incidence of FRIs, 

drug–drug interactions, and drug–disease interactions. 
Demographics, medication, drug–drug interactions, 
and drug–disease interactions were assessed at the 
time of entry date (for medication exposure, fill date 
and days supplied were considered), whereas other fea-
tures were assessed in the 6-month window before the 
entry date.

Machine learning algorithms and model development
In this study, we divided the patients from the 2018 data-
base into a development cohort and those from 2019 into 
a validation cohort. To enhance both the accountability 
and the clarity of our prediction model, we selected four 
explainable machine learning algorithms: Random forest 
(RF), XGBoost, Light Gradient Boosting Machine (Light-
GBM), and CatBoost. Our goal was to construct a model 
that was not only accurate but also comprehensible in its 
predictive processes. Traditionally, while these decision 
tree ensemble models have been highly accurate, their 
‘black box’ approach often hampered practical applica-
tion due to a lack of interpretability. Recent advancement 
in interpretative frameworks have, however, considerably 
expanded their applicability in healthcare decision-mak-
ing [38]. For comparative analysis, we included a logistic 
regression model as a reference.

In the initial phase with the development cohort, asso-
ciation among features was analyzed using Spearman’s 
rank correlation, and the features were filtered to ensure 
that there were no features with a coefficient exceed-
ing 0.9, to avoid multicollinearity. Next, the optimal set 
of features was explored via sequential backward float-
ing selection [39]. To streamline the feature selection 
process, we implemented two strategies: initially, we 
downsized the development cohort through one-sided 
selection to achieve a 1:4 ratio of fallers (minority class) to 
non-fallers (majority class). Subsequently, we employed 
the LightGBM model for feature selection, capitalizing 
on its efficiency and rapid processing capacity for large 
datasets. Fivefold cross-validated area under the receiver 
operating characteristic (AUROC) curves was used as the 
metrics for model assessment, and 1-standard error rule 
was applied to select the most parsimonious model [40]. 
Using this approach, we were able to eliminate features 
with low importance while maintaining the performance 
and increasing the interpretability of the model. After 
the selection of the final list of features, hyperparameter 
was tuned with the entire development cohort for each 
machine learning model using Optuna [41]. In total, 
1,000 trials were conducted, and hyperparameter com-
binations with the highest AUROC were saved for each 
model. During this process, again, fivefold cross-valida-
tion was used. Explored parameter fields and selected 
parameters are shown in Supplementary Table S3.
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Performance measures
All prediction performance was measured at the valida-
tion cohort. To assess discrimination performance, we 
measured the AUROC at 3 months. The cutoff point was 
determined by maximizing the Youden index [42]. We 
reported other metrics, including sensitivity, specificity, 
positive predictive value (PPV), and negative predictive 
value (NPV), at the cutoff point determined using the 
Youden index. In addition, cumulative incidence plot was 
depicted to graphically show the difference of fall risk 
stratified by the model’s cutoff point. Calibration was vis-
ually measured by depicting calibration plot. Finally, we 
used SHapley Additive exPlanations (SHAP) for model 
interpretation [38].

Statistical analyses
For comparison of patient characteristics, we used per-
centage or mean (standard deviation). The χ2 or Fisher’s 
exact test was applied to compare categorical variables 
between groups, whereas t-tests were used to compare 
continuous variables between groups. The Spearman 
rank correlation was used to analyze the correla-
tion among the features. To investigate the association 
between occurrence of FRI and each feature, logistic 
regression was performed. The DeLong test was con-
ducted to compare the difference of AUROC. Statistical 
significance was defined as p-value < 0.05. All analyses 
were performed using SAS version 9.4 and Python ver-
sion 3.9.7.

Results
Characteristics of the development and validation cohorts
Out of a total of 1,475,818 older patients, 520,603 from 
2018 dataset were registered in development cohort and 
552,731 from 2019 were registered in validation cohort 
(Supplementary Figure S2). Although most variables 
showed statistically significant difference owing to large 
sample size, patient characteristics in the development 
and validation cohorts were similar; FRIs leading to hos-
pitalization/ED visit were observed in 1.8% and 1.7% of 
the patients in the development and validation cohorts, 
respectively. Approximately 40% of the patients were 
male, and 6% had fall history and were taking seven med-
ications per average (Table 1).

Model performance
After feature selection process, 26 out of the 187 can-
didate features were selected. The included final fea-
tures were sex, age group, insurance status, number of 
admission or ED visit, seven comorbidities (e.g., prior 
FRI, dorsopathy, hyperlipidemia), 13 medication factors 
(e.g., number of medications, number of central nervous 

system [CNS] depressants, bisphosphonate, steroid), and 
two drug–disease interactions (e.g., CNS depressant use 
in patients with a history of fracture). The final list of fea-
tures and their association with future fall can be found 
in Supplementary Table S4. The AUROC of each model 
is summarized in Fig.  1A. All machine learning-based 
models showed higher performance than logistic regres-
sion. However, the difference in performance among all 
five models was negligible (AUROC, 0.700, 0.700, 0.699, 
0.699, and 0.698 for CatBoost, LightGBM, XGBoost, RF, 
and logistic regression, respectively). Calibration plot 
was depicted to determine if the observed and predicted 
probabilities were consistent (Fig. 1B). The predicted and 
actual probabilities of FRIs within 90  days, divided into 
deciles, showed concordance across all models. CatBoost 
was selected as our final model owing to its highest dis-
crimination performance among the models considered.

Table 2 shows the performance measures of each model 
at the cutoff point determined using the Youden index. 
CatBoost showed sensitivity, specificity, PPV, and NPV of 
64.7%, 65.2%, 1.9%, and 99.5%, respectively. On Kaplan–
Meier analysis, there was a clear distinction of curves 
between risk groups (only observed in CatBoost) (Fig. 2), 
with the high-risk group showing more than three times 
higher risk of FRIs than the low-risk group (hazard ratio, 
3.22; 95% CI, 3.09–3.36).

Model interpretation
The SHAP summary plot for CatBoost is presented 
in Fig.  3A, while those for other models (LightGBM, 
XGBoost, and RF) can be found in Supplementary Fig-
ure S3. The plot summarized the importance of features 
and their effects on prediction at once, with each point 
presenting the individual patient’s feature values and their 
effects on the model. The top 10 important features iden-
tified in the model were age group, sex, number of medi-
cations, dorsopathies, prior FRI, number of admission or 
ED visit, number of CNS depressants, hyperlipidemia, 
CNS depressant use with prior fracture, and exposure to 
acetylcholine esterase inhibitor. The model was applied 
to an individual patient with FRI and depicted using a 
SHAP waterfall plot (Fig.  3B, Figure S3). The plot rep-
resents how the prediction is made in individual patient 
level. Again, features were sorted in the descending order 
of effects on model output and also depicted their direc-
tions on prediction. Prior FRI, exposure to 18 medica-
tions, Parkinson disease, CNS depressant use with prior 
fracture, and exposure to two distinct CNS depressants 
pushed model to predict a patient will suffer from FRI, 
whereas male sex, absence of admission or ED visit his-
tory, and age 70–74 years pushed the model to predict a 
patient will unlikely to experience FRI.
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Table 1  Baseline characteristics of the study participants in the development and validation cohorts

CCI Charlson comorbidity index, SD standard deviation, CCB calcium channel blocker, ACEi angiotensin-converting enzyme inhibitor, ARB angiotensin receptor blocker, 
NSAIDs non-steroidal anti-inflammatory drug, DOAC direct oral anticoagulant, TCA​ tricyclic antidepressant, SSRI selective serotonin reuptake inhibitor

Variables, N (%) Development cohort (N = 520,603) Validation cohort (N = 552,731) p-value

Fall event 9,127 (1.8) 9,664 (1.7) 0.851

Age group

  65 ~ 69 160,630 (30.9) 167,732 (30.3)  < 0.001

  70 ~ 74 132,592 (25.5) 141,300 (25.6)

   ≥ 75 227,381 (43.7) 243,699 (44.1)

Male 215,194 (41.3) 229,810 (41.6) 0.011

Insurance: Medical aid 37,696 (7.2) 39,244 (7.1) 0.005

Comorbid disease

  Prior fall-related injury 30,189 (5.8) 33,244 (6.0)  < 0.001

  Hypertension 384,631 (73.9) 405,190 (73.3)  < 0.001

  Chronic heart failure 45,007 (8.7) 48,653 (8.8) 0.004

  Diabetes mellitus 191,089 (36.7) 207,143 (37.5)  < 0.001

  Dyslipidemia 310,685 (59.7) 342,403 (61.9)  < 0.001

  Ischemic heart disease 82,778 (15.9) 87,353 (15.8) 0.171

  Cerebrovascular disease 72,525 (13.9) 77,448 (14.0) 0.227

  Arrhythmia 31,515 (6.1) 24,745 (4.5)  < 0.001

  Dorsopathy 270,476 (52.0) 291,260 (52.7)  < 0.001

  Osteoporosis 113,345 (21.8) 126,037 (22.8)  < 0.001

  Osteoarthritis 218,801 (42.0) 236,722 (42.8)  < 0.001

  Parkinsonism 11,866 (2.3) 12,485 (2.3) 0.476

  Urinary incontinence 13,273 (2.5) 14,654 (2.7)  < 0.001

CCI score, mean ± SD 1.79 ± 1.66 1.70 ± 1.63  < 0.001

  0 ~ 2 378,273 (72.7) 412,071 (74.6)  < 0.001

  3 ~ 4 107,478 (20.6) 107,150 (19.4)

   ≥ 5 34,582 (6.7) 33,510 (6.1)

Concurrent medication

  CCBs 235,483 (45.2) 249,311 (45.1) 0.198

  ACEi/ARBs 257,955 (49.5) 276,238 (50.0)  < 0.001

  Beta blockers 80,931 (15.5) 84,854 (15.4) 0.006

  Loop diuretics 23,168 (4.5) 24,664 (4.5) 0.763

  Sulfonylureas 59,915 (11.5) 61,565 (11.1)  < 0.001

  Insulin 12,476 (2.4) 13,772 (2.5) 0.001

  Corticosteroids 20,984 (4.0) 23,009 (4.2)  < 0.001

  NSAIDs 111,782 (21.5) 121,863 (22.0)  < 0.001

  Warfarin 4186 (0.8) 3664 (0.7)  < 0.001

  DOACs 11,765 (2.3) 14,600 (2.7)  < 0.001

  Opioids (excluding tramadol) 6026 (1.2) 6496 (1.2) 0.392

  Tramadol 44,893 (8.6) 49,245 (8.9)  < 0.001

  Benzodiazepines 61,596 (11.8) 64,304 (11.6) 0.002

  Zolpidem 16,276 (3.1) 17,506 (3.2) 0.227

  Gabapentinoids 23,259 (4.5) 27,122 (4.9)  < 0.001

  TCAs 16,121 (3.1) 16,615 (3.0) 0.006

  SSRIs 18,658 (3.6) 21,714 (3.9)  < 0.001

  Antipsychotics 14,180 (2.7) 16,544 (3.0)  < 0.001

  1st generation antihistamines 40,984 (7.9) 43,912 (7.9) 0.166

  Acetylcholine esterase inhibitors 32,482 (6.2) 36,659 (6.6)  < 0.001

  Vitamin D 22,969 (4.4) 26,268 (4.8)  < 0.001

  Bisphosphonates 53,616 (10.3) 55,798 (10.1)  < 0.001

No. of medications, mean ± SD 7.02 ± 4.48 7.19 ± 4.58  < 0.001

  0 ~ 4 174,618 (33.5) 179,300 (32.4)  < 0.001

  5 ~ 9 216,109 (41.5) 227,845 (41.2)

   ≥ 10 129,876 (25.0) 145,586 (26.3)
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Discussion
This study developed and validated a FRI prediction 
model in the community-dwelling older adults using 
claims database. Our best performing model showed 
a fair ability to discriminate individuals who experi-
enced FRI and those who did not [43] (AUROC, 0.70). 
By focusing on 35.1% of the patients, we could capture 
almost two-thirds of FRIs. Contrary to expectations, the 
model using machine learning algorithm only showed 
a slight improvement in performance compared with 
logistic regression. This trend is also demonstrated in 
a prior study conducted to predict falls with admin-
istrative claims database that shared similar charac-
teristic of features with our study [26]. The model’s 
selected features and interpretation aligned well with 
clinical intuition. Specifically, our model predicted older 
adults, female sex, and prior FRI; the higher the num-
ber of CNS depressants and the higher the number of 

total medications, the more likely that an individual will 
experience FRI [34]. Our model identified dorsopathy as 
an important risk factor for FRIs, which is also consist-
ent with the results of prior studies that have revealed 
back pain as an independent risk factor for fall [44]. 
Contrary to our intuition, the use of certain antihyper-
tensives was associated with a lower risk of FRI in our 
study. Although the mechanism is not totally under-
stood, similar trend has been observed in other studies 
[32, 45]. A meta-analysis conducted by de Vries et  al. 
reported that beta-blockers showed protective effect 
against falls [32]. Ang et al.’s meta-analysis also demon-
strated that beta-blockers and angiotensin-converting 
enzyme inhibitors were associated with lower risk of 
injurious fall [45]. In contrast, Butt et al. found that the 
incidence rate of falls was significantly higher within the 
first 14 days after the initiation for all classes of antihy-
pertensives [46]. Taken together, these studies suggest 

Fig. 1  Discrimination and calibration performance of each model. A Receiver operating characteristic curve of each model. B Calibration plot 
of each model

Table 2  Performance comparison of each model on validation cohort

FRIs fall-related injury, PPV positive predictive value, NPV negative predictive value, AUROC area under the receiver operating characteristic curve
a Counted based on fall occurring within 3 months from the entry date. The total number of patients who experienced fall within 3 months was 5555
b P-value for comparison of area under the receiver operating characteristic curve with logistic regression

Models No. (%) of high-
risk patients

No. of FRIa Accuracy Sensitivity Specificity PPV NPV AUROC p-valueb

Catboost 189,445 (34.3) 3543 0.652 0.647 0.652 0.019 0.995 0.700  < 0.001

LightGBM 202,745 (36.7) 3679 0.636 0.662 0.636 0.018 0.994 0.700 0.004

XGBoost 193,956 (35.1) 3587 0.650 0.648 0.650 0.018 0.995 0.699 0.005

Random Forest 175,115 (31.2) 3383 0.660 0.637 0.660 0.019 0.994 0.699 0.380

Logistic regression 219,624 (39.7) 3839 0.603 0.691 0.602 0.017 0.995 0.698 -
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that antihypertensives may increase the risk of falls in 
the initiation period, not in the maintenance period.

Additional care needs to be taken in interpreting this 
model. For instance, exposure to bisphosphonate seems 
to increase the risk of FRIs, but it would rather more rea-
sonable to interpret it as the population has underlying 
condition with osteoporosis. Similarly, hyperlipidemia 
and menopause appear to be protective against falls, pos-
sibly due to the increase in bone density resulting from 
the use of statins or hormone replacement therapy rather 
than the disease itself [47, 48]. Hence, when interpreting 
the output of the model (which is entirely dependent on 
the user), it is necessary to determine whether the result 
is due to the influence of the medication or whether it is 
simply a result of the modeling process.

Our study has some limitations. First, our model’s per-
formance was not optimal, with an AUROC of 0.70, com-
pared with other previous machine learning-based fall 
prediction models (AUROC range, 0.70–0.88) [22–26]. 
This is possibly because physical examination results, 
such as gait and muscle strength, and laboratory values, 

such as bone mineral density, which are potentially key 
features for predicting FRIs, cannot be obtained from 
claims database. Second, owing to the nature of claims 
database, it is not known whether the individual actually 
took the prescribed medications. Third, while the diag-
nostic codes utilized for identifying FRIs are informed by 
prior studies [29, 30], they may not be exclusively attrib-
utable to falls. The possibility that the injuries could be 
from other causes, such as vehicular accidents, cannot be 
entirely excluded, given that the external cause of injury 
codes were obscured in our dataset. However, substantial 
evidence suggests that a significant proportion of non-
intentional injuries among older adults are caused by 
falls. For instance, from 2016 to 2020, fall accounted for 
57% of fatal unintentional injuries and 65% of non-fatal 
unintentional injuries in this demographic [49]. This data 
substantiates the likelihood that any misclassification 
bias in our study would not substantially affect the valid-
ity of our findings. Fourth, given the nature of HIRA-
APS dataset, it is worth noting that the data are sampled 
annually, and there is possibility that the same patients 

Fig. 2  Kaplan–Meier curves for cumulative incidence of fall-related injury by risk group
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may be included in both 2018 sample database for model 
development and 2019 sample database for validation. 
However, due to the anonymized nature of the data, we 
were unable to identify duplicate patients. Nevertheless, 
we believe that this should not significantly impact the 
results.

Despite these potential limitations, our predic-
tion model is still valuable in that it was derived from 
a nationally representative dataset of adult population, 
making it more generalizable than models based on data 
from a single institution. Moreover, the focus on FRIs 
resulting in admission or ED visit as a primary out-
come underscores the clinical significance of this study 
and may contribute to the development of fall preven-
tion programs that improve patient outcomes. Utilizing 
a claims database, our model benefits from automated 
data acquisition, which facilitates the identification of 
populations at high-risk for FRIs without additional 
assessment.

Our model was designed with the intention of serv-
ing as a national surveillance tool for monitoring fall-
related injuries in South Korea, where the Health 
Insurance Review and Assessment Service (HIRA) 
operates a Drug Utilization Review (DUR) system. This 

system is instrumental in providing real-time alerts to 
healthcare providers about critical issues like contrain-
dicated drug interactions, redundant prescribing, age-
related contraindications, and excessive dosage [50]. 
Given that our model is constructed exclusively from 
claims data, it is conceivable that HIRA could integrate 
our predictive model into the DUR system to enhance 
its functionality. Such an advancement would allow 
for the automatic and real-time processing of data to 
pinpoint high-risk individuals, thus facilitating proac-
tive education and timely interventions for fall-related 
injuries, greatly contributing to patient safety and care. 
Furthermore, our study stands out as the only available 
prediction model for FRIs in community-dwelling older 
adults that has been evaluated in an external validation 
cohort with different time periods, whereas previous 
studies only underwent internal validation using the 
random split-sample method and cross-validation.

Conclusions
We developed and externally validated a novel explain-
able machine learning-based FRI prediction model using 
national sample claims database. We found that applying 
machine learning approach to predict FRIs in older adult 

Fig. 3  Interpretation of the model output. FRI, fall-related injury; CNS, central nervous system; ED, emergency department. A SHapley Additive 
exPlanations (SHAP) summary plot. The color represents the value of each feature, with red representing higher values and blue representing 
lower values. The SHAP value on the x-axis explains the direction and degree of the model’s prediction, where large positive values contribute 
to the prediction that a patient will experience fall-related injury, large negative values contribute to the prediction that a patient will 
not experience fall-related injury, and values close to zero contribute little to the prediction. B SHAP waterfall plot. Patient level prediction 
is depicted. Similarly, the SHAP value on the x-axis explains the direction and degree of the model’s prediction, where large positive values 
contribute to the prediction that a patient will experience fall-related injury, large negative values contribute to the prediction that a patient will 
not experience fall-related injury, and values close to zero contribute little to the prediction
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is feasible. Although the performance is not optimal, sim-
ple and ready-to-use claims data-driven model can be 
utilized in routine primary care practice or community 
pharmacy for targeted intervention. Further prospective 
study is required to evaluate and validate the usefulness 
of the model in the clinical field.
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