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Lactobacillus-derived extracellular vesicles
enhance host immune responses against
vancomycin-resistant enterococci
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Abstract

Background: Probiotic bacteria are known to modulate host immune responses against various pathogens. Recently,
extracellular vesicles (EVs) have emerged as potentially important mediators of host-pathogen interactions. In this
study, we explored the role of L. plantarum derived EVs in modulating host responses to vancomycin-resistant
Enterococcus faecium (VRE) using both Caenorhabditis elegans and human cells.

Results: Our previous work has shown that probiotic conditioning C. elegans with L. acidophilus NCFM prolongs
the survival of nematodes exposed to VRE. Similarly, L. plantarum WCFS1 derived extracellular vesicles (LDEVs) also
significantly protected the worms against VRE infection. To dissect the molecular mechanisms of this EV-induced
protection, we found that treatment of C. elegans with LDEVs significantly increased the transcription of host
defense genes, cpr-1 and clec-60. Both cpr-1 and clec-60 have been previously reported to have protective roles
against bacterial infections. Incubating human colon-derived Caco-2 cells with fluorescent dye-labeled LDEVs
confirmed that LDEVs could be transported into the mammalian cells. Furthermore, LDEV uptake was associated
with significant upregulation of CTSB, a human homologous gene of cpr-1, and REG3G, a human gene that has
similar functions to clec-60.

Conclusions: We have found that EVs produced from L. plantarum WCFS1 up-regulate the expression of host
defense genes and provide protective effects on hosts. Using probiotic-derived EVs instead of probiotic bacteria
themselves, this study provides a new direction to treat antimicrobial resistant pathogens, such as VRE.
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Background
Lactobacillus is a genus of Gram-positive facultative
anaerobic bacteria [1]. Considered as non-pathogenic
and generally regarded as safe, lactobacilli have been
widely used for fermentation and food production for
centuries [2, 3]. The beneficial or probiotic effects of
lactobacilli are under intense investigation with both
laboratory and clinical studies [4–8], suggesting that
administration of lactobacilli inhibit cytokine-induced
apoptosis [9] and decreases the pathogenicity of vari-
ous pathogens, such as E. coli [10] and VRE [11].

However, the molecular mechanisms by which lactoba-
cilli impact VRE are incompletely understood.
Lactobacilli may exert immunomodulatory effects using

multiple mechanisms including binding directly to C-type
lectin receptors (CLRs) or Toll-like receptors (TLRs), on
the host cell surface [12, 13]. For example, administration
of L. casei CRL 431 increased the expression of TLR2,
TLR4, and TLR9 and improved the production and secre-
tion of TNFα, IFNγ, and IL-10 in mice [12]. Alternatively,
lactobacilli may produce antimicrobial substances to
inhibit the growth of various pathogens. For example, a
bacteriocin produced by lactobacilli formed pores in the
membranes of pathogens and thus caused leaking of target
cells [14, 15]. More recently, studies have revealed that
extracellular vesicles (EVs) and associated proteins from
lactobacilli can also modulate the activity of immune cells
and affect host innate and adaptive immune responses
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[16–18]. For example, EVs from lactobacilli were found to
enhance cellular TLR2/1 and TLR4 responses while sup-
pressing TLR2/6 signaling [17].
Extracellular vesicles (EVs) are nanometer-scale

membrane-contained vesicles released in an evolutionally
conserved manner by a wide range of cells [19, 20]. By
facilitating the transfer of proteins, nucleic acids, and
other molecules between cells [21, 22], EVs are associated
with molecular transport, mediation of stress response
and biofilm formation thus influencing their hosts
[23, 24]. This EV-mediated interaction is likely preva-
lent in the gut as a major method of communication be-
tween bacteria and hosts, since a layer of mucin prevents
direct physical contact between bacteria and host tissues
[25]. Another unique feature associated with EVs is their
potential to mediate therapeutic molecule delivery without
inducing adverse immune reactions [26].
In this study, we selected L. plantarum WCFS1, a

leading probiotic strain found in the gastrointestinal
tract, due to its potency to inducing immunomodulatory
effects [27]. We found that L. plantarum WCFS1 pro-
duces EVs that are 30–200 nm in diameter. Proteomic
analysis revealed that L. plantarum derived EV (LDEV)
cargo was enriched with membrane-associated proteins.
Using the experimental nematode C. elegans, LDEV
treatment prolonged the survival rates of C. elegans
under E. faecium (VRE) challenge. To investigate the
underlying mechanisms, we found that the host defense
genes, cpr-1 and clec-60, were significantly upregulated.
LDEV treatment of human colonic cells lines also led to
similar upregulation of CTSB (Cathepsin B) and REG3G
(Regenerating islet-derived protein 3-gamma).

Results
L. plantarum produces EVs
We isolated EVs from the supernatant of L. plantarum
WCFS1 using ExoQuick-TC kit (System Biosciences) [28].
The isolated particles were characterized by electron
microscopy, nanoparticle tracking analysis (NTA, Nano-
Sight) and proteomic identification. Electron microscopy
showed typical EV-like size (30–200 nm) and morphologic
appearance (enclosed by membranes) (Fig. 1a). NTA ana-
lysis, a measure of particle size, revealed that over 80% of
isolated EVs ranged from 31 nm to 200 nm (Fig. 1b),
within the range of previously described EV sizes between
30 and 1000 nm [23]. We also used liquid chromatog-
raphy–mass spectrometry to profile EV protein content.
31 proteins were identified in the EV fraction (Additional
file 1: Table S1). Notably, according to gene ontology ana-
lysis, over half of the proteins were found to be associated
with membrane, where typical bacterial EVs originate
(Fig. 1c) [29, 30]. In all, these results confirmed that L.
plantarum WCFS1 produces and release EVs.

L. plantarum EVs are biofunctional and increase the
survival of C. elegans
Our previous study showed that preconditioning C.
elegans with L. acidophilus NCFM prolongs the survival
of the nematode after infection with Enterococcus faeca-
lis [31]. We asked if EV fractions of lactobacilli can also
provide similar protective effects. Using an agar-based
solid killing assay [32], C. elegans were pre-treated with
L. plantarum bacteria, LDEVs or mock EV’s as described
in the Methods section. The nematodes were then chal-
lenged with a clinically isolated vancomycin-resistant E.
faecium C68. Compared to the control worms condi-
tioned with mock EVs, C. elegans conditioned with L.
plantarum WCFS1 bacteria survived significantly longer
(~3 days) (Fig. 2). This result is similar to that previously
obtained using L. acidophilus [31]. Notably, worms pre-
treated with LDEVs also survived significantly longer
(~4 days) than those treated with mock EVs. We did not
observe significantly different survival between LDEV
treated and L. plantarum treated groups (Fig. 2).

L. plantarum EVs up-regulate host defense genes, clec-60
and cpr-1 in a C. elegans model
The protection induced by LDEVs prompted us to inves-
tigate the possible immunomodulatory effects of LDEVs
on C. elegans. Our previous research had shown that five
host defense genes (asp10, celec-60, cpr-1, cpr-5, and lys-
5) were significantly up-regulated when C. elegans were
conditioned with L. acidophilus NCFM (Fig. 3a) [31].
When L. plantarum bacteria were applied to C. elegans,
a similar significant up-regulation of clec-60 (~6.2 fold),
cpr-1(~2.4 fold) and lys-5(~2.3 fold) was observed
(Fig. 3b). When C. elegans were treated with L. plan-
tarum derived EVs, we observed a significant up-
regulation of gene expression for the C-type lectin
clec-60 (~9 fold) and the gut-specific cysteine protease
cpr-1(~3 fold) (Fig. 3c).

L. plantarum EVs incubation led to LDEV cargo delivery
and up-regulation of host defense genes, CTSB and
REG3G in Caco-2 cells
Having established the immunomodulatory effects of
LDEVs in the nematode model, we next investigated the
impact of LDEVs on Caco-2 cells as a model of human
colonic epithelium [33]. LDEVs were fluorescently
labeled with Exo-Green and then incubated with Caco-2
cells for 24 h. We observed ~25% of Caco-2 cells
retained the fluorescent label after washing. No detect-
able fluorescence was observed from the mock EV con-
trol, which went through the same EV isolation and
labeling procedures (Fig. 4a). Incubating LDEVs with
Caco-2 cells did not impact the viability of the mamma-
lian cells (Fig. 4b). Next, we tested if the two genes that
showed significantly increased expression in C. elegans,
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clec-60, and cpr-1, translated to the mammalian model
system. CTSB [34], the cysteine proteinase, is the human
orthologue of cpr-1. There is no direct human ortholo-
gue of clec-60 based on sequence homology. We, there-
fore, investigated REG3G, an intestinally secreted C-type
lectin that likely has functional similarity [35, 36]. Both

CTSB and REG3G RNAs were significantly up-regulated
in Caco-2 cells after the LDEV treatment (Fig. 4c). This
upregulation of CTSB and REG3G confirmed the results
obtained from C. elegans model.

Discussion
The importance of EVs has been increasingly recognized.
Virtually all kinds of cell types studied so far secret EVs,
and they are also found in various bio-fluids [19, 20].
This phenomenon indicates that EVs are evolutionarily
conserved and likely functionally important [21, 22].
Indeed, numerous studies on mammalian cell derived EVs
have shown that EVs play important roles in intercellular
communication and mediation of immunomodulatory re-
sponse [22]. However, EV-mediated interactions between
host and bacterial pathogens are less explored. Limited
studies suggest that pathogenic bacterial strains affect bio-
film formation via EV pathways [23, 24]. A recent study
on probiotic bacteria has also shown EVs from multiple
Lactobacillus strains modulate host-microbe responses
by regulating the TLR2 activity and phagocytosis [17].
Here, we focused on L. plantarum, a gut-associated
commensal bacteria often used in probiotic nutritional
supplements. We found that L. plantarum WCFS1 pro-
duces functional EVs that enhance host defense gene
expression and directly augments protection against
VRE infections. These findings suggest LDEVs, at least
partially, mediate the immunomodulatory properties of
probiotic lactobacilli.

Fig. 2 Conditioning with LDEVs prolonged the survival of C. elegans
nematodes infected with VRE. Compared to the worms conditioned
with mock EVs, significantly longer survival was found in the LDEV
conditioned worms (~4 days, p< 0.01). L. plantarum WCFS1 conditioned
worms also had significantly (~3 days, p < 0.01) longer survival than
those conditioned with mock EVs. There was no statistical difference in
survival between worms conditioned with LDEVs and with L. plantarum
WCFS1 bacteria

Fig. 1 a Electron microscopy of L. plantarum WCFS1 EVs. Representative transmission electron micrograph shows EVs isolated from L. plantarum
growth medium, magnification 92,000. EVs measure between 30 and 150 nm in diameter and have the morphologic appearance consistent with
EVs. b NanoSight size analysis of L. plantarum WCFS1 EVs. The graph represents the size (X-axis) versus concentration (Y-axis) where the white line
represents EV size distribution, and the gray line is the accumulated percent of EVs assayed. Over 80% of EVs are sized between 31 nm and 200 nm,
while the highest enriched EVs are around 101 nm. c Gene ontology analysis of L. plantarumWCFS1 EV proteome. Eighteen out of thirty-one proteins
were found to be part of membrane or associated with membrane, where typical bacterial EVs either get produced or exported

Li et al. BMC Microbiology  (2017) 17:66 Page 3 of 8



It is interesting to note that L. plantarum derived EVs
up-regulate clec-60 and cpr-1, while the L. plantarum
bacteria promote the expression of both genes and cpr-
5. The shared upregulation of clec-60 and cpr-1 suggest
that L. plantarum derived EVs retain much of the immu-
nomodulatory effects of L. plantarum. This is probably
because EVs have similar cargo contents as their parental
bacteria [23]. The different regulation observed with gene
cpr-5, however, illustrates that bacterial EVs are not equal
to the intact bacteria regarding the spectrum of induced
immunomodulatory effects.

Our experiments using human Caco-2 cells confirmed
biological activity of the LDEVs. Both REG3G [36],
which is functionally similar to clec-6, and CTSB [37]
(the human orthologue of cpr-1) are upregulated by
LDEV treatment. REG3G is an intestinally secreted C-
type lectin with potent bactericidal activity against
Gram-positive bacteria [35]. It also promotes the spatial
segregation of microbiota and host in the intestine [36],
thus decreasing the chance of bacterial colonization on
the intestinal epithelial surfaces [38, 39]. CTSB, a cysteine
proteinase involved in cell death and inflammation [40],

Fig. 3 Expression profiles of host defense genes when C. elegans were conditioned with lactobacilli and then LDEVs. a RNAs of five host defense
genes (asp10, clec-60, cpr-1, cpr-5, and lys-5) were significantly (p < 0.01) up-regulated when C. elegans fer-15;fem-1 were conditioned with L. acidophilus
NCFM (See reference [31]). Data are derived from qPCR with fold change in gene expression listed below each gene. b RNAs of clec-60, cpr-1 and lys-5
were significantly (**, p < 0.01) up-regulated when C. elegans fer-15;fem-1 were conditioned with L. plantarum WCFS1. c Significant (**, p < 0.01)
up-regulation of clec-60 and cpr-1 was associated with LDEV conditioned C. elegans fer-15;fem-1

Fig. 4 a The incubation of LDEVs with Caco-2 cells led to cargo delivery from LDEVs to Caco-2 cells. Compared to mock EVs, only LDEVs treated
Caco-2 group showed positive fluorescence. b The incubation of LDEVs did not cause any significant toxicity to Caco-2 cells. MTT assay was employed
to examine the viability of Caco-2 cells 24 h after they were treated with mock EVs or LDEVs. c LDEVs increased gene expression of CTSB and REG3G in
Caco-2 cells. At 24 h post-incubation, the RNA expression of CTSB (2.5-fold, p < 0.01) and REG3G (2-fold, p < 0.01) were significantly up-regulated in the
LDEV treated group
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is associated with antibacterial activity [41, 42]. Although
it may involve autophagy [43], the exact mechanism of
CTSB on bacterial pathogens is unclear.
This study provided a mechanistic insight as to how

LDEVs enhance host immune response via upregulation
of the two host genes, REG3G and CTSB.

Conclusions
In summary, our study revealed that EVs produced from
L. plantarum up-regulate the expression of host defense
genes, clec-60 and cpr-1, and provide protection against
VRE infection in a C. elegans model. LDEV treatment of
human colonic cells lines also led to similar upregulation
of CTSB and REG3G. The findings of this study could
be harnessed to design a new therapeutic treatment of
antimicrobial resistant infections by using EVs derived
from probiotic strains rather than the bacteria themselves.

Methods
Preparation of probiotic bacteria
Single colony inoculated L. plantarum WCFS1 (BAA-
793, ATCC) was grown in de Man, Rogosa, and Sharpe
(MRS) medium (Difco Laboratories) at 37 °C for 24 h.

Isolation of extracellular vesicles
Extracellular vesicle fractions were independently
enriched from culture supernatants of L. plantarum
WCFS1 and medium control. Supernatants from over-
night cultures were generated by first centrifuging cul-
tures at 1000 g for 10 min. All supernatants were then
passed through a 0.22 μm filter to remove large particles
and possible contaminants. EVs were isolated using an
ExoQuick-TC™ (System Biosciences) kit per the manu-
facturer’s directions. Briefly, five parts of supernatant
were mixed with one mL of ExoQuick-TC solution. The
mixtures were incubated overnight at 4 °C and followed
by two centrifugations at 1500 × g for 30 min and then
5 min, respectively. The supernatants were discarded,
and the resulting pellets were resuspended in PBS to use
directly in downstream experiments or placed in a −80 °C
freezer for long-term storage. Mock EVs were isolated
from sterile, uninoculated L. plantarum WCFS1 culture
broth using the same EV isolation procedures.

Electron microscopy
LDEVs were fixed with 3% glutaraldehyde in 0.15 M so-
dium cacodylate buffer and then post-fixed in 1% osmium
tetroxide (Electron Microscopy Sciences). Fixed samples
were cut into 1.5 mm cubes and covered with a 3% agar
solution. Samples were dehydrated through a graded series
of acetone and embedded in Spurr epoxy resin (Ladd
Research Industries). Ultra-thin sections were then pre-
pared, retrieved onto 300-mesh thin bar copper grids, and
contrasted with uranyl acetate and lead citrate. Sections

were examined using a Morgagni 268-transmission elec-
tron microscope and images collected with an AMT
Advantage 542 CCD camera system.

Nanoparticle tracking analysis (NTA)
The NTA analysis was carried out using a NanoSight™
NS500 (Malvern) and an automatic syringe pump sys-
tem. This instrument generates a detailed analysis of the
size distribution and concentration of nanoparticles. The
analysis was performed on EVs suspended in PBS at 22 °C.
Thirty of 30-s videos were recorded for each sample with
camera shutter at 33 ms. Videos recorded for each sample
were analyzed with NTA software (version 2.3). For this
analysis, auto settings were used for blur, minimum track
length, and expected particle size; detection threshold was
set at 4 Multi.

Proteomics
Proteomic characterization of LDEVs was performed by
liquid chromatography-tandem mass spectrometry (LC-
MS/MS, nano-LC from LC Packings/Dionex, and Qstar
XL from Applied Biosystems). LDEV samples were sus-
pended in Novex® (Thermo Scientific) reducing sample
buffer and heated for 10 min at 70 °C. Samples were run
on Novex® 4-20% Tris-Glycine gradient gels and stained
with SimplyBlue® SafeStain (Life Technologies) for 1 h
followed by destaining with water. Gel bands were ex-
cised and digested with modified Trypsin (Promega).
Tryptic digests were fractionated with a reversed-phase
column and the column eluate introduced onto a Qstar
XL mass spectrometer via ESI. Protein identifications
were performed with ProteinPilot (Applied Biosystems)
using the L. plantarum WCFS1 reference sequence data-
base from UniProt and NCBI. To increase confidence, a
further manual inspection was carried out to select the
proteins associated with at least two unique as the
potential candidates [44–46].

Gene ontology (GO) analysis
Protein candidates listed in Additional file 1: Table S1
were searched against UniProt, EBI, and GO databases.
Visualization of GO analysis results was carried out in
Excel.

Nematode and pathogenic bacteria
C. elegans Bristol N2 or fer-15;fem-1 was used in this
study. C. elegans strains were routinely maintained on
nematode growth medium (NGM) plates seeded with E.
coli OP50 or HB101 using standard procedures [47].
Clinically isolated Enterococcus faecium (vancomycin-re-
sistant) C68 [48] was grown at 37 °C using brain heart
infusion (BHI; Difco) broth.
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C. elegans killing assays
Solid killing assays were performed using published
methods, with slight modifications [47]. For positive
control, 1x109 CFU L. plantarum bacteria were spread
on an SK plate. LDEVs that were isolated from an
equivalent number of L. plantarum, 1x109 CFU, were
suspended in PBS and spread on an SK plate. For the
negative control, the same volume of mock EVs was
spread on SK plate. Each plate was dried for 3 h at room
temperature before use. Forty to sixty C. elegans Bristol
N2 were seeded into each plate after pre-incubating with
L. plantarum WCFS1, LDEVs or controls for 24 h,
followed by VRE challenge (a clinically isolated C68 E.
faecium strain at 1x109 VRE/plate). After worms had
been placed on the plates with the VRE, plates were then
incubated at 25 °C and examined for viability at 24-h in-
tervals for 15 days using a Nikon SMZ645 dissecting
microscope. Worms were counted as alive or dead based
on their response or lack of response to gentle touching
with a platinum wire. For preventing hatching of
examined adult worm, worms were treated with 5-
fluorodeoxyuridine (50 μM) from L4 to end of assays.

Culture and EV treatment of cell lines
Caco-2 (HTB-37, ATCC), a human colon carcinoma cell
line, was maintained in Eagle’s Minimum Essential
Medium (EMEM) supplemented with 20% fetal bovine
serum (FBS) and was used to test LDEV’s effect on
mammalian cells. LDEVs were labeled by Exo-Green
(System Biosciences) according to manufacturer’s in-
struction. Briefly, 500 μl of LDEVs suspended in PBS
was mixed with 50 μl stain. After 10 min 37 °C incuba-
tion and precipitation by ExoQuick-TC, the labeled
LDEVs was re-suspended in PBS and added to Caco-2
cells. At 24 h post-incubation, the culture wells were
rinsed twice with PBS to remove residual fluorescent
dyes. The cells were then examined by fluorescent
microscopy (Olympus IX-70). A control experiment
using mock EV was also carried out in parallel.

Caco-2 viability assay
(3-[4,5- dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium
bromide) or MTT assay (Sigma) was used to measure
Caco-2 cellular proliferation rate after LDEV treatment.
All procedures were performed according to the manu-
facture’s instruction.

RNA isolation and qPCR
Total RNA from C. elegans and Caco-2 cells was
extracted using TRIzol® (Thermo Scientific) by following
standard protocols. The concentrations of all RNA sam-
ples were determined by spectrophotometry. 1 μg of
total RNAs was used for reverse transcription and PCR,
which was carried out on a Mastercycler® gradient 5331

(Eppendorf, Westbury, NY) by using Maxima® First
Strand cDNA Synthesis Kit (Thermo Scientific). Primers
were designed by using PrimerQuest online tools
available at http://www.idtdna.com/Primerquest/Home/
Index. Primer sequences are provided in Additional file
2: Table S2. Real-time PCR was performed on Mastercy-
cler® ep realplex (Eppendorf ). All reactions were per-
formed in 96-well plates with the following reagents in a
final volume of 20 μl: 1 μl of primers (5 μM each for for-
ward and reverse) and 2X Maxima® SYBR Green qPCR
Master Mix from Thermo Scientific. 10 ng of cDNA was
added to this mixture. Triplicate reactions of the target
and housekeeping genes were performed simultaneously
for each cDNA template analyzed. The PCR reaction
consisted of an initial enzyme activation step at 95 °C
for 10 min, followed by 40 cycles of 95 °C for 15 s and
60 °C for 1 min. A cycle threshold value (Ct) value was
obtained for each sample, and triplicate sample values
were averaged. The 2-ΔΔCt method was used to calculate
relative expression of each target gene. The control
genes snb-1 [49] and ACTB [50] were used to normalize
the gene expression data from C. elegans or Caco-2 cells
respectively.

Statistical analysis
The log-rank test was used to determine the difference
in C. elegans survival rates. Differences in qPCR results
were determined by using the Student’s t-test. A P < 0.05
in all experiments was considered statistically significant.
Statistical analysis and graphing were performed with
Prism version 6.05 (GraphPad).

Additional files

Additional file 1: Table S1. Proteomics data from L. plantarum derived
extracellular vesicles. Protein name, GO term (cellular component),
Accession number, Peptide sequence, Validation Score, Xcorr score,
Change in mass (ppm), Isolated mass, Peak area, Charge state, and
Number of peptides are given. (XLSX 28 kb)

Additional file 2: Table S2. qPCR primers. Their names and sequences
are given. (XLSX 8 kb)
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