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Abstract

Background: Highly virulent strains of the gastric pathogen Helicobacter pylori encode a type IV secretion system (T4SS)
that delivers the effector protein CagA into gastric epithelial cells. Translocated CagA undergoes tyrosine phosphorylation
by members of the oncogenic c-Src and c-Abl host kinases at EPIYA-sequence motifs A, B and D in East Asian-type
strains. These phosphorylated EPIYA-motifs serve as recognition sites for various SH2-domains containing human
proteins, mediating interactions of CagA with host signaling factors to manipulate signal transduction pathways.
Recognition of phospho-CagA is mainly based on the use of commercial pan-phosphotyrosine antibodies that
were originally designed to detect phosphotyrosines in mammalian proteins. Specific anti-phospho-EPIYA antibodies
for each of the three sites in CagA are not forthcoming.

Results: This study was designed to systematically analyze the detection preferences of each phosphorylated East
Asian CagA EPIYA-motif by pan-phosphotyrosine antibodies and to determine a minimal recognition sequence. We
synthesized phospho- and non-phosphopeptides derived from each predominant EPIYA-site, and determined the
recognition patterns by seven different pan-phosphotyrosine antibodies using Western blotting, and also investigated
representative East Asian H. pylori isolates during infection. The results indicate that a total of only 9-11 amino acids
containing the phosphorylated East Asian EPIYA-types are required and sufficient to detect the phosphopeptides with
high specificity. However, the sequence recognition by the different antibodies was found to bear high variability.
From the seven antibodies used, only four recognized all three phosphorylated EPIYA-motifs A, B and D similarly well.
Two of the phosphotyrosine antibodies preferentially bound primarily to the phosphorylated motif A and D, while the
seventh antibody failed to react with any of the phosphorylated EPIYA-motifs. Control experiments confirmed that
none of the antibodies reacted with non-phospho-CagA peptides and in accordance were able to recognize
phosphotyrosine proteins in human cells.

Conclusions: The results of this study disclose the various binding preferences of commercial anti-phosphotyrosine
antibodies for phospho-EPIYA-motifs, and are valuable in the application for further characterization of CagA
phosphorylation events during infection with H. pylori and risk prediction for gastric disease development.
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Abbreviations: BY kinases, Bacterial tYrosine kinases; cagPAl, Cytotoxin-associated genes pathogenicity island;
EPEC, Enteropathogenic Escherichia coli; FBS, Fetal bovine serum; MALT, Mucosa-associated lymphoid tissue;

MOI, Multiplicity of infection; PBS, Phosphate-buffered saline; PTB, Phosphotyrosine binding; PVDF, Polyvinylidene
fluoride; SH2, Src homology 2; T4SS, Type IV secretion system

Background

Helicobacter pylori is a human-specific pathogen colon-
izing the gastric mucosa of the stomach. About 50 % of
the world's population carries this microbe, often caus-
ing asymptomatic gastritis in infected individuals, and
more severe gastric diseases in up to 10-15 % of in-
fected persons [1-4]. Although H. pylori infections are
commonly associated with elevated inflammation pa-
rameters, the bacteria are not eliminated and can be-
come persistent. Various mechanisms of host immune
evasion were documented and H. pylori became a prime
example of chronic bacterial infections. For example, it
appears that H. pylori infection can efficiently reprogram
dendritic cells toward a tolerogenic phenotype and in-
duces regulatory T-cells with highly suppressive activity
[5]. Further studies have indicated not only H. pylori’s
remarkable capability to colonize individual persons for
decades, but also that this bacterium has co-existed with
modern humans for a very long time in history. Genetic
studies showed that H. pylori spread together with its host
during human migrations out of Africa about 58,000 years
ago [6]. Due to this long time of co-evolution, there is
growing evidence indicating that colonization by H. pylori
could have also been advantageous for its human carriers
supplying various benefits [3, 7]. For example, such advan-
tages could include known protective effects of H. pylori
against allergic and chronic inflammatory diseases [5]. In
the modern world, however, infections with H. pylori can
cause a serious burden of morbidity and mortality in the
communities as a result of peptic ulceration, mucosa-
associated lymphoid tissue (MALT) lymphoma and gastric
cancer [1, 7, 8].

H. pylori strains are highly heterogeneous both in their
DNA sequences and virulence. Dozens of bacterial genes
have been described to control the pathogenesis of H.
pylori. One of the best characterized virulence factors is
the CagA protein encoded in the cytotoxin-associated
genes (cag) pathogenicity island (PAI). The cagPAl en-
codes a type IV secretion system (T4SS), representing a
needle-like pilus, which is induced upon contact with
host cells [9-12]. CagA is translocated by this T4SS
across the two bacterial and host cell membranes into
the cytoplasm of target cells. CagA represents a prime
example of tyrosine-phosphorylatable bacterial virulence
factors [13-17]. Upon delivery, members of the c-Src
[18, 19] and c-Abl [20, 21] host tyrosine kinase families
were identified to phosphorylate CagA. Mass spectrometry

and site-directed mutagenesis of CagA identified a set of
Glu-Pro-lle-Tyr-Ala (EPIYA) repeat motifs as phosphoryl-
ation sites [19, 22-26]. Four specific EPIYA-repeat motifs
(named A, B, C and D) were described, primarily based on
their relative position in CagA and flanking amino acid
arrangements. These EPIYA-motifs were originally defined
in 1993 by the group of Antonello Covacci [27] and reveal
some diversity in adjoining sequences and even in the
EPIYA-sites themselves [2, 28-30]. Although the majority
of CagA proteins comprise three EPIYA-motifs, some
isolates have less or additional EPIYA-copies in different
combinations, due to recombination events between re-
peat sequences in the flanking DNA [29, 30]. The EPIYA-
A and EPIYA-B sites are present in almost all CagA
proteins worldwide. EPIYA-C is predominantly ob-
served in isolates with Indo-European and African
ancestry, while CagA of most East Asian H. pylori
typically carry the EPIYA-D motif instead of EPIYA-C
[28, 31-41]. Delivered CagA can interact with at least
20 host cell proteins, specifically in phosphorylation-
dependent and phosphorylation-independent fashions,
to hijack host cell signaling pathways involved in dis-
ease development [29]. A typical characteristic of AGS
gastric epithelial cells infected with cagPAl-positive H.
pylori is the “elongation” or “hummingbird” phenotype
[13, 19, 22]. This in vitro phenotype likely mirrors
numerous in vivo signaling activities that control host
cell motility, invasive growth and metastasis of cancer
cells [42, 43].

Phosphorylated CagA protein species present in AGS
or MKN-28 cells infected with H. pylori carrying three
EPIYA-motifs of Western (A, B, C) or East Asian (A, B, D)
strains were analyzed by two-dimensional gel electrophor-
esis. In these studies it was demonstrated that only one or
two tyrosines (but not three) can be phosphorylated per
single CagA molecule [44, 45]. Interestingly, c-Src only
phosphorylated EPIYA-C or EPIYA-D, while c-Abl phos-
phorylated EPIYA-A, EPIYA-B, EPIYA-C, and EPIYA-D
[45]. Further analysis revealed that at least two phosphory-
lated EPIYA-motifs are required for triggering AGS cell
elongation — the preferred combination in Western
strains is EPIYA-A and EPIYA-C, either across two CagA
molecules or simultaneously on one [45]. Site-directed
mutagenesis further established a hierarchic phosphoryl-
ation model starting at EPIYA-C/D, followed by phosphor-
ylation at EPIYA-A or EPIYA-B [45]. However, the
observation that translocated or transfected CagA can be
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tyrosine-phosphorylated is mainly based on Western blot-
ting using commercial pan-phosphotyrosine antibodies
[13-17]. These antibodies were generated many years ago
to identify phosphorylated tyrosine residues in mammalian
proteins. A similar binding preference is displayed for
mammalian phosphotyrosines by three of these a-
phosphotyrosine antibodies, preferably with a leucine
residue at position -1 and a proline at position +3 [46].
Interestingly, proline and leucine residues are not present
at the corresponding position in CagA [29, 30, 47].
However, we have recently shown that at least three
commercial phosphotyrosine-specific antibodies recognize
the phosphorylated EPIYAs of many Western strains [48].
Nevertheless, systematic analyses on the specific recogni-
tion patterns of phosphorylated EPIYAs in East Asian
CagAs by a large number of different antibodies were
not yet reported. To address this important problem,
we have utilized phospho- and non-phosphopeptides of
each EPIYA-motif from East Asian strains and studied
the recognition specificities by seven commercial o-
phosphotyrosine antibodies. In addition, we performed
infection experiments of AGS cells to investigate the
recognition patterns of the phosphorylated CagAs upon
translocation by East Asian H. pylori strains.

Methods

Phospho- and non-phospho CagA peptide synthesis

The C-STEPIYAKVNK, C-STEPI(pY)AKVNK, C-TEPI
(pY)AKVN, C-EPI(pY)AKV and C-PI(pY)AK peptides
were obtained from Biosyntan GmbH (Berlin/Germany)
and the C-NTEPIYAQVNK (EPIYA-A), C-NTEPI(pY)
AQVNK (phospho-EPIYA-A), C-PEEPIYAQVAK (EPIYA-
B) and C-PEEPI(pY)AQVAK (phospho-EPIYA-B) sequences
were synthesized by Jerini AG (Berlin/Germany). The
C-SPEPIYATIDF (EPIYA-D) and C-SPEPI(pY)ATIDF
(phospho-EPIYA-D) peptides were synthesized as de-
scribed [49]. As a-phosphotyrosine antibodies usually
recognize short phosphopeptides [40, 46, 50, 51], the
indicated 11-mer peptides were selected to compare
the three different EPIYA-motifs. Generally, 11-mer
peptides are also used for immunizations to produce
phospho-specific antibodies (Biogenes, Berlin/Germany).
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The peptides were dissolved in DMSO at a final concen-
tration of 1 mg/mL and stored at -20 °C. Purification of all
above EPIYA peptides was carried out by standard HPLC.
The purity of each peptide as well as full-length synthesis
was approved using mass spectrometry by Biosyntan
GmbH and Jerini AG.

H. pylori strains and mutagenesis

Seven H. pylori wild-type isolates from different Asian
countries are cagPAI- and CagA-positive (Table 1). Iso-
genic AcagA and AcagL knockout mutants were generated
according to standard procedures [52, 53]. All Helicobac-
ters were raised on GC agar plates supplemented with
nystatin (1 pg/mL), trimethoprim (5 pg/mL), vancomycin
(10 pg/mL) and horse serum [54, 55]. The antibiotics were
purchased from Sigma-Aldrich (St. Louis, MO/USA). The
agar plates were cultivated for 2 days at 37 °C in anaerobic
jars containing CampyGen packs (Oxoid, Wesel/
Germany) generating an atmosphere of 85 % N,, 10 %
COy and 5 % O, [56].

In vitro phosphorylation assay of CagA with Abl kinase

Wild-type CagA expressing H. pylori isolates TN2-GF4
and Mand38 (or isogenic AcagA mutants as control)
were used for in vitro phosphorylation assays. Briefly,
10" cells were lysed in 1 mL of kinase buffer as described
previously and 30 pL of the H. pylori lysate were mixed
with two units of human c-Abl tyrosine kinase in the pres-
ence of 1 umol/L of ATP (NEB, Frankfurt/Germany) [57].
After incubation for 30 min at 30 °C, the reactions were
stopped by heating the samples at 95 °C for 5 min [48].

Dotblot analyses

Dot blot analyses were carried out according to standard
protocols, using Immobilon-P membrane and the BioDot
SF apparatus (Bio-Rad, Munich/Germany). Thirty pl of the
in vitro kinase reaction products described above or 20 pg
of each EPIYA peptide were mixed in 1 mL of transfer
buffer (192 mM glycine, 25 mM Tris-HCI, 20 % methanol,
0.1 % SDS, pH 8.3). Subsequently, the samples were spotted
onto the Immobilon-P membranes (Merck Millipore,
Darmstadt/Germany). After drying, the Dotblots were

Table 1 Characteristics of H. pylori strains and encoded CagA proteins used in this study

H. pylori strain  Origin Pathology CagA EPIYA-type  Protein sequence  Reference
Ind69 Indonesia Gastric ulcer ABD LC007101 [97]
FD453 Malaysia Functional dyspepsia ABD This study [36]
Mand38 Myanmar Gastritis (Antral predominant mild gastritis) ABD LC007102 This study
CH7 China Pre-cancer surveillance study ABD This study This study
TN2-GF4 Japan Gastric ulcer ABD LC007103 [98]
2002-14 Mexico Dyspepsia ABD JN390453 [99]
Shi470 Peruvian Amazon Not evaluated directly (Non-atrophic gastritis assumed) ~ ABD YP_001910294.1 [100]
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incubated with the various antibodies as described below
for the Western blots.

Host cell culture and elongation phenotype quantification
AGS gastric adenocarcinoma epithelial cells (ATCC CRL-
1730) were cultivated for two days on petri dishes in RPMI
1640 medium (Life Technologies GmbH, Darmstadt/
Germany) [58]. Culture medium also contained 25 mM
HEPES buffer and 10 % fetal bovine serum (FBS; Biochrom,
Berlin/Germany), which was heat-inactivated [59, 60].
Before infection, AGS cells were washed with PBS
(phosphate-buffered saline) and incubated with serum-
depleted fresh medium for 12 h. Infection with H. pylori
was commonly performed for 6 h at a multiplicity of
infection (MOI) of 50. The cells were then harvested in
ice-cold PBS in the presence of 1 mmol/L NazVOy, (Sigma-
Aldrich). In each experiment the number of elongated AGS
cells was quantified in three different 0.25-mm? fields using
a phase contrast microscope (Olympus IX50). All experi-
ments were done in triplicates and the results were
analyzed statistically as described below.

SDS-PAGE and Western blotting

Infected AGS cells were harvested by adding hot SDS load-
ing buffer to the culture plates. Then, the samples were col-
lected, incubated for 5 min at 95 °C, loaded on 6 % SDS-
PAGE gels and blotted onto Immobilon-P membranes.
After blocking the membranes in TBST buffer with 5 %
skim milk or with 3 % bovine serum albumin (BSA) for
1 hour at room temperature, they were incubated with
rabbit polyclonal a-CagA antibody (Austral Biologicals,
San Ramon, CA/USA) or with the seven commercial a-
phosphotyrosine antibodies (Table 2). Details on dilution
and buffer conditions for each of these antibodies have
been provided recently [48]. Horseradish peroxidase-
labelled anti-mouse or anti-rabbit polyvalent goat immuno-
globulins were used as secondary antibodies [61, 62].
Detection of phosphorylated and non-phosphorylated
CagA proteins was performed with the ECL Plus
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chemoluminescence Western blot kit (GE Healthcare, Frei-
burg/Germany) [63, 64].

Quantitation of signals in Western blot and Dotblot
Quantification of band or spot intensities on immunoblots
was performed using the Chemicdoc imaging system
(Bio-Rad) and indicated the percentage of phosphorylation
per sample [65]. As represented in the corresponding fig-
ures the strongest spot on each Dotblot was set at 100 %.

Statistical examination

The Student t-test was performed using SigmaPlot statis-
tical software (version 13.0) to evaluate all data. All error
bars shown in figures and those quoted following the +/-
signs represent standard deviations.

Results

Short CagA-derived phosphopeptides are sufficient for
recognition by a-phosphotyrosine antibodies

The East Asian CagA proteins typically harbor three phos-
phorylatable sequence motifs, called EPIYA-A, -B and -D,
as indicated for the H. pylori strains TN2-GF4 and
Mand38 (Fig. 1la). It was previously shown that short
mammalian derived phosphopeptides can be recognized
by commercial a-phosphotyrosine antibodies and in vari-
ous studies only five amino acid residues were sometimes
sufficient for strong binding [40, 46, 50, 51]. We therefore
performed a systematic analysis on the recognition capaci-
ties of various phosphorylated East Asian CagA peptides
by these a-phosphotyrosine antibodies. We first synthe-
sized a collection of peptides derived from the EPIYA-A
site of Mand38 displaying the phosphotyrosine in the
center plus five, four, three or two flanking amino acid
residues on each side, including the PIYAK (5-mer),
EPIYAKV (7-mer), TEPIYAKVN (9-mer) and STE-
PIYAKVNK (11-mer) sequences as shown (Fig. 1b, top).
Using the Dotblot technique, twenty pg of each EPIYA-
peptide were immobilized on PVDF membranes per spot
and subsequently analyzed with the a-phosphotyrosine

Table 2 Recognition of EPIYA-phosphopeptides and phosphorylated CagA proteins by commercial a-phosphotyrosine antibodies

Phospho-antibody name ~ Company name Recognition of

Relative phosphorylation signal intensity of

phosphopeptides translocated CagA by H. pylori strains

EPIYA-A  EPIYA-B EPIYA-D Ind69 F453 Mand38 CH7  TN2-GF4  2002-14  Shi470
a-PY-99 Santa Cruz Biotech  +++ +++ +++ +++ -+ +++ +++ +++
a-PY-20 (BD) BD Biosciences -+ -+ -+ +/- ++ +/- +++ +++ +++
a-PY-20 (SO) Santa Cruz Biotech  +++ +++ +++ +/- ++ +/- ++ +++ +++ +++
a-PY-100 Cell Signaling +++ + +++ + - + ++ ++ ++
a-PY-69 BD Biosciences +++ ++ ++ + ++ ++ ++ +++ +++ ++
a-PY-102 Cell Signaling +++ - ++ +/- + +/- + ++ ++ +++
a-PY-350 Santa Cruz Biotech -

Abbreviations: PY (phosphotyrosine), EPIYA motif (glutamic acid-proline-isoleucine-tyrosine-alanine phosphorylation motif in CagA),
Antibody recognition: +++ (strong signal); ++ (moderate signal); + (weak signal); - (no signal)
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experiments using antibodies a-PY-100 and a-PY20
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Fig. 1 Detection of short EPIYA-phosphopeptides from two H. pylori East Asian CagAs by a-phosphotyrosine antibodies. a East Asian CagA proteins of
H. pylori, as shown here for the strains TN2-GF4 and Mand38, primarily carry the EPIYA-A, EPIYA-B and EPIYA-D segments (Table 1). These motifs can be
phosphorylated by c-Abl and c-Src host kinases. b Various truncated EPIYA-A motif-derived phospho- and non-phosphopeptides from strain Mand38
were generated and analysed with the Dotblot method. These peptides were immobilized on PVDF membranes and probed with the indicated
phosphotyrosine antibodies. On the right site, spot intensities derived from three independent experiments of the detected spots are quantified.
The intensities of the signals were measured densitometrically by the Chemidoc imager and display the percentage of phosphorylation signal
per sample. For every Dotblot the strongest spot was set to 100 % for each of the different a-phosphotyrosine antibodies as indicated. The resulting
data indicate that 9-mer and 11-mer phosphopeptides are sufficient to reveal solid recognition by the antibodies. ¢ Products of in vitro kinase reactions
of c-Abl with bacterial lysates (from H. pylori wild-type strain TN2-GF4, Mand38 and isogenic AcagA mutant) were employed for control Dotblot

antibodies a-PY-69, a-PY-102 and PY-100, respectively. All
three antibodies were able to recognize 11-mers and 9-
mers with comparable strong intensity. However, the recog-
nition of 7-mer and 5-mer peptides was substantially re-
duced (Fig. 1b). As control experiment, an 11-mer peptide
of the equivalent non-phospho-EPIYA motif did not result
in any phospho-signal (Fig. 1b). Additional Dotblot experi-
ments using H. pylori lysates of TN2-GF4 and Mand38
confirmed the presence of phospho-CagA when co-
incubated with Abl in in vitro kinase reactions (Fig. 1c). In
this way, we could also confirm that the a-phosphotyrosine
antibodies do not cross-react with non-phosphorylated East

Asian CagA forms in control reactions in the absence of
Abl kinase (Fig. 1c). Taken together, these results validate
the Dotblot method useful for studying CagA phosphoryl-
ation sites and demonstrate that o-phosphotyrosine
antibodies can profoundly recognize East Asian 9-mer
and 11-mer phospho-EPIYA sequences.

Recognition of East Asian EPIYA-A, -B and -D
phosphopeptides by a-phosphotyrosine antibodies

As next, we synthesized 11-mer phospho- and non-
phosphopeptides of EPIYA-A (NTEPIYAQVNK), EPIYA-
B (PEEPIYAQVAK) and EPIYA-D (SPEPIYATIDF) motifs
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of strain TN2-GF4 as indicated in Fig. 2 (top). Resulting
Dotblots were probed with a collection of seven commer-
cial a-phosphotyrosine antibodies in order to test for their
binding specificity of individual EPIYA-motifs. The con-
trol blots show that the corresponding non-phospho
CagA peptides did not reveal any signal, thus confirming
that none of the antibodies produced false-positive results
(Fig. 2). The majority of the antibodies [a-PY-20 (BD),
a-PY-20 (SC), a-PY-69, a-PY-99, a-PY-100, a-PY-102]
primarily recognized the East Asian-type EPIYA-A and
EPIYA-D phosphopeptides. Reaction with the EPIYA-B
phosphopeptide revealed a mixed recognition capacity,
where the antibodies a-PY-100 resulted in only low de-
tection and a-PY-102 was unable to detect the EPIYA-B
phosphopeptide at all. The antibodies a-PY-99, a-PY-20
(BD) and «-PY-20 (SC) were able to detect the

& & W W« &
0.0 © 05 © o
SSRGS\ SR
&K & & &L & L
ST &K K
|_EPIYA-A || EPIYA-B || EPIYA-D | Peptides
[+ -+ - + - | Phospho
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a-PY-99
a-PY-20 (BD)
a-PY-20 (SC)
° e ®
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o-PY-69
a-PY-102
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Fig. 2 Different recognition capacities of synthetic 11-mer CagA
phosphopeptides by seven commercially available a-phosphotyrosine
antibodies. The indicated phospho- and non-phospho peptides
derived from single East-Asian EPIYA-motifs A, B and D of H. pylori
wild-type strain TN2-GF4 were analyzed using the Dotblot method.
The seven designated phosphotyrosine-specific antibodies were
used as previously described [48]

Page 6 of 16

phosphopeptides derived from all three EPIYA-motifs
(A, B and D), while the antibody PY-100 and PY-102
preferentially reacted with the EPIYA phosphopeptides
A and D (Fig. 2). The only exception was antibody PY-
350, which not produce a signal with any of the EPIYA
phosphopeptides. Increasing the amount of bound peptide
up to five-fold or doubling the amount of PY-350 antibody
failed to yield any signal with the EPIYA phosphopeptides
(Fig. 2), but the antibody successfully detected phosphory-
lated host cell proteins, thus confirming its general func-
tionality (Fig. 6). These results suggest that six of the
seven commercial a-phosphotyrosine antibodies recognize
the various East Asian CagA phospho-EPIYA motifs to
different extent.

Comparison of East Asian- and Western-type EPIYA
peptide recognition by a-phosphotyrosine antibodies

We have recently reported the recognition patterns of
11-mer Western-type phospho-EPIYA motifs by o-
phosphotyrosine antibodies [48]. These Western-type
EPIYA-motifs differ in a few amino acids from the East
Asian counterparts (Fig. 3a). In order to investigate if
alteration in some defined flanking amino acid residues
may change the antibody binding patterns, we compared
the recognition capabilities of East Asian- and Western-
type EPIYA peptides by the various a-phosphotyrosine
antibodies. The EPIYA-A motif was similarly well recog-
nized by all six above mentioned antibodies, regardless if
the phosphopeptide derived from Western (26695) or
East Asian (TN2-GF4) H. pylori strains (Fig. 3b-c). The
same was true for the phosphopeptides derived from the
EPIYA-B motif, although one antibody (a-PY69) exhib-
ited higher detection ability for the East-Asian phospho-
peptide compared to the Western counterpart. In this
context it is interesting to note that the EPIYA-motifs
differ only by a single amino acid exchange, namely
T — A at the +1 position behind the phosphotyrosine.
This exchange was shown previously to affect the inter-
action of CagA with the SH2-domain of PI3-kinase [66].
The present data shows that the identity of the residue
at position +1 does not only affect SH2-domain binding,
but also the binding by some antibodies like a-PY69. In
addition, the phospho-EPIYA-C/D derived peptides are
similarly well recognized by four antibodies [a-PY-20
(BD), a-PY-20 (SC), a-PY-99, «-PY-100]. However, the
antibodies a-PY69 and a-PY102 exhibited a much stron-
ger binding of the East Asian-type EPIYA-D phospho-
peptide compared to the Western-type EPIYA-C motif.
However, the two peptides only differ by the amino acids
at the +5 and +6 position (DG — FD), between the
Western-type and the East Asian EPIYA-motif. This
finding suggests that also amino acids, which are not
located immediately adjacent to the phosphotyrosine
residue, can critically affect the binding properties of
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previous study [48]

Fig. 3 Comparison of phospho-signal intensities for East Asian- and Western-type EPIYA motifs by seven commercial a-phosphotyrosine antibodies.

a Schematic presentation of CagA EPIYA-motifs, comprising either the EPIYA-A, EPIYA-B and EPIYA-C motif in Western-type H. pylori strains as here
shown for the strain 26695 or the East Asian-type CagA EPIYA-motifs in which the EPIYA-C region is replaced by EPIYA-D as found in strain TN2-GF4.

b Quantified spot intensities of East Asian-type derived EPIYA-motifs A, B and D were probed with seven commercially available phosphotyrosine
antibodies as indicated. The Chemidoc imager was used to measure densitometrically the percentage of phosphorylation of each sample. The
data are representative from three independent experiments, where the strongest spot on each Dotblot was set at 100 %. ¢ Quantification of
spot intensities of corresponding phosphotyrosine peptides derived from Western-type EPIYA-motifs A, B and C. These data were taken from our

some antibodies. In summary, it becomes apparent that
the use of these antibodies results in some differences
regarding the recognition capability not only for the
EPIYA-motif derived from phosphopeptides of Western-
type strains, but also of the three phospho-EPIYA-motifs
A, B and D present in East Asian isolates.

Sequence comparison of CagA proteins from East

Asian strains

Having clarified the detection capacity of short East
Asian EPIYA peptides by seven a-phosphotyrosine anti-
bodies, we next aimed to look at full-length CagA pro-
teins in corresponding H. pylori strains. Seven different

isolates were selected from different countries including
Indonesia, Malaysia, Myanmar, China, Japan, Mexico
and Peru. All of them encode the tripartite East Asian-
type EPIYA-A, B and D motifs in CagA, although the
strains comprise differences in the associated gastric
diseases (Table 1). Their pathology was associated with
diverse symptoms ranging from mild metabolic disor-
ders such as gastritis to even ulcer and even gastric can-
cer. By aligning and comparing the CagA sequences
comprising the EPIYA-regions A, B and D, the presence
of all three motifs could be confirmed, while a few dif-
ferences in their flanking amino acid sequences were
detected (Fig. 4). In addition, all strains carry a highly

A B D
D

-COCOH

NH,1_CagA (TN2-GF4)
1

857 992 1172

Indonesia Ind69 --—-LNEKLFGNSNNNNNGLKNNTEPIYAQVNKKKIGQVASPEEPIYAQVAKKVSAKIDQLNEAASAINRKIDRINKIAS
Malaysia FD453 -KELNEKLFGNSNNNNNGLKN--EPIYAQVNKKKTGQAASPEEPIYAQVAKKVSAKIDQLNEATSAINRKIDRINKIAS
Myanmar Mand38 -—-—LNEKLFGNSNNNNNGLKNSTEPIYAKVNKKKTGQAASPEEPIYAQVAKKVSAKIDQLNEATSAINRKIDRINKIAS
China CH7 ——-LNEKLFGNSNNNNNGLKNSTIEPIYAQVNKKKAGQAASPEEPIYAQVAKKVSAKIDQLNEATSAINRKIDRINKIAS
Japan TN2-GF4 RKELNEKLFGNSNNNNNGLKNNTEPIYAQOVNKKKAGQATSPEEPIYAQVAKKVSAKIDQLNEATSAINRKIDRINKIAS
Mexico 2002-14 KKELNEK-FAN----— SGLKNSAEPIYAQVNKKKTGQVTSPEGSIYDQVAKGVNEKI - ——--—-—-————-—-—-—— NQLNKIAS
Peru Shid470L KKELNEK-FANFNKNSNGLKNSAEPIYAQVNKKKTGQVASPEESIYTQVAKEVNEKI -—-——-—-——————-——-— NRLNEKAS
* Kk Kk k *.* '**** *****:***** **':*** * Kk kkkok *' * :::*: * %
Indonesia Ind69 AGKGVGGFSGAG-—-——————-—————————— RSASHEPIYATIDFDEANQAGFSLRRYAGVGDLSKVGLSREQELTRRI
Malaysia Fd453 AGKGVGGFSGAG-—=========————————-— QSASHEPIYATIDFDEANQAGFPLRRSAAVNDLSKVGLSREQELTRRI
Myanmar Mand38 AGKGVGGFSGAG---——-———-——————————— RSASHEPIYATIDFDEANQAGFPLRRYAPVNDLSKVGLSREQELTRRI
China CH7 AGKGVGGFSGAG-—===—=====————————-— RSASHEPIYATIDFDEANQAGFPLRRSAAVNDLSKVGLSREQELTRRI
Japan TN2-GF4 AGKGVGGFSGAG-—--——-———=—————————— RSASPEPIYATIDFDEANQAGFPLRRHAAVNDLSKVGLSREQELT---
Mexico 2002-14 ASKGVDDFSGAGRLDSPKPIHVTTDGFGGPYSLNSHEPIYVTIDD---LGGPYSLKMYNKVDDLSKVGLSREQE-—--~--
Peru Shid470L ASKGVGNFSGAG---————=-=——-———————- RLDSHBEPIYATIDD---LGGSSPLKRHAKVDDLSKVGLSREQELTQKI
*'*** * kK ok x ******'*** . *: * kkkkkkokkkkkk

Fig. 4 Alignment of EPIYA-motif sequences in CagA proteins derived from seven geographically different H. pylori strains. All chosen strains carry
the typical East Asian CagA protein with the carboxy-terminal EPIYA-A, EPIYA-B and EPIYA-D phosphorylation sites. Host kinases such as c-Src and
c-Abl were shown to target and phosphorylate the tyrosine residue in these motifs. The specific EPIYA-segments A, B and D are indicated with
yellow shading and exhibit variations in their flanking regions depending on their geographical origins. A special attribute is present in the
EPIYA-B motif by the presence of a negatively charged glutamate residue in the -4 position (shaded with green). This residue is highly conserved
in EPIYA-B among the different H. pylori strains and might lead to alterations of the binding capacity of phosphotyrosine antibodies as discussed
in the text. The CagA protein sequences were obtained either from databases or sequenced during this study (Table 1). Sequence alignment was
done using the ClustalW2 program (http://www.ebi.ac.uk/Tools/msa/clustalw2/)
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conserved glutamate residue at the -4 position of the
EPIYA-B motif, but not EPIYA-A or EPIYA-D, which
might affect antibody recognition after tyrosine phos-
phorylation [48]. Finally, we noted extensive variations
in the less conserved EPIYA-A motif, which might also
influence antibody binding as discussed below.

Phospho-CagA protein patterns during infection with
East Asian strains

To study antibody capabilities of phospho-CagA recog-
nition during infection, we co-incubated AGS cells with
the seven aforementioned East Asian H. pylori for 6
hours. We first monitored the elongation phenotype of
AGS cells as this indicates successful CagA delivery and
phosphorylation [66—68]. The elongation phenotype of
AGS cells was found in around 50 % of cells after infec-
tion, confirming that an efficient amount of phospho-
CagA should be present in the cells (Fig. 5a and b).
Subsequently protein lysates derived from the infected
AGS cells were prepared and tested with the different
a-phosphotyrosine antibodies. To ensure that compar-
able amounts of CagA protein are present in all lanes,
the samples were first incubated with a monoclonal «-
CagA antibody which is able to recognize phosphory-
lated and non-phosphorylated CagA (Fig. 6, top). The
band sizes varied between 130-150 kDa dependent on
the different CagAs of the diverse strains used (Table 1).
In addition, we infected with a Acagl mutant H. pylori
strain as control, which has a T4SS defect for transloca-
tion and phosphorylation of CagA (Fig. 6, arrows). In
the next step, the protein lysates were probed with the
seven different a-phosphotyrosine antibodies. All anti-
bodies were able to react with host cell proteins (Fig. 6,
asterisks), and with the exception of a-PY-350, all of
them were also able to recognize phospho-CagA (Fig. 6,
arrows). Results of phospho-CagA detection of three
independent experiments are summarized in Table 2.
The antibody PY-99 was able to react strongly with the
phospho-CagA of all seven strains and resulted only in
little host phosphoprotein background in the 125-
170 kDa region (Fig. 6). This confirms the presence of
phospho-CagA in a sufficient and detectable manner
indicating successful infection, which is in accordance
with the detected elongation phenotype of AGS cells.
Antibodies «-PY20-BD, a-PY20-SC, PY69 and «-
PY102 recognized phospho-CagAs of all seven used H.
pylori strains, while «a-PY100 was unable to react with
CagA of strains Ind69 and Mand38, although it reacted
with all three phospho-EPIYAs in the above mentioned
Dotblot experiments. Strong bands were detected for
phospho-CagA for three of the strains (TN2-GF4,
2002-14 and Shi470) with six of the seven used anti-
bodies, while for the other strains (Ind69, F453,
Mand38 and CH7) Western blotting revealed quite
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Fig. 5 Phase contrast microscopy of AGS cells and quantification of
the elongation phenotype during infection with various East Asian
H. pylori strains. a Different indicated CagA-expressing East Asian H.
pylori strains were co-incubated with AGS cells for 6 h. Afterwards,
the number of elongated cells was quantified in triplicates. b AGS
cells infected with selected H. pylori strains were analyzed by phase

contrast microscopy

mixed results (Fig. 6). The phospho-CagA patterns were
found to be not identical even among those antibodies
that equally well recognized the samples of strains TN2-
GF4, 2002-14 and Shi470. Phospho-CagA from strain
Mand38 resulted in strong signals using a-PY69, but
reacted only weakly with a-PY20. Again, one of the anti-
bodies (a-PY350) was unable to react with any of the
phospho-CagAs of the seven used H. pylori strains, corre-
sponding to the results found for the used EPIYA phos-
phopeptides in Dotblot experiments (Fig. 2). Nevertheless,
a-PY350 did react with host phosphoproteins, verifying
the functionality of the antibody (Fig. 6, bottom).
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Fig. 6 CagA phosphorylation at EPIYA-motifs during H. pylori infection of AGS cells was investigated using seven different a-phosphotyrosine antibodies.
Seven different CagA-expressing East Asian-type H. pylori strains as well as the T4SS-inactive negative control (Shi470Acagl) were used for infection
studies on AGS cells. The infection was monitored over 6 h and the samples shown in Fig. 5 were harvested after photographing.
Tyrosine phosphorylation of EPIYA-motifs in CagA of the seven different strains was analyzed with the indicated a-phosphotyrosine antibodies
as previously described [48]. Presence of equal amounts of CagA from each sample was approved using a monoclonal a-CagA antibody.

The ~120-170 kDa section of the gels is shown. Arrows indicate the phospho-CagA bands, while red asterisks mark bands of various tyrosine-
phosphorylated host cell proteins
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Recognition patterns of phospho-EPIYAs are diversely
influenced by length and sequence

By applying the microarray technology, libraries of mam-
malian phosphoproteins were screened to define the
antibody binding characteristics of the phosphotyrosine
antibodies a-PY20 and «a-PY100 [46]. Features of the
recognized sequences by these antibodies revealed the
differences accounting for the different binding capacity
of the phosphopeptide EPIYA-B. By comparing the bind-
ing capacity of a-PY100 and a-PY20, it becomes obvious
that the EPIYA-B motif is recognized with low intensity
by a-PY100. This is in contrast to the two other motifs
EPIYA-A and D (Fig. 2, Table 2). Remarkably, the
EPIYA-B phosphopeptide carries a highly conserved
glutamate residue in the -4 position in all of the used
strains of this study (Fig. 4, shaded with green). This
negatively charged glutamate residue might negatively
affect the binding of a-PY100 but not of a-PY20 as indi-
cated in the microarray data of Tinti and co-workers
[46]. Accordingly, the differences in binding capacities
found for the East Asian-type phospho EPIYA-B motif
for the two antibodies correspond to the results of mam-
malian phosphoproteins and the negative charged amino
acid at this position. Infection experiments also revealed
a better detection of phosphorylated CagA by o-PY20
than a-PY100 which might arise from differences in the
EPIYA-A sequences of the used strains (Fig. 6 and
Table 2). The EPIYA-A stretch usually carries more vari-
ations in its vicinity than the EPIYA-B and D motif
which contain more conserved regions (Fig. 4). Two of
the H. pylori strains, Ind69 and Mand38, are not recog-
nized at all by a-PY100 (Fig. 6), which however cannot
be directly linked to any amino acids flanking the
EPIYA-motifs (Fig. 4). This indicates that additional
characteristics, like the accessibility of the motifs within
the intact protein, further contribute to the binding
capacity of a-PY100.

Discussion

Posttranslational modification of proteins by kinases reg-
ulates various cell signaling processes. Phosphorylation
of specific threonine, serine and histidine amino acid
residues appears both in eukaryotes and prokaryotes,
while tyrosine phosphorylation is considered to be more
common in higher organisms [69, 70]. Phosphotyrosines
represent a recognition site in higher eukaryotes because
these motifs can recruit cellular binding partners that
contain SH2 (Src homology 2) or PTB (phosphotyrosine
binding) domains, and thereby target and subvert down-
stream signal transduction pathways [47]. In fact, genes
encoding typical tyrosine kinases as known from eu-
karyotes have been only found in a very small number
of bacterial species [71]. Instead, various (but not all)
bacteria contain a group of atypical BY kinases (for
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Bacterial tYrosine kinases) [72, 73]. SH2- and PTB-
domain containing proteins are commonly missing in
bacteria. Thus, tyrosine phosphorylation has a different
role in bacteria and eukaryotes, respectively. However,
various reports indicated that a series of effector pro-
teins from pathogenic bacteria and viruses can be
tyrosine-phosphorylated by host kinases upon delivery
into mammalian target cells [29, 30, 47, 74]. This viru-
lence mechanism is described for well-known microbial
effector proteins including AnkA (Anaplasma phagocy-
tophilum, Ehrlichia chaffeensis), BepD-F (Bartonella
henselae), TARP (Chlamydia trachomatis), Tir (entero-
pathogenic Escherichia coli), CagA (Helicobacter pylori),
LspA1/2 (Haemophilus ducreyi) and A36R (vaccinia virus)
[74-82]. Interestingly, the phosphorylated tyrosines and
some flanking amino acids in these microbial effectors,
like their mammalian counterparts, serve as recognition
motifs for host signaling proteins. These factors specific-
ally recruit multiple host cell binding partners that harbor
SH2 domains (but not PTB domains), thereby targeting
and subverting mammalian signal transduction cascades
in a manner supporting the infection cycle [74].

The impact of the well-known virulence factor CagA
together with its EPIYA-motifs has been noted long time
ago [2, 19, 22-31, 83-86]. Different gastrointestinal
diseases have so far been found to be associated with
sequence variation in the EPIYA-region of different H. pyl-
ori strains [87, 88] before these sites were recognized as
tyrosine phosphorylation targets [84]. Since then, intensive
studies have been brought forward to identify the required
host cell kinases [29]. In mammalian genomes about 90
protein tyrosine kinase genes have been detected [70, 89].
Their mammalian substrates are phosphorylated with
different specificity depending on amino acid sequences
next to the targeted tyrosine residue [90]. The EPIYA-
motifs in CagA primarily exhibit the small amino acid ala-
nine at the +1 position and isoleucine at the -1 position,
which is analogous to the EEIYG/E phosphorylation con-
sensus motif of the host kinase c¢-Src [18]. In fact, mem-
bers of the c-Src and c-Abl family kinases have been
found to facilitate CagA phosphorylation in vitro and in
vivo [18-21, 45, 91]. However, lack of standardized com-
mercial EPIYA-specific phospho-antibodies and the lack
of knowledge which phospho-EPIYAs are recognized by
the set of available a-phosphotyrosine antibodies have
made the progress in this research area vulnerable. So far,
reports about systematic studies of which phosphotyrosine
residues in the three EPIYA-sites are detected by these
multiple antibodies are widely missing and only analyzed
for some Western H. pylori strains [48]. Thus, despite
many years of research, CagA phosphorylation patterns in
clinical isolates have not been standardized to allow a thor-
ough and precise model for this important signaling event.
In the present study, we investigated for the first time East
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Asian-type CagA EPIYA-motifs A, B and D with respect to
their recognition specificity by seven commercially available
a-phosphotyrosine antibodies. Using this approach, we
obtained significant recognition patterns for the various
phosphorylated EPIYAs. The results of these studies are
compared to their Western counterparts and allow valuable
conclusions about the effectiveness of these antibodies in
research and give new insights for upcoming work on CagA
phosphorylation and associated signaling events.

The set of a-phosphotyrosine antibodies typically
recognizes short amino acid stretches containing the
phosphorylated tyrosine residue and were originally
established for mammalian proteins and synthetic
phosphopeptides [40, 46, 50, 51]. To study the recogni-
tion capabilities by seven commercial antibodies for the
CagA EPIYA-motifs, we therefore proposed that corre-
sponding phosphopeptides would be useful as shown
previously for Western-type CagA EPIYAs [48]. In East
Asian CagAs it was found that 9-mers and 11-mers of
EPIYA-phosphopeptides are required and already suffi-
cient for strong antibody binding. In addition, all three
11-mer phospho-EPIYA peptides (A, B and D) were
recognized by three a-phosphotyrosine antibodies (a-
PY69, a-PY-102 and a-PY-100) with similar and very
strong signals, which confirm that peptides derived
from bacterial effector proteins in addition to mamma-
lian peptides can be detected with this approach. Gen-
erally, this also nicely reflects the pronounced
recognition of phospho-CagA in cell lysates produced
after infection with seven different H. pylori strains
(Table 2). The phospho-EPIYA peptides A and D were
preferentially also detected by another antibody («-PY100)
and in part gave rise to acceptable phospho-CagA patterns
by Western blotting of proteins from infected cells. The
antibody o-PY102 strongly recognized phospho-EPIYA
peptide A and phospho-EPIYA peptide D, but reacted
only with threeof eight phospho-CagAs in infected cells.
The antibody a-PY69 also recognized phospho-EPIYA-A
preferentially and to a lesser extent also EPIYA-B and D.
In addition, it resulted in proper detection of phospho-
CagA in all seven H. pylori strains during infection experi-
ments. However, it also strongly reacted with host cell
proteins in the 125-140 kDa range and is therefore not
useful for studying CagA phosphorylation during infec-
tion. Noteworthy, the antibodies a-PY99, a-PY20-BD,
a-PY20-SC, a-PY100 and a-PY102 did not react with
AGS host cell proteins in the 130—-150 kDa range. Similar
to results obtained with Western-type H. pylori strains
[48], the use of up to five a-phosphotyrosine antibodies
for studies of infection by Asian-type H. pylori (a-PY99,
a-PY20-BD and «-PY20-SC, and if needed, also a-PY100
and a-PY69) can be recommended to clarify EPIYA phos-
phorylation, as they are able to recognise a wide array of
different phospho-CagAs.
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In mammals, studies of phosphotyrosine-mediated
protein-protein interactions are mainly based on the use
of mass spectrometry and a-phosphotyrosine antibodies
[69]. By using microarrays of spotted human phosphopep-
tides, the substrate binding specificity of two widely used
a-phosphotyrosine antibodies, a-PY20 and a-PY100, was
characterized [46]. The studies of Tinti and co-workers
demonstrated that the antibodies share a similar phospho-
tyrosine recognition capability and comprise specific bind-
ing preferences depending on some neighboring amino
acids [46]. Although leucine residues are favored at pos-
ition -1 and proline at position +3, their binding prefer-
ence remains rather broad [46]. Furthermore, it was found
that the presence of a negatively charged residue (e.g. glu-
tamate) at the position -4 specifically affects the inter-
action with a-PY100, but not with «-PY20 [46]. A highly
conserved glutamate residue at the position -4 in EPIYA-
B is present in CagAs from different H. pylori isolates
(Fig. 4). By analyzing the results of Table 2 from the
current study on East Asian-type strains together with the
investigation on the Western-type H. pylori isolates [48], it
becomes evident that additional features affect a-PY100
binding preference, as demonstrated by the low recogni-
tion of phospho-CagA from strains Ind69, F453, Mand38
and CH7. Because these H. pylori strains differ at some se-
quence positions in the close area of the EPIYA-A motif, a
clear correlation regarding antibody binding with a single
sequence position still remains elusive. We propose that
the secondary structure of the EPIYA-motif and its sur-
rounding might also contribute to the binding specificity
by the a-phosphotyrosine antibodies.

Previous infection studies reported clear results re-
garding the phosphorylation of CagA EPIYA motifs [13,
14, 16, 19, 92—-94], however, most of them used a-PY20
or a-PY99 phosphotyrosine antibodies, which allows de-
tection of a multitude of Western and East Asian CagAs
and is correlating well with the obtained results in the
current study. Moreover, most reports were not specific-
ally aiming for detection of specific EPIYA motifs, but
rather CagA tyrosine phosphorylation in general. Only a
few studies were aiming on the recognition of specific
motifs of the investigated strains and prepared EPIYA-
site specific tyrosine antibodies [11, 25, 26]. However,
studies on tyrosine phosphorylation of different H. pylori
strains might be influenced by the choice of the phospho-
tyrosine antibody. The study of Naito et al. [33] or Highashi
et al. [23] utilized the 4G10 anti-phosphotyrosine for their
studies on CagA tyrosine phosphorylation. Tinti et al. re-
ported that a Pro, Thr, Val and Phe at the -3 position was
found to improve the recognition capability of this antibody
but like a-PY100 also the 4G10 phosphotyrosine antibody
is negatively affected by the presence of negative charge at
the -1 position [46]. Re-evaluation of the obtained results
in the respective studies by using anti-PY20 or anti-PY99
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might thus further enhance the gained information on
tyrosine phosphorylation. A recent report of Zhang et al.
[66] indicated the specific changes in tyrosine phosphoryl-
ation mediated by a single A/T polymorphism of the
EPIYA-B motif in Western H. pylori strains. This further
documents the importance of knowledge about the
recognition capabilities by different commerical phos-
photyrosine antibodies.

Investigation of the binding specificity of a-
phosphotyrosine antibodies allows valuable insights in
H. pylori-mediated tyrosine phosphorylation events.
For example, by analyzing lysates of infected cells first
conclusions can be drawn [95]. However, by using this
approach some drawbacks have to be considered
because increasing phospho-CagA signal intensities on
conventional one-dimensional gels cannot be further
distinguished. Such intensification of signals might
arise over time due to increased amounts of translo-
cated CagA molecules undergoing phosphorylation at a
specific site, from increased phosphorylation of mul-
tiple sites per CagA molecule, or both. Recently, we
demonstrated by two dimensional electrophoresis that
during infection CagA can be simultaneously phos-
phorylated either on one or two EPIYAs per molecule
[45]. It appears that the presence of multiple differen-
tially phosphorylated CagA protein species in host cells
result in different CagA signaling involving various
host binding partners, each with possible different
function [45]. To clarify this issue, the generation of
phospho-specific a-CagA antibodies for each EPIYA
motif has to be considered as such antibodies are currently
not commercially available. Until now, only little informa-
tion is available about phospho-specific a-CagA antibodies
[11, 25, 26, 96], however, some of them lack sufficient con-
trols to allow clear conclusions. Thus, it remains to be in-
dispensable to generate more reliable EPIYA-site specific
phospho-antibodies to improve and augment the current
understanding on tyrosine phosphorylation.

Conclusions

Previously, we focused on the EPIYA-motifs A, B and C
of Western H. pylori strains [48]. In the current study,
we could further broaden and intensify our knowledge
by addressing also the East Asian-type H. pylori strains.
These strains carry the more potent 11-mer EPIYA-D
sequence (SPEPIYATIDF) which is similar to the Western
EPIYA-C sequence (SPEPIYATIDD) [45]. In Western blot
experiments utilizing the a-PY99 antibody, we were able
to show that the c-Src kinase is only able to phosphorylate
the CagA EPIYA-C and EPIYA-D motif [45]. By compar-
ing the results of phosphorylation of the Western
EPIYA-C motif and the Asian EPIYA-D motif it becomes
evident that, as expected, all antibodies able to recognize
the phospho-EPIYA-C motif were able to recognize
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EPIYA-D motifs almost to a similar extent. For future
studies, the phosphopeptide microarray technology should
be considered to identify all known individual phospho-
EPIYA-motifs and associated amino acid polymorphisms
as was done already for human proteins [46]. In this
context also antibody recognition and host effector
protein binding should be included to further verify
these findings. The role of single EPIYA-motifs of CagA
might assist in risk predictions and improvement of the
treatment of patients carrying gastric diseases. In the
upcoming years, research should also focus on other
bacterial effector proteins that, similar to EPIYA phos-
phorylation by H. pylori, may have impact on down-
stream signaling events and disease progression. This
includes additional bacterial species such as EPEC,
Chlamydia, Bartonella, Anaplasma, Haemophilus and
Ehrlichia species already found to similarly play roles
in tyrosine phosphorylation [29, 75-82].
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