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Normalized long read RNA sequencing in
chicken reveals transcriptome complexity
similar to human
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Abstract

Background: Despite the significance of chicken as a model organism, our understanding of the chicken
transcriptome is limited compared to human. This issue is common to all non-human vertebrate annotations due
to the difficulty in transcript identification from short read RNAseq data. While previous studies have used single
molecule long read sequencing for transcript discovery, they did not perform RNA normalization and 5′-cap
selection which may have resulted in lower transcriptome coverage and truncated transcript sequences.

Results: We sequenced normalised chicken brain and embryo RNA libraries with Pacific Bioscience Iso-Seq.
5′ cap selection was performed on the embryo library to provide methodological comparison. From these Iso-Seq
sequencing projects, we have identified 60 k transcripts and 29 k genes within the chicken transcriptome. Of these,
more than 20 k are novel lncRNA transcripts with ~3 k classified as sense exonic overlapping lncRNA, which is a class
that is underrepresented in many vertebrate annotations. The relative proportion of alternative transcription events
revealed striking similarities between the chicken and human transcriptomes while also providing explanations for
previously observed genomic differences.

Conclusions: Our results indicate that the chicken transcriptome is similar in complexity compared to human, and
provide insights into other vertebrate biology. Our methodology demonstrates the potential of Iso-Seq sequencing to
rapidly expand our knowledge of transcriptomics.

Keywords: Iso-Seq, PacBio, Single molecule long read sequencing, Transcriptome sequencing, RNAseq, Chicken, Avian,
Gallus gallus, Genome annotation, Coding RNA, Non-coding RNA

Background
Transcriptome annotation is crucial for a wide array of
biological research areas, including genomics, proteo-
mics, epigenetics, immunology, and phylogenomics [1].
The identification of the full repertoire of transcribed
elements provides information on the functional roles
and relationships of genomic loci which in turn can be
compared to understand a vast array of biological mech-
anisms. However, due to the complexity of transcript
splicing and the limitations of previous technologies, re-
searchers had to choose between low-throughput, costly
methods to generate accurate full-length transcript

models, such as cDNA cloning [2] or high-throughput,
cheaper methods to generate imprecise transcript
models, such as short read RNA sequencing [3, 4]. The
current status of chicken annotation represents a prime
example of this trade off.
The Ensembl chicken annotation (release 83), built

primarily on short read RNAseq and comparative data,
contains 17,108 genes with 17,954 transcripts [5]. These
numbers stand out for two major reasons. The first rea-
son is that the number of genes is far lower than that
found for other vertebrate organisms, for example, the
Ensembl (release 83) human annotation contains 60,675
genes (including coding and non-coding genes). The
difference in the number of genes annotated in the
chicken and human genomes is heavily influenced by
lack of long non-coding gene predictions in the chicken
annotation. While it can be argued that this may
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represent differences between mammals and birds, evi-
dence that many more genes exist in birds can be seen
in the cDNA support track on Ensembl. The second rea-
son is that the current chicken annotation is almost en-
tirely comprised of protein coding genes for which a
single transcript is described. Again this is contrary to
what we know from other vertebrates with the human
annotation (Ensembl release 83) containing 199,184
transcripts (i.e. an average of 3.3 transcripts per
gene). These discrepancies highlight major limitations
to using short read RNA sequencing and comparative
data for building gene and transcript models.
With short read RNAseq data there are three major

transcription characteristics that are difficult to deter-
mine [6]: (i) transcript start sites (TSS) and transcript
termination sites (TTS), (ii) exon chaining, and (iii)
transcriptional noise. If multiple TSS or TTS exist for a
transcribed locus, then interior TSS and TTS can go un-
detected due to combinations of inconsistent read cover-
age, overlapping exons, and overlapping splice junctions.
Thus for any transcript model produced via short read
data, we often cannot determine if there are alternative
TSS and TTS which have not been detected. Similarly,
the process of chaining exons and splice junctions to-
gether to reconstruct full-length transcript sequences
can be problematic. Since a single short read cannot
usually span all splice junctions within a multiple splice
junction transcript, transcript assemblers must predict
which exons are linked to reconstruct the full length se-
quence. However, non-uniform transcript coverage can
obscure the underlying model by suggesting different
splicing events. Even with uniform read coverage, there
are scenarios where the problem of identifying the cor-
rect exon chaining model is intractable (Fig. 1). The
third issue with short read RNAseq data arises from
transcriptional noise. Transcriptional noise becomes
problematic when it occurs within intronic or intergenic
regions. The origin of these reads is unclear and tran-
script assemblers have taken different approaches to
minimizing the influence of transcriptional noise [7–9].
Despite these efforts, there are some clear implications

of the phenomena. For example, due to the possible oc-
currence of transcriptional noise within intronic regions,
it is difficult to determine if a transcript model should
include a retained intron or not. When transcriptional
noise occurs in intergenic regions it can be erroneously
predicted as a gene or it can be fused with a neighbour-
ing gene. When combining these three issues, the uncer-
tainty of short read assembled transcript models
becomes restrictive.
The annotation of most vertebrate genome sequences,

except human and mouse, has been hampered by the
lack of full length cDNA/transcript sequences for the
species of interest and has instead had to largely rely
upon Expressed Sequence Tags (ESTs) and their abun-
dant successors, short read RNA-seq. As a result, the
complexity of transcription of the chicken genome is un-
derrepresented in the current genome annotation and
constrains some analyses. For example, many differential
expression analysis experiments rely on the annota-
tion to define transcription events. Since a large num-
ber of alternative transcript models are likely missing
in many vertebrate annotations, alternative transcrip-
tion dependent mechanisms may have been unknowingly
omitted from these studies.
While these issues are common in short read RNAseq

data, they are practically eliminated with long read
sequencing where the full-length of a transcript may be
sequenced in a single read. With full-length sequencing,
TSS and TTS can be easily defined since the reads span
the entire length of the transcript. Similarly, predicting
exon chaining from probabilistic models is not neces-
sary. Transcriptional noise is reduced and in the cases
where it does occur, it is more easily identified.
With the recent development of Pacific Biosciences

(PacBio) SMRT Iso-Seq sequencing [10], it is now pos-
sible to attain high throughput, full-length transcript se-
quencing. While this technology has huge potential for
transcriptome annotation, it still requires development
for both library preparation and data analyses. Iso-Seq
has been used in previous studies to identify transcript
sequences [11–14], however, there are two main issues

Fig. 1 Short read transcript modelling problem. Example of transcript model that is impossible to resolve using short read data. Given the read
support in yellow, it is impossible to determine which splicing model is real

Kuo et al. BMC Genomics  (2017) 18:323 Page 2 of 19



with these earlier approaches. The first issue is that
normalization of the RNA libraries was not performed,
thus many low abundance transcripts may not have been
sequenced due to the higher probability for attaining
reads from high abundance transcripts. The second issue
is that transcription start sites could not be confirmed
due library preparation protocols lacking 5′-cap capture,
thus the identified transcript sequences are not guaran-
teed to be full-length.
To address these concerns, we generated PacBio

SMRT Iso-Seq sequencing data from chicken brain and
embryo RNA. Both RNA libraries were normalized to
reduce over-represented transcripts, however we only
performed 5′ cap selection on the embryo library. We
also performed Illumina short read RNA sequencing on
20 tissue types to both verify transcribed loci and com-
pare transcript models.
We identified important considerations for Iso-Seq se-

quencing and data analyses. Using this understanding of
the data limitations, we surveyed the chicken transcrip-
tome to discover transcriptional complexity similar to
the human annotation. This complexity is comprised of
the type and number of alternative transcription events,
previously unannotated biotypes in chicken, and tran-
scriptional sequence variance between species. We have
also identified two classes of long non-coding RNA that
are under-represented in all mammalian annotations.
Our results provide guidance for future Iso-Seq studies

as well as insight into chicken and all vertebrate tran-
scriptomes. The data from this study were submitted to
the European Nucleotide Archive (ENA) and used by
Ensembl for their future chicken annotations.

Results
Processing PacBio data to create a high quality
non-redundant PacBio transcriptome
Strategy for processing of PacBio Iso-Seq reads
Analysing PacBio Iso-Seq data requires a very different
approach as compared to short read RNAseq data. Initial
processing of this type of data focuses on reducing the
final error rate of the acquired transcript sequences.
While the raw error rate of PacBio sequencing is around
11-14% [10], the use of circular sequencing and compu-
tational error correction can greatly increase the final
quality score. The software for achieving this is still in
an early stage of development and evolving rapidly. We
have adopted methodology supported by the PacBio de-
velopment team known as the Iso-Seq pipeline, also
known as the pbtranscript-tofu analysis suite [15], and
incorporated it into our own pipeline (Fig. 2). The
methods used to error correct Iso-Seq reads can have
major implications for the limitations of downstream
analyses. We have identified some major considerations
when processing this type of data.

Raw data error correction
We attained 805,606 reads-of-insert (ROIs) from the
brain and 247,626 ROIs from the embryo libraries. The
lower yield for the embryo project was a result of issues
with loading SMRT cells with a size selection of lower
than 1-kb. Graphs for the read lengths for each size se-
lection are available in additional files (see Additional file
1). Since every ROI sequence should begin with the

Fig. 2 Full pipeline for processing PacBio data
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adapter sequence, we calculated the quality scores for
each ROI by aligning the known adapter sequence to the
adapter sequence within each ROI sequence and dividing
the number of matches in the alignment by the length of
the adapter sequence (see Methods). ROI average quality
scores were 96.1% for brain 1-kb, 95.4% for brain 2-kb,
84.7% for embryo 0.8-kb, and 85.9% for embryo 2-kb. We
ran pbtranscript-tofu pbclassify [15] with the ROIs as
input to attain 515,175 full-length, non-chimeric (FLNC)
transcripts for brain and 138,266 FLNC transcripts for
embryo. After a further round of error correction using
Iso-Seq iterative clustering for error correction (ICE)
tool, from the pbtranscript-tofu analysis suite [15], we
attained 211,292 transcripts for brain and 14,776 tran-
scripts for embryo.
We mapped the resulting transcripts sequences to the

Gallus_gallus_4 genome assembly using GMAP [16].
199,560 transcripts from brain and 11,881 transcripts
from embryo mapped to this genome assembly. This left
11,732 brain and 3028 embryo transcripts unmapped.
The unmapped transcripts are most likely a combination
of transcripts which should map to the unassembled re-
gions of the genome and transcripts which contain large
errors missed in the previous filtering steps.

Collapsing transcript models to reduce redundancy
In previous studies [11–14], no 5′ cap selection was per-
formed, thus possible 5′ degradation was ignored. In
order to understand if the absence of 5′-cap selection in
the library preparation would result in significant loss of
TSS in our final transcript models, we collapsed the
mapped transcript sequences from both the brain and
embryo libraries using two methods from the PacBio
pbtranscript-tofu analysis suite [15]. Both methods as-
sume that the 3′ end is intact, thus any transcript models
with unique TTS are not collapsed. In the first method,
termed Transcription Start Site Collapse (TSSC) (Fig. 3),
transcripts with identical splice junctions and 3′-ends but

varying TSS are collapsed so that only the longest tran-
script is kept. While this method is inappropriate for
libraries which were not 5′-cap selected, we still use the
results from TSSC as a comparison. The second method,
termed Exon Cascade Collapse (ECC) (Fig. 3), is identical
to the first except that transcripts that are missing 5′ end
exons are included in the collapsing group. ECC is a more
aggressive form of collapsing than TSSC and all tran-
scripts that would be collapsed in TSSC would also be col-
lapsed in ECC.
We looked at the ratio of the pre-collapsed transcripts

to the collapsed transcript for each library from each
collapsing method as an indicator of 5′-sequence loss.
Since there should be no 5′ sequence loss for the
embryo library, the ratio of pre-collapsed to collapsed
transcripts in the embryo library is used as a baseline for
this comparison.
From 199,560 brain transcripts after running ICE, we

attained 80,814 TSSC and 55,932 ECC models. From
11,881 embryo transcripts after running ICE, we attained
9368 TSSC and 8468 ECC models. Thus the number of
transcript models drop by 59.5 and 72.0% for TSSC and
ECC methods with the brain data, whereas the embryo
transcript number only decreased by 21.2 and 28.7%, re-
spectively. It is possible that these differences are caused
by real biological differences in transcription start sites,
however, 5′-sequence loss seems more likely and should
not be ignored in the downstream analyses.
To reduce redundancy in our dataset we used the

TSSC method for the embryo sequences and ECC for
the brain sequences. This resulted in 55,932 transcripts
from brain and 9368 transcripts from embryo after col-
lapsing. Although it might seem strange for there to be a
significant amount of collapsing within the embryo data
there are biological reasons for this to occur. For in-
stance, TSS are known to be variable so that otherwise
identical transcripts can have different TSS, as shown by
the evidence of wide promoter regions from cap analysis

Fig. 3 Iso-Seq mapped read collapsing methods. Two methods for collapsing PacBio mapped sequences to remove redundant models:
Transcription Start Site Collapse (TSSC) and Exon Cascade Collapse (ECC). ECC is more aggressive in collapsing
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of gene expression (CAGE) studies [17]. While it is pos-
sible that using the TSSC method for the embryo data
can result in the loss of unique transcript models that
represent different TSS, due to the low coverage (com-
pared to short read RNAseq data) for each transcript, it
is impossible to identify whether differences in the ob-
served TSS are a result of a single wide promoter region
or from multiple distinct promoter regions. For the
purposes of this study, we chose to follow a conservative
approach which meant removing possibly redundant in-
formation at the cost of filtering out some real biological
information.

Filtering out low quality models using post-mapping quality
estimates
Mapping the transcript sequences to the genome can be
seen as a final error correction step. The differences be-
tween the pre-mapped and post-mapped sequences pro-
vide an indication of the error rate for the sequences
after all prior error correction and allows for the filtering
of erroneous models that are a result of poor mapping.
Post-mapped sequences are defined by using the gen-
omic nucleotides for the predicted genomic coordinates
of the mapped transcripts. True sequence variation can
contribute to sequence differences, however the primary
purpose of this transcriptome annotation is to identify
models based on the reference genome. For each tran-
script sequence, we aligned the pre-mapped sequence
with the post-mapped sequence and counted the num-
ber of mismatches within the alignment. We calculated
the error rate by dividing the number of mismatches by
the length of the transcript. Using this method, we se-
lected for transcript sequences with less than 10% error
rate. This resulted in 55,315 brain transcripts and 9206
embryo transcripts, greater than 98% retention for both
sample types (Fig. 4a).
While a 10% error rate may seem high in comparison

to short read data, the distribution of transcripts based
on quality scores/error rates shows that the mode is 99%
quality score. In addition, we are able to attain unique
mappings due to the length of the sequences. Thus while
the error rate makes this data unsuitable for polymorph-
ism detection, it is low enough to provide accurate tran-
script models. There are several possible explanations
for the occurrence of transcripts that did not meet our
10% error rate threshold. The observed discrepancy
between the mapped and pre-mapped sequences could
have resulted from sequencing error, errors in the
reference genome assembly, and/or biological differences
due to the difference between the genomes of the
reference assembly specimen (red jungle fowl) and the
chickens sampled in this project. Due to the ambiguity
of the source of error, we chose to remove these se-
quences from our downstream analyses. Previous studies

did not report using this method of error correction
which may indicate that some of their transcript models
contained erroneous models [13, 14].

Identifying possible transcript truncation due to internal
poly-A regions
Poly-A tail selection is a commonly used method of
attaining transcript sequences with intact 3′-ends [11, 12].
However, internal stretches of A’s can bind to oligo-dT
primers thus resulting in a 3′ truncated transcript se-
quence. In short read RNAseq sequencing this usually
does not pose a large problem because many inserts will
be sequenced and the farthest downstream 3′-end will
usually be selected as the TTS. However, with single mol-
ecule long read sequencing, we make the assumption that
each sequence has an intact 3′-end. To assess whether
this is an appropriate assumption, we investigated the pos-
sible rate of occurrence of poly-A truncation by looking at
the 3′-genomic sequence of each predicted transcript.
The primers used for poly-A tail selection were designed
to bind to a minimum of a stretch of 20 A’s. Due to the
prevalence of insertion/deletion sequencing errors in
PacBio sequencing we used a 30 bp window. Thus for each
PacBio transcript, we extracted the 30 bp downstream gen-
omic sequence and looked for stretches of A’s. If a PacBio
transcript model were a result of internal poly-A trunca-
tion, we should see a stretch of at least 20 A’s within this re-
gion. We allowed one mismatch within a string of A’s and
used the longest string of A’s for our calculations. From the
64,277 identified transcripts, only 700 had a stretch of at
least 20 A’s immediately following their putative TTS in the
genome sequence. Thus, around 1.1% of the deduced tran-
scripts may be artificially truncated (Fig. 4b).
We also looked at the length of poly-A’s within the re-

spective ROI’s as a comparison (The poly-A tails within
the ROI sequences are removed during the pbtranscript-
tofu pbclassify error correction step). If the length of poly-
A’s in the ROI’s (Fig. 4c) are much longer than the length
of internal poly-A’s (Fig. 4b) then the prevalence of in-
ternal poly-A truncation is likely to be minimal. The ROI’s
have an average of 39.6 consecutive A bases in their poly-
A tails and a peak at about 27 bp (Fig. 4c). This matches a
previous study that found a peak of TAIL-seq tags with
poly-A tails of about 20 nt in length [18]. Due to the dom-
inance of true poly-A tails at around 27 bp it is non-trivial
to differentiate transcripts with real poly-A tails from
those that may be truncated due to internal poly-A
stretches. However, since only a maximum of 1.1% of the
transcript models could have internal poly-A truncation,
this issue seems to have a limited effect on Iso-Seq data.
This methodology for identifying possibly truncated tran-
scripts can be used in future Iso-Seq studies to flag and/or
filter transcript models.
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Verifying canonical splice sites
We looked at splice site donor and acceptor intronic dinu-
cleotides to see if they conformed to canonical observations

[19]. The GT-AG donor-acceptor sequence was used by
97.0% of brain transcripts and 98.0% of embryo transcripts,
both very similar to the reported 98.7% in mammals [19]

Fig. 4 Analyses of PacBio sequencing a Quality scores of PacBio sequence before mapping to the genome. b Length of genomic Poly A’s downstream
of PacBio mapped models. c Length of Poly A tails in ROI sequences. d Intronic Donor/Acceptor sites. e Number of exons per transcript for coding and
lncRNA transcripts. f NMD to coding transcript ratio per chromosome in PacBio transcriptome
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(Fig. 4d). While GMAP does have a bias for mapping splice
sites to conform to the canonical GT-AG scenario, the
similarity between the canonical splice site percentages sug-
gests that the splice site predictions are generally accurate.

Merging the transcriptomes from each sample
We merged the brain and embryo transcripts to form
a unified transcriptome annotation to be used for fur-
ther analyses. Merging was performed with the cri-
teria that transcripts were merged if they had the
same exon structures with less than a 10-bp differ-
ence for each exon start/end and less than 20-bp dif-
ference for the transcript start/end. We allowed for
slight differences in exon start/end and transcript
start/end to account for possible mapping errors as a
result of insertion/deletion sequencing errors which
are the most prevalent in Iso-Seq sequencing. When
merging, the transcript with the earlier start site was
used as the new representative transcript. This mer-
ging process resulted in a total of 64,277 distinct tran-
scripts. Only 488 transcripts between the two sets were
merged which translates to 244 shared transcripts. Of the
244 shared transcripts, 176 had the brain transcript as the
new representative model, meaning that for this set, the
brain transcripts had an earlier TSS.
We grouped the transcripts into putative gene

models by clustering transcripts that had at least a
one nucleotide overlap. This resulted in 29,013 puta-
tive genes which we will refer to simply as genes. Of
these, 4579 genes had transcripts from both brain
and embryo libraries with only 621 genes having only
transcripts from embryo libraries. This indicates that
while most genes are transcribed across sample types,
the resulting transcripts differ. Thus providing more
support for the observation that alternative transcrip-
tion plays a significant role in tissue differentiation [20].
However, due to the lack of 5′ cap selection for the brain
dataset, there may be more shared transcripts than we ob-
served simply because we lacked the 5′ end of the brain
transcripts. Since short read data is generally inaccurate
with respect to isoform level quantification, this biological
phenomenon would be very difficult to detect without
long read sequencing.

Estimating gene numbers for unmapped transcripts
Since we were unable to use genomic locations to
group the unmapped transcripts, we instead used the
BLASR [21] mapper to find hits between the unmapped
reads. Reads were grouped if they had same stranded
BLASR hits. 11,732 unmapped reads from the brain
and 3028 unmapped reads from the embryo were clus-
tered into 8812 groups. This indicates a significant
number of genes that are not currently represented in

the Chicken annotations due to gaps in the genome as-
sembly. We excluded these unmapped transcripts from
further analyses due to the uncertainty of the sequence
quality and the effects that would have on the predic-
tion methods we used.

Comparison with previous chicken PacBio transcriptome
sequencing studies
In order to estimate the benefit of library normalization
with respect to the efficiency of transcriptome coverage
for each SMRT cell used, we compared our data to a pre-
vious study [11] where PacBio Iso-Seq long read sequen-
cing was performed on RNA from chicken embryonic
hearts. The embryonic heart study yielded 1,566,465 reads
that mapped to the Gal_gal_4 genome assembly. While
the exact number of unique transcripts was not reported,
9221 novel isoforms were identified. We estimated the
maximum number of unique transcripts that they could
have acquired to be 31,081, which was calculated by add-
ing their number for novel isoforms with the number of
publicly annotated isoforms reported in their paper,
21,860 (16,743 from Ensembl and 5117 from RefSeq). Div-
iding their total possible number of unique transcripts by
the number of reads they produced shows that, at most,
only 2% of their reads were unique. While out of 482,325
mapped reads from our brain library, we found 55,315
(11.5%) unique transcripts. Thus the normalization
method appears to have provided a transcriptome cover-
age efficiency of more than 5 times that of the previous
study [11]. This means that for every SMRT cell used with
the normalization method, 5 SMRT cells would be re-
quired without normalization to achieve the same amount
of transcriptome coverage.
This transcriptome coverage efficiency calculation as-

sumes that the previous study did not achieve full coverage
of the transcriptome for their sample. While it is possible
that they reached full coverage of their sample transcrip-
tome, it seems unlikely since we found evidence for 44,898
transcripts from our chicken heart short read RNAseq data.

Exploring the PacBio transcriptome of the chicken
reference genome
Protein coding and noncoding RNA genes and transcripts
We used three methods to find evidence for protein
coding potential: Blastx [22] with the Uniprot Uniref 90
protein database [23], the Coding Potential Calculator
(CPC) software [24], and the Coding Potential Assess-
ment Tool (CPAT) [25]. Combining the results from the
three methods, we found 43,738 putative protein coding
transcripts from 14,421 genes and 20,539 putative non-
coding RNA transcripts from 17,178 genes (Table 1).
Within the noncoding RNAs (ncRNAs), we found that
23 transcripts were shorter than 200 bp which means
the rest were classified as long noncoding RNAs.
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We noticed a difference in the number of exons be-
tween coding and noncoding transcripts. There were
14,831 noncoding single exon transcripts (72.2%) and
only 5533 protein coding single exon transcripts (12.7%)
(Fig. 4e). Thus within this dataset single exon transcripts
make up the majority of noncoding RNAs.
We classified the lncRNAs by positional relationship to

the predicted protein coding transcripts. There were
12,999 long intergenic noncoding RNAs (lincRNAs), 2675
antisense lncRNA, and 4967 sense overlapping lncRNA.

Nonsense mediated decay products
Nonsense mediated decay (NMD) products are tran-
scribed alternative splice variants from protein coding
genes that are not translated into proteins [26–28].
NMD products have similar sequences to protein coding
transcripts but typically have been spliced so that there
is an early stop codon [27]. We used the NMD predic-
tion rules outlined in NMD studies [27, 29–31], which
state that a premature termination-translation codon oc-
curring at least 50-55 base pairs upstream of a splice
junction provides strong evidence for NMD. Using this
criteria, we identified 4735 putative NMD transcript
candidates within our PacBio data (Table 1).
Although Ensembl did not make NMD predictions for

the Ensembl (release 83) chicken annotation, they did
have predictions for the human and mouse annotations.
We ran our NMD method on Ensembl (release 83) hu-
man and mouse annotations to compare our methods.
Out of 13,401 Ensembl human NMD transcripts, 13,263
were predicted to be NMD using our method (99%
agreement). From our NMD predictions, out of 79,901
Ensembl annotated human protein coding transcripts,
only 909 were predicted to be NMD which equates to a
false discovery rate (FDR) of 6.4%. Similarly for 5229
NMD transcripts in the mouse annotation, 5152 were
predicted to be NMD using our method (99% agree-
ment). Out of 50,706 Ensembl mouse protein coding
transcripts, we predicted only 341 transcripts to be
NMD which equates to an FDR of 6.2%.
When overlapping the PacBio NMD transcripts with

the Ensembl annotation, we found that 4137 NMD tran-
scripts overlapped with 2517 Ensembl genes. We looked

at the ratio of the number of NMD to coding for both
gene level and transcript level per chromosome and
found that all chromosomes had a ratio at gene level be-
tween 0.16 and 0.29 (Fig. 4f ). We ran the same analysis
on the Ensembl (release 83) human and mouse annota-
tions and found similar ratios ranging from 0.12-0.5 and
0.03-0.26 respectively.

Identification and classification of antisense transcripts
In the chicken PacBio transcriptome, there are 13,873
transcripts that are exonic antisense overlapping to at
least one transcript and 6446 genes that are antisense to
at least one gene. We looked at the numbers of coding
and noncoding transcripts with respect to these anti-
sense transcripts and found that there were 7107 tran-
scripts involved in a protein coding to noncoding
antisense overlap, 4765 transcripts involved in protein
coding to protein coding antisense overlap and 2001
transcripts for noncoding to noncoding antisense over-
laps (Table 1). When converting these to gene antisense
overlap pairs we found 1571 protein to noncoding gene
pairs, 1329 protein coding to protein coding gene pairs
and 1036 noncoding to noncoding gene pairs.
Looking at intronic antisense overlap, where transcripts

have at least one exon that overlaps with the intron of an
antisense transcript, we found 2139 transcripts and 1115
genes with at least one antisense intronic overlap (Table 1).
When considering coding predictions we found 354 pro-
tein coding to noncoding, 298 protein coding to protein
coding, and 140 noncoding to noncoding gene pairs.

Transcriptional complexity in the chicken genome
Due to the large number of unique transcripts that were
identified, we were able to make a general assessment of
transcriptional complexity in the chicken genome. We
looked at the ratio of transcripts to genes, retained in-
trons, skipped exons, alternative exon starts/ends, alter-
native TSS and TTS, and single exon transcripts.
We found a ratio of 2.22 for transcripts to genes. This

low number is due to the abundance (19,120 genes of
which 13,265 are lncRNA genes) of genes with single
transcripts many of which are single exon genes. If these
single transcript genes are removed then the ratio in-
creases to 4.56 transcripts to genes (Fig. 5a). These num-
bers are likely an underestimation as we have only
characterised two, albeit transcriptionally complex, tis-
sue types and some lowly expressed transcripts may have
been missed in our brain and embryo libraries.
For assessing alternative TSS we only used the tran-

script sequences from the embryo library since this li-
brary had 5′-cap selection and therefore should have
intact 5′-sequences. We removed all genes with only
one representative transcript since these would by de-
fault have only one TSS. There were 2037 genes that

Table 1 Classification of biotypes for PacBio transcriptome

# of Transcripts Biotype

43,738 Coding RNA

20,516 LncRNA

23 Short ncRNA

4735 NMD transcript

13,873 Antisense Exonic

2139 Antisense Intronic
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matched these criteria and only 73 had only one TSS.
Thus 96.4% of these genes had multiple TSS. The high rate
of multiple TSS genes is presumed to be a combination of
transcription factor binding wobble and alternative

transcription start exons (TSE). If we ignore TSS caused
by wobble and only look at TSE, 594 genes have a
single TSE which means 70.8% of these genes have
multiple starting exons.

Ensembl

Pacbio

TGEA

Bursa TGEA Read Coverage

DPAGT1 H2AFX

a d

e

f

b

c

Retained Intron (RI)

Skipped Exon (SE)

Comparison Transcript

Alternative TSS

Alternative TSE

Alternative TTS

Alternative TTE

Alt. Exon Start (AES)

Alt. Exon End (AEE)

Fig. 5 Alternative splicing. a Comparison of number of alternative transcripts per gene between Ensembl annotations and PacBio transcriptome.
b Classifications for alternative transcripts. c Comparison of rate of occurrence for the different classes of alternative transcripts between Ensembl
human, mouse, and the chicken PacBio Transcriptome. Abbreviations for x-axis labels explained in Fig. 5b. d Comparison between STSE and MT
genes for TGEA transcriptome. e Example of overhang event. f Comparison of the number genes and trranscripts for Ensembl, PacBio and TGEA
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For TTS we use both brain and embryo transcript se-
quences since both libraries had been selected for poly-
A tails. Again all single transcript genes were removed
which resulted in 9893 genes. Only 801 genes had a sin-
gle TTS which means that 91.9% had multiple TTS.
However, if we look at alternative transcription termin-
ation exons (TTE), we find that 2365 genes have a single
TTE which means 76.1% have multiple TTE.
We also looked at occurrences of retained introns and

skipped exons within both brain and embryo transcripts
using only multi-transcript genes. We define retained
introns as exons which overlap an entire intron (Fig. 5b)
from another transcript. There are 3429 multi-
transcript genes which have retained introns which
equates to a rate of 34.7%. We define skipped exons as
exons which are completely overlapped by an intron in
another transcript (Fig. 5c). There were 4939 genes
with at least one occurrence of skipped exons which
equates to a rate of 49.9%.
We looked at alternative exon start (AES) and ends

(AEE). For this set we used both brain and embryo tran-
scripts but only assessed internal exons so that we did
not include TSE and TTE. We also excluded retained in-
tron exons from this set. There were 8006 genes with no
AES which equates to a rate of 19.1%. There were 7952
genes with no AEE which equates to a rate of 19.6%. So
the rates of AES and AEE are quite low as compared to
other alternative splicing events.
We were interested to see if there were any alterna-

tive splicing differences between protein coding and
lncRNA genes. Out of 14,421 protein coding genes,
6597 had only one transcript which gives a multi-
transcript rate of 54.3%. Out of 17,178 lncRNA genes,
15,162 had only one transcript which gives a multi-
transcript rate of 11.7%. Thus lncRNA genes are
much less likely to contain alternative transcripts. We
also noticed that lncRNA transcripts were much more
likely to have only one exon. Out of 20,539 lncRNA
transcripts, 14,831 contained only a single exon.
Whereas, out of 43,738 protein coding transcripts,
there were only 5533 single exon transcripts. LncRNA
transcripts had a rate of 72.2% for single exon tran-
scripts as compared to 12.7% for protein coding tran-
scripts. When adjusting the multi-transcript rate for
only multiple exon genes, there is a rate of 67.0 and
37.0% for coding and lncRNA genes respectively.
Thus even after accounting for the high number of
lncRNA single exon genes, coding genes are more
likely to have alternative transcription.

Comparison of transcriptome assemblies derived from short
and long read RNA sequencing data
We created a tissue gene expression atlas (TGEA) de-
rived from the assembly of short read RNAseq data of

20 tissue types from J-line layer chickens (Table 2) to
compare and independently validate the PacBio tran-
scriptome. We merged the identified transcripts from
each short read RNAseq tissue dataset into a single tran-
scriptome annotation to create the TGEA.
The TGEA transcriptome predicts 78,351 genes

with 190,474 transcripts. Thus the TGEA has 2.7
times the number of genes and 2.96 times the num-
ber of transcripts as compared to the PacBio tran-
scriptome. While this difference is most likely
explained by the inclusion of many more tissue types
in the TGEA as compared to the PacBio transcrip-
tome, there are also some fundamental differences in
the proportion of multiple transcript and single tran-
script single exon (STSE) genes (Fig. 5d). When only
comparing multiple transcript genes, the PacBio tran-
scriptome has 9893 genes while the TGEA transcrip-
tome has 14,220 genes. However, for STSE genes,
PacBio has 13,824 genes while TGEA has 60,576
genes. Thus the ratio of STSE genes to multiple tran-
script genes is 1.40 in PacBio and 4.26 in TGEA. Of
the total STSE genes in the PacBio transcriptome,
12,603 are classified as lncRNA.
We looked at genomic overlap between PacBio and

TGEA transcripts to estimate the transcript coverage
for each dataset. There were 9368 PacBio transcripts

Table 2 Number of transcripts and genes by tissue type for
TGEA transcriptome

Tissue # of Transcripts # of Genes

Kidney 35,867 18,916

Breast Muscle 39,649 22,357

Spleen 41,831 23,546

Heart Muscle 44,898 25,520

Liver 46,523 25,253

Ovary 53,933 24,787

Gizzard Fat 57,922 33,670

Harderian Gland 59,873 33,791

Proventriculus 62,954 37,824

Bursa 63,644 38,673

Skin 68,982 39,211

Left Optic Lobe 75,457 44,567

Thymus 78,491 45,312

Trachea 79,103 46,730

Thyroid 79,440 46,285

Ileum 83,541 48,446

Cerebellum 90,088 54,212

Duodenum 90,665 50,902

Lung 98,514 58,762

Pancreas 106,430 68,006
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which had no overlap with TGEA transcripts. How-
ever, when we guide the transcript assembly for the
TGEA dataset using the PacBio transcripts, we find
that only 18 PacBio transcripts have no coverage.
This indicates that despite the high depth of sequen-
cing and wide tissue coverage of the TGEA dataset, a
large number of transcripts were not predicted even
though there were data to support their existence.
This may be a result of the difficulty in differentiating
transcriptional noise from true transcripts. Thus the
PacBio transcripts missing in the TGEA transcriptome
were difficult to distinguish from noise using short
read data.
There were 108,651 transcripts from 15,633 genes

in the TGEA which overlapped the PacBio transcrip-
tome. So 43% of the TGEA transcripts and 80% of
the TGEA genes are not covered by the PacBio tran-
scriptome. However, of these TGEA models with no
PacBio transcript overlap, 76.6% of the transcripts
and 91.5% of the genes are from single transcript sin-
gle exon genes. While these may represent true tran-
scripts and genes, it is difficult to be sure that these
are not the result of transcriptional noise using only
short read evidence.
We noticed during manual inspection of the PacBio

and TGEA overlaps that some transcript models in
the TGEA transcriptome seemed to be a merging of
two adjacent genes in the PacBio transcriptome. We
call this event an “overhang gene” (Fig. 5e). To inves-
tigate the abundance of these events, we searched for
all TGEA transcripts which overlapped two PacBio
genes. We identified 2515 overhang events where an
upstream and downstream PacBio gene is represented
as one merged gene in the TGEA transcript model.
Of these, 208 events occur where the downstream
gene model has a confirmed start site due to the
presence of transcript models from the embryo data.
Out of these, 79 overhang events have external sup-
port from Ensembl (release 83) chicken annotation
showing that each gene is a separate well annotated
gene. To understand the more general problem of
gene merging we looked at all gene merging events
where one TGEA transcript merged two or more Pac-
Bio genes. We identified 4254 merged gene events in-
volving 10,991 PacBio genes.

Comparison of the PacBio transcriptome with public
annotation
Ensembl and NCBI are the two major sources of public
annotation for the chicken genome. Since the NCBI
chicken annotation contains far fewer transcripts and
genes (6352 and 6027 respectively) as compared to the
Ensembl chicken annotation (release 83) and 96.8% of
the transcripts in NCBI are also contained within

Ensembl, we chose to focus our analyses on the Ensembl
annotation. The Ensembl (release 83) chicken annota-
tion contains 17,108 genes with 17,954 transcripts.
There are 15,508 genes annotated as protein coding, 42
predicted as pseudogenes, 150 ambiguous RNA, and the
rest are an assortment of short noncoding RNA. There
are no annotated lncRNA. It has a ratio of 1.05 tran-
scripts per gene model with only 745 multiple transcript
genes. For these multiple transcript genes, the ratio of
transcripts per gene is 2.14. The PacBio transcriptome
has a ratio of 2.22 transcripts per gene when including
the entire gene set and 4.56 transcripts per gene for
multiple transcript genes (Fig. 5f ). The Ensembl (release
83) chicken annotation contains 969 antisense genes as
compared to 6446 antisense genes for the PacBio tran-
scriptome. These are genes that overlap at least one gene
on the opposite strand.
Out of the 64,277 PacBio transcripts, 21,887 had no over-

lap with Ensembl transcript models and are thus consid-
ered to be novel. Of these, 7414 transcripts had no sense
exonic overlap with any Ensembl predicted transcript but
were either antisense (exonic or intronic) or had a sense in-
tronic overlap. These transcripts could be further classified
based on their coding potential so that 5049 were noncod-
ing and 2365 were protein coding (Table 3). The remaining
transcripts were located in intergenic regions. Of these,
11,880 were predicted to be noncoding while there were
2593 intergenic coding transcripts (Table 3).

Comparative genomics and phylogenomic profiles of
chicken PacBio transcripts
To understand the conservation of these sequences
across birds and other vertebrate species, we mapped
the transcript sequences (using GMAP with default pa-
rameters [16]) onto the genomes of several avian species

Table 3 Classification of coding and noncoding transcripts by
gene overlap

# of
Transcripts

Coding class Exonic
antisense

Intronic
antisense

Intronic
sense

1634 ncRNA Yes No No

1262 ncRNA No Yes No

2047 ncRNA No No Yes

32 ncRNA Yes No Yes

74 ncRNA No Yes Yes

11,880 ncRNA No No No

1478 coding RNA Yes No No

200 coding RNA No Yes No

575 coding RNA No No Yes

55 coding RNA Yes No Yes

57 coding RNA No Yes Yes

2593 coding RNA No No No
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as well as representatives from other vertebrate classes
(Table 4). The avian species with the best genome as-
semblies for each phylogenetic grouping were selected
for this analysis. We used this selection criteria so as to
avoid mapping biases from low quality genome assem-
blies. These mappings do not directly relate to orthologs
but rather provide a general indication of transcript se-
quence conservation between species.
Only 0.2% of the total chicken PacBio transcripts did

not map to any non-chicken species. While 8.8% of the
chicken PacBio transcripts mapped to all species span-
ning 300Mys. Of these, 98.8% were predicted to be pro-
tein coding while 1.2% were predicted to be lncRNA. Of
the lncRNA that mapped to all species, 52.3% were pre-
dicted to be intergenic. When focusing only on avian
species, we see that 61.8% of the chicken PacBio tran-
scripts map to all avian species. From these transcripts
which map to all avian species, we see 82.8% predicted
as protein coding and 17.2% predicted to be lncRNA
(percentages given with respect to the total number of
transcripts which map to all avian species included in
this analysis). Out of the lncRNA transcripts that
mapped to all avian species, 47.1% are classified as
lincRNA. We produced heat maps to display this ana-
lyses with a colour scale indicating the quality percent of
mapping for each transcript (Fig. 6 a-c). The quality per-
cent is defined by the number of matching nucleotides
divided by the total length of the transcript when align-
ing the chicken PacBio transcripts with their projected
sequence when mapped to other species.

Discussion
Noncoding transcripts
Long noncoding RNA
In the Ensembl (release 83) annotation, there are 24,149
lncRNA transcripts predicted in human and 8391 pre-
dicted in mouse. Thus our 20,516 predicted lncRNA
transcripts are similar in number to that found in the
human annotation, which has the highest number of an-
notated lncRNAs of any Ensembl annotated vertebrate
genome. While the mouse annotation usually benefits
from homology based predictions from humans, the lack
of conservation for lncRNA sequences has made hom-
ology methods mostly ineffective. Previous studies have
shown that a large proportion of the human lncRNA are
primate specific [32], which would explain the compara-
tively low number of identified lncRNA in mouse. The
similar numbers of identified lncRNA in the Ensembl
human annotation and the PacBio chicken annotation
suggests that lncRNA are extremely underrepresented in
the annotations of mouse and other species.
The Ensembl annotated lncRNAs are classified into

three main categories: lincRNA, sense overlapping
lncRNA, and antisense lncRNA. However, it is important
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to note that there are no biotype designations for sense
exonic overlapping lncRNA in the Ensembl annotation.
The sense overlapping class is comprised of two Gen-
code defined biotypes termed sense_overlapping and
sense_intronic. Sense_overlapping refers to lncRNA
transcripts that have a protein coding gene within their
introns. Sense_intronic refers to lncRNA transcripts that
occur within the intron of a protein coding gene. Nei-
ther of these correspond to any exonic overlap, thus they
are both sense intronic overlapping lncRNA. There is,
however, a biotype classification labelled “processed_-
transcript” which is defined as a transcript with no open
reading frame. There are transcript models within this
group which meet the criteria for sense exonic lncRNA,
however, due to the lack of evidence to support these
models it is unclear how many represent true sense ex-
onic lncRNA. Thus there are three sub-classes for
lncRNA within the Ensembl annotation with a loosely
defined 4th class which contains sense exonic lncRNA
but not at an annotation level that can be used with high
confidence. This means that the proportion of sense ex-
onic lncRNA in human and mouse is unknown.
For both the human and mouse annotation, lincRNA

make up roughly half of the total, while sense intronic
lncRNA represent less than 10% of the total (Fig. 7a).
Thus proportions of these classes seem to be well con-
served within mammals. However, the relative propor-
tions of the lncRNA sub-classes in the PacBio chicken
annotation are very different. This difference seems to
be due in large part to the inclusion of sense exonic
overlapping lncRNA which make up 17% of PacBio
chicken lncRNA transcripts (Fig. 7a). This difference
could represent real biological differences between
mammalian and avian genomes such that antisense
lncRNA are more common in mammals while sense
overlapping lncRNA are more common in birds. How-
ever, when we used our sense exonic overlap prediction
tool on the Ensembl human and mouse processed_tran-
script models, we found 24,385 and 11,901 sense exonic
lncRNA transcripts respectively. If these numbers are in-
cluded in the proportion of lncRNA types then they
would equate to 48 and 57% respectively. This would in-
dicate that sense exonic lncRNA are actually the most
abundant type of lncRNA. However, due to the dearth of
evidence for these models, it is difficult to say whether
this reflects reality. The proportions of lncRNA sub-
classes within the PacBio chicken annotation may pro-
vide an estimate for the rate of occurrence of sense ex-
onic lncRNA in human and mouse as well as other
vertebrate species.
Another startling contrast between the human/mouse

Ensembl (release 83) annotations and the PacBio chicken
annotation is the proportion of the number of exons for
lncRNA transcripts. In the human/mouse Ensembl

annotations, two exon lncRNA transcripts are the most
commonly occurring (Fig. 7b). However, the PacBio
chicken transcriptome show that single exon lncRNA
transcripts are by far the most abundant. While this dif-
ference could be due to real biological differences be-
tween birds and mammals, no conclusions can be made
because many of the lncRNA prediction methods for the
human and mouse annotations removed single exon
lncRNA models [33]. The practice of removing single
exon lncRNA models is useful when dealing with models
that are assembled from short read data since it is diffi-
cult to ascertain whether these models are truly single
exon transcripts or the result of transcriptional noise.
However, this puts a strong bias against the prediction
of single exon lncRNA transcripts which has likely re-
sulted in the underrepresentation of these transcripts.
Thus the proportion of single exon lncRNA transcripts
in the PacBio chicken annotation may indicate that these
are also the largest group of lncRNA in other vertebrate
species. If this is true, then a large portion of lncRNA
have not been identified due to the practice of filtering
out single exon lncRNA models.

Non-sense mediated decay transcripts
In comparison to the proportion of NMD products in
human and mouse, our NMD predictions for chicken
appear to be similar. Our predictions for NMD in
chicken also show a more uniform ratio of NMD to cod-
ing transcripts across the chromosomes. Since 2517
Ensembl genes have NMD overlap, it appears that NMD
may play a large role in protein expression regulation
within the chicken. Considering the important biological
implications of NMD products [34], the lack of anno-
tated NMD transcripts in the public chicken annotation
could have concealed important gene expression infor-
mation in previous studies.

Antisense genes
The most common pairing for both exonic and intronic
antisense genes is that of a protein coding gene with a
noncoding gene which is supported by reports in mam-
mals [35, 36]. The predominance of the coding to non-
coding pairs suggests that there may be some regulatory
relationship between the coding and noncoding genes in
each pairing. While the mechanism of regulation is still
mostly unknown, it has been proposed that one way in
which an antisense gene can regulate a sense gene is by
inhibiting transcription of the sense gene through tran-
scriptional collision [37]. Thus the protein coding genes
within these antisense pairings may be down regulated
by the transcription of their noncoding antisense part-
ners. In these situations, it is the action of transcription
that is functional as opposed to the transcriptional prod-
uct. Thus the sequence of the antisense partner is
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essentially meaningless and almost completely free of se-
lection pressure (aside from exonic overlapping regions).
This would explain why lncRNA sequence conservation
is so low as compared to protein coding genes.
The abundance ranking of antisense pairs from coding

to noncoding, coding to coding, and then noncoding to
noncoding has also been found in mammals [35]. The
consistency of this ranking order within this study and
within mammalian studies stands out as a peculiar coinci-
dence. It suggests that coding to noncoding antisense
regulation is a widely adopted and significant form of
regulation within vertebrates. The coding to coding pairs
may be a relic of ancient genomes where genomic com-
pactness offered some selective advantage. However, it is
perplexing as to why noncoding to noncoding pairs would
be the least abundant. Due to the lack of sequence conser-
vation for lncRNA, many believe that the majority of
lncRNA lack function and refer to them as transcriptional
noise. If they are truly non-functional, then their tran-
scription near functional genes would likely have negative
effects for several reasons. For instance, competition for
access to the region by transcription factors. If lncRNA

are predominantly non-functional, it is more likely for
them to occur near each other and not near useful genes.
Thus lncRNA genes should make up the most abundant
antisense pairs. The growing evidence that noncoding to
noncoding pairs are the least abundant suggests that the
majority of lncRNA are functional and their sequences are
functionally important as well.
The prevalence of exonic pairs over intronic pairs offers

another unintuitive result. Since intronic pairs have less
sequence dependency between the two genes, it seems
more probable for these pairings to arise. Yet there are less
than a sixth of the amount of intronic gene pairs as com-
pared to exonic. This large discrepancy suggests that there
is some functional reason for why antisense exonic pairs
dominate. It may be that the exonic sequence overlap al-
lows RNA binding between the antisense products which
could be used for up or down regulation. If this were the
case, then perhaps the majority of antisense pairings rep-
resent a regulation relationship between the antisense
genes. This would make sense from transcriptional colli-
sion alone but the RNA binding theory may add another
level of regulation tuning.
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Fig. 7 Characterization of lncRNA. a Proportions of each class of lncRNA for chicken PacBio, Ensembl human, and Ensembl mouse annotations.
b Proportion of exon numbers for lncRNA transcripts for chicken PacBio, Ensembl human, and Ensembl mouse annotations
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Alternative transcription events
Multiple transcript genes within the PacBio chicken tran-
scriptome display a high level of complexity with regard to
transcription initiation and termination which is similar to
that found in mammalian annotations [38]. When com-
paring the different alternative transcription events
(Fig. 5b), the most dominant events are alternative TSS
and TTS. This result matches the human and mouse an-
notations (Fig. 5b). It is possible that the TSS is a major
factor in determining the splicing of the transcript such
that each alternative transcript is somewhat defined by the
TSS. This would mean that the polymerase binding site
defines the alternative transcript which would be a mech-
anism for regulating alternative transcription.
Skipped exon events are the most dominant alternative

splicing event with 49.0% of the PacBio genes having at
least one occurrence and a rate of 51.0% for PacBio tran-
scripts. While skipped exon events are the most dominant
in both the human and mouse annotations, they occur at
higher rates, 84.1 and 72.8% of genes, respectively. This
may indicate that they play a lesser role comparatively in
the chicken genome. The lower relative rate of occurrence
for skipped exons in the chicken transcriptome may also
contribute to the density of the genome, since skipped
exons are related to greater overall intronic regions as they
are effectively introns for other transcripts.
For retained introns, alternate exon starts, and alter-

nate exons ends, there is a significant difference between
the rate of occurrence when calculating per gene versus
per transcript, with each event having a higher per gene
rate than per transcript rate. This means that they tend
to be spread out among genes but with fewer occurring
within each gene. This contrasts the rates for skipped
exons where there is actually a higher rate per transcript
than per genes in the PacBio transcriptome. This suggest
that these events may be related to a type of RNA prod-
uct which does not benefit from a variety of these
events, such as NMD products, where introducing an
early stop codon is all that is needed.

Long read versus short read RNA sequencing data
If we consider the TGEA as a representation of an upper
limit for transcribed loci discovery, then the difference in
ratios between TGEA and PacBio for STSE to multiple
transcript genes suggests that the majority of unannotated
transcribed regions are STSE genes. However, another ex-
planation is that many of these novel STSE genes in the
TGEA transcriptome are a result of RNAseq noise. Since
STSE genes have no splice junctions, there is no other
supporting evidence for the existence of these genes ex-
cept for read coverage. Since read coverage for a specific
locus may be influenced by sequence similarity to another
locus or errors in the genome assembly, it is possible that
the supporting reads belong to another locus. It is also

possible that a STSE gene is actually an exon from another
gene, but due to issues with low read coverage not linking
the exon to the rest of the gene, the model was predicted
incorrectly. Thus it is difficult to say how many of the
TGEA transcipts/genes are accurate.
On the other end, the 9368 PacBio transcripts with no

overlap from the TGEA indicates that there may be
many transcripts which go undetected with short read
sequencing. This under-prediction can be the result of
genes with low expression levels or genes with sequence
similarity to other loci (such as paralogs).
The relatively large number of gene merging events

(4254) in the TGEA transcriptome indicate a clear issue
with transcriptomes assembled from short read RNAseq
data. Each gene merge event represents an incorrect tran-
script model that would be misidentified using standard
annotation pipelines that rely on open reading frames
and transcript length. While investigating gene merge
events, we noticed that the transcript assembly errors
seemed to be a result of short read noise. This noise is
manifested as a low coverage of reads over intronic and
intergenic areas. These noisy reads can bridge between
transcripts thus resulting in merged gene models. This
noise also makes it difficult to detect retained introns.
Due to issues with noise, most assemblers use some
method of thresholding to decipher when intronic reads
are noise or real. However, filtering out noise reads from
real reads is non-trivial and relies on low variance of read
coverage over the transcript, which is rarely the case.
Therefore, while the TGEA dataset can provide a rough
estimate of transcribed loci, it is not recommended for
identifying full length transcript sequences.

Comparing the PacBio transcriptome to the Ensembl
annotation
The large difference in the number of anti-sense genes be-
tween Ensembl and PacBio is partly explained by the
greater number of genes in the PacBio chicken transcrip-
tome. However, it is also indicative of the limitations of
the short read RNAseq data that was used for the Ensembl
chicken annotation [5, 39]. Much of these data were gen-
erated using unstranded library preparation protocols
which made it impossible to resolve anti-sense transcripts.
Without stranded RNAseq data, anti-sense transcripts can
look like extensions of the sense transcripts or can be fil-
tered due to their non-conformance with the dominant
transcript model. As a result, these models may have been
omitted or represented incorrectly.
Due to the lack of lncRNA models in the Ensembl anno-

tation, the large number of novel ncRNA predicted by Pac-
Bio sequencing is somewhat expected. The number of
novel intergenic protein coding transcripts, however, was
higher than we expected so we investigated the possible
reasons for their absence in the Ensembl annotation. There
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were 634 transcripts which had no hits against the Uniref
90 database. This subset represents transcripts with no or
low sequence similarity to known proteins. Ensembl may
have discarded these in their pipelines since they would be
difficult to confirm as protein coding. These also represent
possible avian specific proteins. There were 891 transcripts
which were antisense (exonic or intronic) to a transcript ei-
ther in the PacBio annotation or the TGEA. Similar to the
transcripts that were antisense to Ensembl transcripts, these
transcripts represent complex transcribed loci where short
read data may not provide enough information to resolve
the overlapping transcripts. There were 719 transcripts
which did not have matching transcript models in the
TGEA. Thus these transcripts could not even be assembled
with short read data. This is mostly likely due to low and/
or variable coverage. There were 967 transcripts left after
removing the no hit, antisense, and no TGEA sense overlap
transcripts. Therefore the majority of these previously un-
annotated transcripts can be explained by the limitations of
short read RNA sequencing.

Comparative genomics provides functional support for
PacBio transcript predictions
The mapping of over 99.8% of PacBio chicken transcripts
to other genome assemblies provides support for the Pac-
Bio models and sequence conservation also predicts func-
tional constraints on these transcripts. While there is
some variability of genome assembly quality among the
avian species, there is a clear trend for species that are
evolutionarily closer to chicken to have more matching
transcript sequences. The galliformes show a high propor-
tion of similar transcripts (Fig. 6a), while there is a drop-
ping off of the number of mapped transcripts for species
at a further phylogenetic distance away from chicken. For
the non-avian species, relatively few transcript mappings
show similarity.
Comparing the coding and lncRNA transcripts, we see

that there is a very different trend for sequence conser-
vation with coding transcripts being relatively well con-
served across the avian species (Fig. 6b) while a more
noticeable drop off occurs with the lncRNA transcripts
(Fig. 6c). This complements previous observations that
lncRNA have low conservation as compared to protein
coding genes [40] and homology approaches have lim-
ited effectiveness beyond closely related species.

Conclusions
We identified a large number of events where transcrip-
tional complexity make it difficult or impossible to attain
the true transcript sequences from short read data. As
the current public annotation of the chicken genome by
Ensembl has relied upon incomplete cDNA sequences
(ESTs) and short read RNA-seq data, the complexity of
the chicken transcriptome is currently underrepresented.

The current underrepresentation of transcriptional com-
plexity with respect to the number of alternative tran-
scripts can have consequences for analyses that rely on
these models. Important transcriptional events can be
missed or misrepresented thus obscuring underlying bio-
logical processes. Using PacBio sequencing to create a
high quality transcriptome annotation can correct these
issues that are common in many of the public annota-
tions. More advanced analytical tools can be developed
to take advantage of the long read transcriptome by
using information which could identify problematic
areas in short read data during transcript quantification
experiments. These areas include multi-mapping loci, re-
peat regions and ambiguous splice junctions.
Long read transcript models also improve functional

annotation since many annotation pipelines must as-
sume that the supplied transcript sequences represent
real splicing and correct reading frames. The ability to
disambiguate overlapping transcripts or genes sheds
light on transcriptome complexity that was previously
unannotated in chicken. The PacBio chicken transcrip-
tome suggests a level of transcriptional complexity that
is more consistent with expectations based on the well-
characterised human genome.

Methods
Pacific Biosciences Iso-Seq long read sequencing
For the brain library, brain tissue was collected from an
adult J-Line chicken (brown leghorn) bred at the Edinburgh
Poultry Research Centreand the extracted RNA sample was
sent to GATC Biotech (Konstanz, Germany) for library
preparation and sequencing. The total RNA sample was ex-
amined using capillary electrophoresis with a Shimadzu
MultiNA microchip electrophoresis system (Shimadzu
Corporation, Kyoto, Japan). Poly(A) + RNA was selected
using an oligo(dT)-linker primer and cDNA was produced
using M-MLV H- reverse transcriptase. The cDNA was
amplified using PCR with 16 cycles. Normalization was
performed by denaturing and reassociating the cDNA.
Double stranded cDNA were removed using a hydroxylap-
atite column. The remaining cDNA were then amplified
using PCR with 8 cycles. The cDNA were then size selected
for 1 kb and 2 kb lengths using Ampure beads (Agencourt
BioSciences Corporation, Beverly, Massachusetts). For the
1 kb cDNA, 11 SMRT cells were used. For the 2 kb cDNA,
14 SMRTcells were used.
For the embryo library, an embryo was collected at

Hamburger-Hamilton stage 26 from an ISA Brown
chicken bred at the Edinburgh Poultry Research Centre
and RNA was extracted. The RNA sample was sent to
GATC Biotech for library preparation and sequencing.
The total RNA sample was examined using capillary elec-
trophoresis with a Shimadzu MultiNA microchip electro-
phoresis system. Poly(A) + RNA was selected and treated
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with Terminator exonuclease (+TEx). The 5′CAP struc-
tures were removed using tobacco acid pyrophosphatase
(TAP). Then an RNA adapter was ligated to the 5′-mono-
phosphate of the RNA. The cDNA was synthesized using
an oligo(dT)-adapter primer and M-MLV H- reverse tran-
scriptase. The cDNA was amplied using PCR with 13 cy-
cles. Normalization was performed by denaturing and
reassociating the cDNA. Double stranded cDNA were re-
moved using a hydroxylapatite column. The remaining
cDNA were then amplified using PCR with 8 cycles. The
resulting cDNA was purified with the Agencourt AMPure
XP kit. The cDNA were then size selected for 0.8 kb and
2 kb lengths using Ampure beads. For the 0.8 kb cDNA,
16 SMRT cells were used. For the 2 kb cDNA, 17 SMRT
cells were used.

Long read transcriptome processing
Raw data was processed into error corrected reads of in-
sert (ROI’s) using the PacBio SMRT Analysis Package with
default parameters. The ROI’s were then processed using
the Iso-Seq Tofu pipeline [15]. We used the Classify mod-
ule with default parameters to remove adapter sequences,
poly-A tails, artificial concatemers, and 3′ truncated tran-
script sequences which resulted in our set of FLNC tran-
scripts. For an additional level of error correction we ran
PacBio ICE software without the Quiver step on the FLNC
transcripts [15]. The ICE software clusters transcripts by
alignment using BLASR and then error corrects using the
alignments. This results in a higher quality set of tran-
script sequences and the removal of redundant data. Due
to the computation time restraints we ran ICE independ-
ently on each size selection from the brain.
The resulting sequences were then mapped to the

Galgal 4 reference genome assembly using GMAP [16]
using default parameters. The GMAP result bam files
are then processed using the Iso-Seq Tofu Collapse
module (in the Iso-Seq pipeline) which merges
transcripts based on genomic coordinates. There are two
methods of doing this which are explained in the Results
section.
For each transcript we collected the quality scores of

the ICE cluster sequences contributing to that transcript
model. We estimated quality score by aligning the pre-
mapped sequence to the post-mapped sequence using
MUSCLE [41] and counting the number of mismatches
and gaps. We then took the longest supporting cluster
for each transcript and removed the transcript from our
working list if the quality percentage of the longest sup-
porting cluster was less than 90%.
ROI quality scores were calculated with a similar

method. Adapter sequences were aligned to the ROI se-
quences using MUSCLE and the quality score was calcu-
lated by counting the number of mismatches.

The collapsed transcripts from the brain library and the
embryo library were then merged using in-house python
scripts to create a PacBio transcriptome annotation.

Illumina RNA sequencing
RNA samples from 20 tissue types were collected from 9
16/17 weeks old female J-Line chickens bred at the Ed-
inburgh Poultry Research Centre . The samples from the
9 individuals were pooled for each tissue type and se-
quenced by Edinburgh Genomics. The Illumina Total
RNA Stranded kit was used to generate stranded cDNA
fragments. In this stranded RNAseq method, random
primers are used for reverse transcription to create a
complementary strand to the original RNA template.
Deoxyuridine Triphosphate (dUTP) is then incorporated
into the original template [42]. Adapters are attached to
both ends of the double strand and then the original
template is degraded. The adapters provide strand infor-
mation based on their orientation in the read. The
cDNA fragments were then sequenced to produce paired
end reads with an average length of 101 base pairs. The
average size of cDNA fragments was 190 bases.

Short read transcriptome assembly
Edinburgh Genomics generated 8 fastq file pairs for each
tissue. Each tissue had an average of 120,563,969 reads
between all 8 fastq files. We checked the quality of data
using Fastqc. We then mapped the reads to the Galgal 4
genome assembly using Tophat2 version 2.0.14 with
Bowtie2 version 2.2.5. For this we used the parameters
to define the inner insert size for each library and the
strand orientation (–library-type fr-firststrand). We then
ran Cufflinks version 2.2.1 to assemble transcripts using
default parameters on each library (8 libraries per tissue).
No annotations were provided at this step for guiding.
We then merged the transcript models from each library
using Cuffmerge. This final merged annotation was des-
ignated as our J-line derived annotation.
We also ran Cufflinks using force guided on the Ensembl

(release 83) annotation, the PacBio annotation, and the J-
Line derived annotation. This was performed to acquire
FPKM estimates for each transcript model in each annota-
tion set so that we could generate our expression atlases.

Other bioinformatics analyses
Prediction of coding and noncoding transcripts
To classify the PacBio transcripts as either protein cod-
ing or noncoding we used the criteria that transcripts
without evidence for protein coding potential were la-
belled as noncoding RNA and transcripts with evidence
were labelled as putative protein coding. We used three
methods to find evidence for protein coding potential.
The first method consisted of using Blastx [22] to find
hits between the PacBio transcripts and the Uniprot
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Uniref 90 protein database [23]. The second method
consisted of using the Coding Potential Calculator
(CPC) software [24]. CPC uses six different metrics to
determine the coding potential of a transcript. These in-
clude using open reading frames (ORFs) and searching
for Uniprot protein hits. The third method consisted of
using the Coding Potential Assessment Tool (CPAT)
[25]. CPAT uses ORF’s and hexamer usage bias to pro-
duce protein coding probabilities. We used the recom-
mended cut off of 0.3 for CPAT, designating any scores
below this as noncoding.

Prediction of nonsense mediated decay products
Transcripts which were first identified as protein coding
using our previously defined methodology were used for
our NMD prediction. We investigated potential NMD
products by identifying coding sequence regions within
the PacBio transcript models. Coding sequence regions
were identified by first converting the RNA sequences to
peptide sequences in all three frames (single stranded
data). The longest three ORF’s were matched to the
Chicken protein sequences from Uniprot using Blastp
[22]. The ORF’s with the highest match to a chicken
protein were used as the representative or if no matches
were found, the longest ORF was used. If the representa-
tive ORF had a stop codon that was more than 50-bp
upstream of the final splice junction, it was labelled as
an NMD candidate [31].
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