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Abstract

Background: The oxytocin (OT) system is known to be implicated in the regulation of complex social behavior,
particularly empathy and parenting. The goal of this study was to estimate the gender and population differences
in polymorphisms of two oxytocin receptor gene SNPs, rs53576 and rs2254298, in four populations.

Results: These data were compared with each other and with 14 samples from the corresponding regions
retrieved from the 1000 Genomes database. Low level of heterozygosity was observed for both SNPs in all
populations in this study (rs53576: Catalonian, Hobs = 0.413; Hadza, Hobs = 0.556; sr2254698: Khanty-Mansi, Hobs =
0.250; Datoga, Hobs = 0.550). The amount of variance due to regional variability was almost equal for both SNPs
(rs53576: FRT = 0.086, rs2554298: FRT = 0.072), whereas variance for the population level of variability was twice
bigger for rs2554298 (rs53576: FST = 0.127, rs2554298: FST = 0.162). Pairwise coefficients of fixation demonstrate that
the Hadza were well differentiated from other African populations except of Datoga, the Datoga were weakly
differentiated from other African origin populations, the Ob Ugric people were extremely differentiated from all
other populations. Catalans were extremely differentiated of Asian populations.

Conclusions: It is hypothesized on the base of spatial distribution of the evolutionary novel A alleles of the both
OXTR gene loci, that the spread of alleles of rs22542298 and rs53376 SNPs may be associated to some extant with
manipulation of parental investment in humans.
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Background
The oxytocin (OT) system is known to be implicated in
the regulation of complex social behavior, such as em-
pathy, affiliated behavior and parenting, and response to
social stress [1]. OT has been related to attachments be-
tween parents and children, intimate partners, relatives
and friends, and its level is reported to be stable over
time within individuals [2]. Several studies have indi-
cated an association of OT with mental disorders that
are characterized by impaired social behavior, such as
autism, anxiety, and depression [3]. OT is a peptide of
nine amino acids that is produced in the hypothalamus

and released into both the brain and bloodstream. Func-
tioning as both a neurotransmitter and hormone, oxyto-
cin’s targets are widespread and include the
hypothalamus, amygdala, hippocampus, brainstem,
heart, uterus, and regions of the spinal cord that regulate
the autonomic nervous system, especially the parasym-
pathetic branch [1, 4, 5].
OT is known to regulate social bonds in animals [6],

and CD38−/− knockout mice had both decreased plasma
OT level and significant social impairments, including
poorer maternal nurturing and less effective social be-
haviors [7]. Recent studies suggest that oxytocin may
have similar functions in human well-being [8]. It was
found that oxytocin increases trust, generosity [9] and
empathy accuracy [10]. Recent neuroimaging evidence
suggests that those brain areas involved in emotion
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processing and social danger monitoring, especially in
the amygdala, were found to have decreased activation
[11, 12]. Given the known heritability of empathy in
humans [13], these data further suggest that genetic
variation in the oxytocinergic signaling may have a role
in empathy modulation [14]. Variation in the oxytocin
receptor (OXTR) gene may partly explain individual dif-
ferences in OT-related social behavior [15]. In humans,
the oxytocin receptor is encoded by the OXTR gene
which has been localized to human chromosome 3p25
and has four exons and three introns [5]. Two single nu-
cleotide polymorphisms (SNPs) in the third intron have
been suggested to be particularly promising candidates
to explain differences in oxytocinergic functioning:
rs53576 (G–A) and rs2254298 (G–A) [16].
According to the data for the rs53576 polymorphism

of the OXTR gene in 12 nations, the nations with higher
frequency of A allele (Japan, China, Korea) are more col-
lectivistic in comparison with those having higher fre-
quency of G allele (USA, UK, Australia, Canada,
Netherlands, Italy, Sweden, Germany, Finland) but at
the same time the last ones seem to be more predis-
posed to major depressive disorder [17]. Although, these
data should be accepted with cautious. Same authors
demonstrated recently that AA and GG carriers of OXTR
rs53576 demonstrated different brain activity, using
functional magnetic resonance imaging (MRI), in reac-
tion to racial ingroup and outgroup faces that received
painful or non-painful stimulations, and suggested that
these differences are linked to implicit attitude and al-
truistic motivation [18].
The highly representative study of 7723 British mother’s

behavior failed to show the relationship between rs53576
OXTR genotype and emotional loneliness [19]. While in
other studies, the G allele carriers in comparison with ho-
mozygotes AA appeared to be more prosocial [20]. Posi-
tive association of the OXTR gene with autism has been
demonstrated in the Chinese Han population [21].
There is less evidence for the SNP rs2254298 associa-

tions with behavior qualities and personality features, al-
though Feldman and colleagues have shown that this
polymorphism may be associated with plasma levels of
oxytocin, particularly individuals with GG having lower
levels of OT [22]. Other authors have associated de-
pression and anxiety with the OXTR rs2254298 poly-
morphism in adults [23], and with autism in children
[24]. While the A allele of OXTR rs2254298 was asso-
ciated with attachment security in the non-Caucasian
infants [25].
OXTR demonstrate contrasting patterns of expression

in brains in monogamous and polygamous species of
voles, particularly, the OXTR in the septum may be as-
sociated with social behavior, whereas those in the
BNST/amygdala may be associated with parental

behavior [26]. Supposedly, in species with high density
of OXTR in the nucleus accumbens both females and
males demonstrate parental care [27]. But whether any
genetic basis exist for above mentioned differences (e.g.,
differential sex-specific parental care) between popula-
tions, practicing monogamous and polygamous mating
patterns, still remained to be tested.
It is challenging to look for such associations in hu-

man ethnics practicing monogamous and polygamous
reproduction behavior. We know two African tribes that
fit this criterion and one Eurasian nation that can serve
as a control. The Hadza are hunter-gatherers from
Northern Tanzania. Population size is about 1500 indi-
viduals. They are relatively egalitarian and monogamous
and have nominal leadership [28–30]. Hadza men com-
pete in the form of successful hunting, and female mate
choice is important [31, 32]. Male reproductive output is
positively associated with hunting skills and informal
leadership [33, 34]. The Datoga are traditional semino-
madic pastoralists of Tanzania [35]. Population size is
about 100,000 individuals. They are polygynous, and
horizontally divided into generation sets with clear
wealth stratification [36]. The social status and number
of wives and children sired by a man are correlated with
his wealth [37]. To address violence within families or
clans, the Datoga have developed judicial institutions
based on customary laws [36, 38] that include public as-
sembly, clan moots, and women’s and neighborhood
councils. Using a system of fines and ostracizing of ha-
bitual aggressors, the Datoga manage within-tribal
violence [39].
Ob-Ugric people (Khanty and Mansi) settled on the

territory of Russia in Western Siberia and occupied the
basins of the Ob and the Irtysh rivers, including their
tributaries. According to the census conducted in 2010,
Ob-Ugric peoples are just over 43 thousand people
(Khanty – 31,000 and Mansi – 12,000). Their languages
belong to Ugric subgroup of Finno-Ugric group of the
Uralic language family. Many of them are still practicing
traditional occupations, such as fishing, hunting rein-
deer herding, and gathering [40]. Despite the fact that
currently most of the Ob-Ugric people living in vil-
lages, they still practice nomadic reindeer herding.
They are patrilineal, marriages are patrilocal and ba-
sically monogamous [41].
The aim of our study was to investigate population

specificity in the distributions of allelic frequencies of
two SNPs in OXTR gene (rs53576, rs2254298). To meet
this goal we selected three populations from traditional
culture represented different regions of the world: East
Africa (Hadza, Datoga), Asia (Ugric people from West-
ern Siberia), and one modern population of South Eur-
ope (Catalonian). Populations we selected for the
purpose of our study are of special interest, because they
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may drop some light on the functionality of rs53576 and
rs2254298 polymorphisms. Two of them, Hadza and
Ugric people are mainly monogamous, while Datoga are
polygynous. Spanish sample has been used for compara-
tive purposes as one of the modern industrial popula-
tion, monogamous.

Results
Allele and genotype frequency distributions obtained for
our four samples were compared with each other as well
as to 14 samples (live in and originated from Africa: Yor-
uba in Ibadan, Nigeria; Luhya in Webuye, Kenya; African
Ancestry in Southwest US (AASUSA); Latin America:
Colombian in Medellin; Puerto Rican in Puerto Rico;
Mexican Ancestry in Los Angeles, California (MexAn);
Asia: Han Chinese in Bejing (Han1), China; Southern
Han Chinese (Han2), China; Japanese in Tokyo, Japan; live
in and originated from Europe: Finnish in Finland; British
in England and Scotland; Iberian populations in Spain;
Utah residents with Northern and Western European an-
cestry (UNWE)) from the corresponding region retrieved
from the 1000 Genomes database. The allele and genotype
distributions did not differ significantly between men and
women in all samples with p-values ranged from 0.04
(rs53576 and rs2254298) in Spanish to 0.75 (rs2254298)
and 0.79 (rs53576) in Datoga (Additional file 1).
Data on distribution of allelic and genotype frequen-

cies of the two studied SNP loci are presented in Table 1.
Genotype frequencies for rs53576 and rs2254298 in the
all 18 samples including four studied were in accordance
with the Hardy–Weinberg equilibrium with Benjamini
and Hochberg correction (Table 2), corrected p-value
was higher 0.05 in both cases (uncorrected p-values for
rs53576 and rs2254298 varied from 0.030 to 0.948 and
from 0.073 to 0.963, correspondingly.
We tested the close physical location of the two SNPs

– 2143 bp between them with the linkage disequilibrium
test with the option of unknown phases. The results ob-
tained were in accordance with physical linkage of the
two loci in three out of four studied populations. The
probabilities of free allelic combination between the two
locus studied were as follows: the Hadza: 0.0000003, the
Ob Ugric people: 0.0005; the Catalans: 0.000006. How-
ever, in the case of Datoga, these two loci demonstrated
free recombination: 0.48. Suggestively this may be due to
the bottleneck effect which took place in the 19th cen-
tury when Datoga were kicked out from Ngoro-Ngoro
region by Maasai, the other possibility is related to the
hot spot of recombination located between the SNPs. Fi-
nally, this may be due to our sample, although it rela-
tively large (178 individuals). This fact remained to be
investigated in the future as currently we are unable to
explain this result.

For the SNP rs53576 the frequency of A allele in
Hadza was much higher compared to other African sam-
ples, presented in Tables 2 and 4, and Datoga signifi-
cantly differed only from Yoruba. Accordingly, the AA
genotype frequency was the highest in Hadza. The fre-
quency of A allele in Ob Ugric people was significantly
lower compared to other Asian samples presented, same
is true for the AA genotype frequency (Tables 1 and 3).
Also, Ob Ugric people significantly differed from all Eu-
ropeans populations presented in this study, but in this
case the frequencies of A allele as well as AA genotype
were higher in Ugric people compared to Europeans.
The Catalonian sample for A allele and AA genotype fre-
quencies fell within the variation of other European
groups, with the exception of Finnish population (G =
17.74, d.f. = 1, p = 0.00003), as well as demonstrated no
differences from Columbians, Puerto Ricans and Utah
residents of European origin (Tables 1 and 3), besides,
they did not differ from Datoga (Tables 1 and 3). For the
SNP rs2254298 of the OXTR gene, the A allele and AA
genotype frequencies for Hadza sample were compar-
able with the other African groups (Tables 1 and 3),
this was true for Datoga as well with the exception of
differences between Datoga and Luhya from Kenya
(G = 4.26, d.f. = 1, p = 0.039). On the contrary, the A
allele and AA genotype frequencies were significantly
lower in the Ob Ugric sample compared to other
Asian groups: Han1, G = 21.55, d.f. = 1, p = 0.000004;
Han2, G = 34.63, d.f. = 1, p = 0.000000004; Japanese, G =
12.25, d.f. = 1, p = 0.0005 (Tables 1 and 3). Catalonian sam-
ple have similar frequencies of the A allele and AA geno-
type with Iberic and Toscani samples, as well as with
Colombians and Puerto Ricans, but different compared to
Finnish (G = 9.92, d.f. = 1, p = 0.0016), British (G = 8.70,
d.f. = 1, p = 0.0032) and Utah samples (G = 12.90, d.f. = 1,
p = 0.0003) (Tables 1 and 3).
Low level of heterozygosity was observed for the both

SNPs in all populations in this study. European popula-
tions are characterized with the lowest values of ob-
served heterozygosity (Table 1).
Percentages of molecular variance for both SNPs are

presented on Fig. 1. The amount of variance due to re-
gional variability is almost equal for both SNPs (rs53576:
FRT = 0.086, p = 0.001; rs2554298: FRT = 0.072, p = 0.001),
whereas variance for the population level of variability
was twice bigger for rs2554298 (rs53576: FST = 0.127, p
= 0.001; rs2554298: FST = 0.162, p = 0.001). Coefficient of
fixation demonstrates the degree of population differen-
tiation (Table 4). According to these values, the Hadza
are well differentiated from other African populations
except of Datoga, and also from the rest of populations
except of Mexicans (from LA). The Datoga are weakly
differentiated if at all from other African origin popula-
tions, including Afro-Americans from our samples, a bit
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Table 1 Allelic and genotype frequencies of SNPs rs53576 and rs2254298 of oxytocin receptor gene in world populations

Frequencies

Allele Genotype

rs53576

Population Number A G Number AA AG GG

African All* 1194 0.224 0.776 597 0.057 0.333 0.610

Americans of African Ancestry in SW USA 122 0.287 0.713 61 0.082 0.410 0.508

Luhya in Webuye, Kenya 198 0.211 0.789 99 0.052 0.320 0.629

Yoruba in Ibadan, Nigeria 216 0.193 0.807 108 0.045 0.295 0.659

Hadza, Tanzania 270 0.426 0.574 135 0.148 0.556 0.296

Datoga, Tanzania 388 0.302 0.698 194 0.077 0.448 0.474

American All* 524 0.343 0.657 262 0.116 0.453 0.431

Colombians from Medellin, Colombia 188 0.333 0.667 94 0.083 0.500 0.417

Mexican Ancestry from Los Angeles USA 128 0.386 0.614 64 0.136 0.500 0.364

Puerto Ricans from Puerto Rico 208 0.300 0.700 104 0.127 0.345 0.527

Asian All* 1144 0.684 0.316 662 0.472 0.423 0.105

Han Chinese in Bejing, China 206 0.716 0.284 103 0.505 0.423 0.072

Southern Han Chinese 210 0.670 0.330 105 0.480 0.380 0.140

Khanty and Mansi 700 0.571 0.429 350 0.349 0.446 0.206

Japanese in Tokyo, Japan 208 0.663 0.337 104 0.427 0.472 0.101

European All* 1990 0.361 0.639 995 0.132 0.459 0.409

Utah Residents (CEPH) with Northern and Western European Ancestry 198 0.294 0.706 99 0.082 0.424 0.494

Finnish in Finland 198 0.446 0.554 99 0.151 0.591 0.258

British in England and Scotland 182 0.393 0.607 91 0.191 0.404 0.404

Iberian Population in Spain 214 0.250 0.750 107 0.143 0.214 0.643

Catalonian 984 0.307 0.693 492 0.091 0.431 0.478

Toscani in Italia 214 0.327 0.673 107 0.102 0.449 0.449

rs2254298

African All* 1112 0.238 0.762 561 0.053 0.370 0.577

Americans of African Ancestry in SW USA 122 0.287 0.713 61 0.049 0.475 0.475

Luhya in Webuye, Kenya 198 0.191 0.809 99 0.041 0.299 0.660

Yoruba in Ibadan, Nigeria 216 0.256 0.744 108 0.068 0.375 0.557

Hadza, Tanzania 226 0.274 0.726 113 0.053 0.442 0.504

Datoga, Tanzania 360 0.303 0.697 180 0.078 0.450 0.472

American All* 524 0.240 0.760 262 0.083 0.315 0.602

Colombians from Medellin, Colombia 188 0.225 0.775 94 0.083 0.283 0.633

Mexican Ancestry from Los Angeles USA 128 0.250 0.750 64 0.121 0.258 0.621

Puerto Ricans from Puerto Rico 208 0.245 0.755 104 0.036 0.418 0.545

Asian All* 968 0.322 0.678 484 0.101 0.441 0.458

Han Chinese in Bejing, China 206 0.320 0.680 103 0.103 0.433 0.464

Southern Han Chinese 210 0.355 0.645 105 0.140 0.430 0.430

Japanese in Tokyo, Japan 208 0.287 0.713 104 0.056 0.461 0.483

Khanty and Mansi 344 0.154 0.846 172 0.029 0.250 0.721

European All* 2318 0.107 0.893 1159 0.016 0.182 0.802

Utah Residents (CEPH) with Northern and Western European Ancestry 198 0.076 0.924 99 0.000 0.153 0.847

Finnish in Finland 198 0.081 0.919 99 0.000 0.161 0.839
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stronger differentiation is observed for Datoga vs Ibe-
rians and Toscanians. The Ob Ugric people are ex-
tremely differentiated from all other populations (from
0.093 with the Hadza to 0.266 with the Yoruba). Catalo-
nians are moderately differentiated from others except
of Asian populations (Han from Bejing, 0.17; Han from
South China, 0.17, Japanese from Tokyo, 0.14) (Table 4).

Discussion
The frequency of A allele of rs2254298 in the OXTR
gene differs a lot between the populations presented in
this paper. In samples of Europeans, particularly of
northern origin, the frequency of this allele is minimal,
while in Asian populations the A allele frequency is
much higher. Africans demonstrating intermediate fre-
quencies but closer to Asian ones. In regards to the

rs53376, Europeans and Africans demonstrated compar-
able A allele frequencies, and in Asian populations it’s
frequencies were much higher. The principal component
analysis conducted on the basis of allele frequencies of
both SNPs generally reveal the distribution of 18 popula-
tions in accordance with their geographic distributions
(Fig. 2). Principal Coordinate 1 reflected the geographic
distribution from West to East, with Yoruba to the most
West and Han from Beijing to the East. Coordinate 2 re-
flects the North to South distribution with Finnish being
the Northern, following by British and Utah Residents
(CEPH) with Northern and Western European Ancestry.
Ob Ugric people being close to Finnish. The Datoga and
African Americans and South Chinese located on the
most South (Fig. 2). Right top quarter accumulated all
African samples, as well as Colombians, and Puerto

Table 1 Allelic and genotype frequencies of SNPs rs53576 and rs2254298 of oxytocin receptor gene in world populations (Continued)

British in England and Scotland 182 0.090 0.910 91 0.011 0.157 0.831

Iberian Population in Spain 214 0.107 0.893 107 0.000 0.214 0.786

Catalonian 1312 0.168 0.832 656 0.037 0.262 0.701

Toscani in Italia 214 0.173 0.827 107 0.051 0.245 0.704

*Total data for world region (1000 Genomes database http://www.1000genomes.org/) are calculated including information on our samples presented in
bold letters

Table 2 The Hardy–Weinberg equilibrium for 18 populations,
including our data on Hadza, Datoga, Ob Ugric people and
Catalonian

Pop DF ChiSq Prob ChiSq Prob

rs53576 rs2254298

Hadza 1 2.499 0.114 1.401 0.237

Datoga 1 0.810 0.368 0.780 0.377

AASUSA 1 0.121 0.728 0.901 0.342

Lugya, Kenya 1 0.004 0.948 1.507 0.220

Yoruba, Nigeria 1 0.036 0.850 0.273 0.601

Colombia 1 2.714 0.099 0.550 0.458

MexAn 1 0.040 0.841 3.218 0.073

Puerto_Rico 1 1.614 0.204 2.137 0.144

Khanty-Mansi 1 2.835 0.092 0.288 0.592

Han1 1 0.086 0.769 0.002 0.963

Han2 1 2.509 0.113 0.792 0.373

Japanese 1 1.137 0.286 1.035 0.309

Catalans 1 0.081 0.776 2.415 0.120

UNWE 1 0.010 0.920 0.665 0.415

Finnish 1 4.714 0.030 0.873 0.350

British 1 0.168 0.682 0.150 0.698

Iberian 1 0.974 0.324 2.629 0.105

Toscanian 1 1.251 0.263 2.282 0.131

our data presented in bold letters; probabilities were corrected in accordance
with Benjamini-Hochberg: q > 0.05

Table 3 Results of G-test for comparison of allele and genotype
frequencies in the populations studied

rs53576 rs2254298

Pop1 Pop2 G df Chi p G df Chi p

Hadza Datoga 10.731 1 0.001 0.546 1 0.460

Hadza AASUSA 8.890 1 0.003 0.000 1 1.000

Datoga AASUSA 0.436 1 0.509 0.462 1 0.497

Hadza Luhya 20.577 1 0.000 1.536 1 0.215

Datoga Luhya 3.692 1 0.055 4.255 1 0.039

Hadza Yoruba 33.179 1 0.000 0.849 1 0.357

Datoga Yoruba 10.126 1 0.001 3.035 1 0.082

Khanty-Mansi Han1 10.234 1 0.001 21.548 1 0.000

Khanty-Mansi Han2 4.982 1 0.026 34.627 1 0.000

Khanty-Mansi Japanese 4.566 1 0.033 12.254 1 0.000

Spanish Colombian 0.000 1 1.000 1.320 1 0.251

Spanish MexAn 6.610 1 0.010 5.960 1 0.015

Spanish Puerto_Rican 0.444 1 0.505 1.838 1 0.175

Spanish UNWE 0.000 1 1.000 12.903 1 0.000

Spanish Finnish 17.743 1 0.000 9.919 1 0.002

Spanish British 3.602 1 0.058 8.695 1 0.003

Spanish Iberian 0.000 1 1.000 1.453 1 0.228

Spanish Toscanian 0.000 1 1.000 0.000 1 1.000

Legend: Pop1 and Pop2 are populations to be compared for their frequency
distributions, G – G-criterion, d.f. – degrees of freedom, Chi p – probability
value obtained on the bases of χ2 distribution
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Ricans. Right low quarter united European populations
with the only exception of Finnish sample. All Asian
populations located in the Eastern half of space between
coordinates 1 and 2 (Fig. 2). The position of Hadza sam-
ple in the space of 1 and 2 coordinated deserves special
attention. Hadza outstand from other African groups, lo-
cating in direction to Asian populations. One of the pos-
sible explanations is that current combination of 2 SNP
frequencies of OXTR gene may be due to bottleneck ef-
fect. It was found recently by Tishkoff with co-authors
[42], that the proportion of polymorphic sites as quanti-
fied by q, indicated that formally the effective size of
Hadza populations could be estimated as about 9200–
20,900 individuals, meantime, currently their population
has been substantially decreased in size (currently being
about 1500 individuals).
A tendency can be easily seeing on the Fig. 2 concern-

ing frequencies of the A alleles of both loci of the OXTR
gene. More simple tendency is related to the rs2254298,
which consists in decreasing of frequency of A allele

when moving down along the Principal Ordinate 2 (from
South to North). As for spatial distribution of the popu-
lations in regards to the rs53376, African populations
are characterized by similar frequencies of A allele, ex-
cept of Hadza. In Europeans, frequencies of A allele at
the rs53376 were at least twice higher compared to the
rs2254298. The highest frequencies of the A allele of
rs53376 were found in Asians.
The obtained spatial distribution of allele frequen-

cies of both loci of the OXTR gene may be explained
in accordance with general information on associa-
tions between the level of plasma oxytocin and paren-
tal touch and warmness. As demonstrated for the
rs2254298 SNP, the A allele being associated with
lower plasma oxytocin and lower related parental at-
tachment [22]. According to previous studies, this al-
lele is specific for humans, as primates don’t have it,
while G allele is the ancestral for this SNP [43]. An-
other OXTR gene SNP rs53376 has been associated
with individual differences in maternal and empathic
behavior as well, with A allele identified as a risk one
[44]. Given the fact of distribution of these alleles
world-wide in modern humans, we suggest that it is
either beneficial, or at least neutral for it’s carriers. It
is hypothesized, that selection in favor of A alleles of
rs2254298 and rs53376 SNPs may be associated to
some extant with manipulation of parental investment
in humans [45–47], favoritisms towards sons, being
one of possible examples. Practice of infanticide in
many human populations being another example of
such parental manipulation strategies [48]. Obvious
preferences for sons result in sex-biased infanticide,
with girls being main targets, are known to be prac-
ticed in China, Republic of Korea, India and other
countries of East and South Asia [49]. Such behavior
may be developed in the process of human evolution
along with extension of offspring dependence and de-
velopment of childhood and adolescence phases of life
cycle [50]. Asian samples presented in our study had
the lowest frequencies of GG genotypes on rs53576.
We suggest that possible increase in frequencies of A
allele in this SNP was to some extant associated with
intensive practice of selective infanticide for centuries
in these populations. Of course we do not mean that
infanticidal practice was the only factor favoring the
distribution of A alleles. Different marriage patterns,
associated with different parental investment, different
intensity of same sex cooperation in everyday life may
be enumerated as other possible factors associated
with population differences in distribution of A and G
alleles of rs22542298 and rs53376 SNPs of OXTR
gene in humans. In our sample those populations,
known to practice selective infanticide had lowest fre-
quencies of rs53376 G allele (China, Japan), while

Fig. 1 Diagrams of percentages of molecular variance for rs53576 (a)
and rs2254298 (b)
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Table 4 Pairwise FST values for our studied samples with samples from the 1000 genome database

Datoga AASUSA Luhya Yoruba Colombian MexAn Puerto_Rican Khanty-Mansi Han1 Han2 Japanese Catalonian UNWE Finnish British Iberian Toscanian

Hadza 0.017 0.039 0.065 0.083 0.045 0.016 0.049 0.093 0.083 0.068 0.066 0.088 0.094 0.072 0.071 0.065 0.053

Datoga 0.004 0.019 0.026 0.017 0.019 0.017 0.169 0.144 0.122 0.121 0.073 0.070 0.088 0.067 0.040 0.029

Khanty-Mansi 0.217 0.247 0.266 0.221 0.174 0.227 0.169 0.164 0.166 0.244 0.258 0.213 0.228 0.236 0.227

Catalonian 0.063 0.068 0.083 0.053 0.058 0.055 0.244 0.170 0.165 0.140 0.062 0.068 0.056 0.053 0.051
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those with highest frequencies of this allele were
those, with highest mothers investment in child care
(Datoga, Nigerians, Luhya from Kenya, Columbians)
and same sex male cooperation. As demonstrated by
other authors, on within - population level GG
rs53376 SNP male carriers in Han population of
Singapore revealed significant association between GG
genotype and low 2D:4D ratio (proxy to prenatal
androgenization) with higher cognitive abilities in
reading others emotional states [51].

Conclusions
In this study, a geographic spatial distribution of the al-
leles of rs22542298 and rs53376 SNPs of the OXTR gene
in human populations was revealed. This regularity in
the allele distributions assumes effects of some factors
on polymorphism of the OXTR gene. So long as the

product of this gene is involved in the regulation of
complex social behavior, we hypothesize that the spread
of alleles of rs22542298 and rs53376 SNPs may be asso-
ciated to some extant with manipulation of parental in-
vestment in humans.

Methods
Ethics approval and consent
Institutional approvals, including university (Moscow
State University Ethics Committee for data collection in
Russia, Ob-Ugric people, Hadza and Datoga of Tanzania),
local governmental agencies (Tanzanian Commission for
Science and Technology for data collection of Hadza and
Datoga), were obtained prior to conducting this study. All
subjects gave their informed, verbal consent prior to par-
ticipation. Verbal consent was deemed appropriate given
the low literacy rates among traditional Hadza and

Fig. 2 Ordination of the 18 samples by means of PCA. Two numbers located near markers stand for the A allele frequencies of the rs2254298
(before slash) and the rs53376 (after slash)
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Datoga, and was specifically approved by university EC
and Tanzanian agency. The study on Spanish population
was approved by the Universitat Autónoma de Barcelona
(Spain) Ethics Committee and confirmed to the Helsinki
Declaration. All participants provided written informed
consent.

Participants
The present study included four samples of healthy indi-
viduals from different populations: 1) 353 Ob-Ugric
people (Khanty and Mansi) from Khanty-Mansiysky Au-
tonomous District of the Nothern-Western Siberia were
collected in 2010 – 2011; 2) 135 adult Hadza and 196
adult Datoga were collected in 2006–2007 in the Lake
Eyasi region of Northern Tanzania and 3) Catalonian
sample, represented by 659 students have been collected
at Barcelona University in 2010–2013 (Table 5).

DNA analysis
All the participants provided Buccal samples. Genomic
DNA was isolated using Diatom DNA Prep 200 (Isogen
Lab, Moscow, Russia) (samples 1 and 2) and Real Extrac-
tion DNA kit (Durviz S.L.U., Valencia, Spain) (sample 3).
DNA quality from all the samples was assessed by spec-
trophotometer readings (A260/280) using Nanodrop.
Two polymorphisms in the OXTR gene (rs53676 and

rs2254298) were genotyped using Taqman 5′ exonuclease
assay (Applied Biosystems). The probes for genotyping
were ordered through the TaqMan SNP genotyping As-
says (ID: C___3290335_10) and (ID: C__15981334_10)
Applied Biosystems assay-on-demand service. The final
volume was 5 μl, which contained 5 ng of genomic DNA,
2.5 μl of Taqman Master Mix and 0.25 μl of 40 genotyping
assay. Polymerase chain reaction plates were read on an
ABI PRISM 7900HT instrument and SDS v2.3 software
(Applied Biosystems) was used for the genotype analysis
of data.

Statistical analyses
All population statistical data processing was carried out
using GenAlEx software v6.5 (http://biology-assets.a-
nu.edu.au/GenAlEx/Welcome.html): genotype and allele
frequencies, tests for HWE, test of homogeneity, linkage
disequilibrium test, estimations of heterozogosity and
FST and their significances, AMOVA.

Supporting data
The genotypic data for the all four studied populations
are available by the following DOI: 10.6070/H4V40S6S.
Data is deposited in LabArchives in a form that excludes
any possibility of participant identification.

Additional file

Additional file 1: Four studied populations. (XLSX 62 kb)
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