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Abstract 

Background:  Classification of certain proteins with specific functions is momentous 
for biological research. Encoding approaches of protein sequences for feature extrac‑
tion play an important role in protein classification. Many computational methods 
(namely classifiers) are used for classification on protein sequences according to vari‑
ous encoding approaches. Commonly, protein sequences keep certain labels corre‑
sponding to different categories of biological functions (e.g., bacterial type IV secreted 
effectors or not), which makes protein prediction a fantasy. As to protein prediction, a 
kernel set of protein sequences keeping certain labels certified by biological experi‑
ments should be existent in advance. However, it has been hardly ever seen in prevail‑
ing researches. Therefore, unsupervised learning rather than supervised learning (e.g. 
classification) should be considered. As to protein classification, various classifiers may 
help to evaluate the effectiveness of different encoding approaches. Besides, variable 
selection from an encoded feature representing protein sequences is an important 
issue that also needs to be considered.

Results:  Focusing on the latter problem, we propose a new method for variable selec‑
tion from an encoded feature representing protein sequences. Taking a benchmark 
dataset containing 1947 protein sequences as a case, experiments are made to identify 
bacterial type IV secreted effectors (T4SE) from protein sequences, which are com‑
posed of 399 T4SE and 1548 non-T4SE. Comparable and quantified results are obtained 
only using certain components of the encoded feature, i.e., position-specific scoring 
matix, and that indicates the effectiveness of our method.

Conclusions:  Certain variables other than an encoded feature they belong to do work 
for discrimination between different types of proteins. In addition, ensemble classifiers 
with an automatic assignment of different base classifiers do achieve a better classifica‑
tion result.

Keywords:  Feature selection, Variable importance, Accumulated scoring, 
Classification, Bacterial type IV secreted effectors
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Background
Feature extraction from protein sequences plays an important role in protein classifica-
tion [1–4] of many areas, such as identification of plant pentatricopeptide repeat coding 
protein [5], prediction of bacterial type IV secreted effectors [6–9], identification of heat 
shock protein [10], prediction of mitochondrial proteins [11], etc. In general, prevailing 
encoding approaches of protein sequences for feature extraction include pseudo-amino 
acid composition (PseAAC) [10–22], position-specific scoring matrix (PSSM) [7, 23–
32], position-specific iterated blast (PSI-BLAST) [33–37] etc.

However, several problems do still exist and are listed as follows. First of all, it needs 
to be decided which encoding approach is more effective. In fact, this problem can be 
solved according to the results of classification on each encoding approach using vari-
ous computational methods (i.e., known as classifiers in the field of machine learning or 
pattern recognition). In other words, the encoding approach corresponding to the most 
accurate classification result should be considered. Prevailing classifiers including ran-
dom forest or decision tree classifier (RF or DTC) [1, 38], gradient boosting machine 
(GBM) [39, 40], k-nearest-neighbor (kNN) [41, 42], linear discriminant analysis (LDA) 
[43, 44], logistic regression (LR) [45], multi-layer perceptron (MLP) [46, 47], naive bayes-
ian (NB) [5, 48], support vector machine (SVM) [49, 50] are credible.

Secondly, it needs to be discussed whether protein classification is predictive or not, 
which is a little confused. Actually, classification labels have commonly been assigned 
to protein sequences in advance. If these labels are definitive, i.e., having been certified 
by biological experiments in advance, there won’t be any need to predict the category 
of a protein sequence again. Conversely, unsupervised learning (e.g. clustering) rather 
than supervised learning (e.g. classification) should be considered, since these labels are 
undetermined. And that corresponds to protein prediction. However, prevailing meth-
ods are always confusing protein classification an protein prediction.

Thirdly, the extracted feature using an encoding approach is considered to be entirely 
effective. In fact, there may be only parts of the extracted feature that are effective. How-
ever, this phenomenon has been subjectively neglected. As a result, it is an important 
issue how to select certain components or variables from a feature that really helps to 
recognize proteins with specific functions. In other words, variable selection from a fea-
ture representing protein sequences is a new problem probably not yet avoidable, which 
may be more helpful to classification of different protein sequences.

In this paper, we propose a new method for variable selection from an encoded fea-
ture. The selection of a feature from an encoding approach is excluded from our method. 
Besides, no prediction work is executed. Focusing on components or variables of an 
encoded feature, we implement our method at seven steps as shown in Fig. 1. First of 
all, samples are divided in balance, which constitute a training and testing group. Sec-
ondly, a base classifier is automatically assigned in every resampling of the training 
group. Thirdly, the score of each variable in an encoded feature is accumulated through 
r rounds of resampling, training and scoring. Fourthly, a scatter plot and correspond-
ing order of variables with their accumulated scores in a descending order are obtained. 
Fifthly, r rounds of training are made on resampling samples to achieve ensemble classi-
fiers in each dimension (i.e., from one to full dimension of the encoded feature) accord-
ing to variables incrementally added in the descending order. Sixthly, variable selection 
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is accomplished using a line chart derived from the classification results on the testing 
group. Seventhly, evaluation metrics are made to estimate the effectiveness of selected 
variables. Experiments are made on the benchmark dataset [51] to identify bacterial type 
IV secreted effectors from protein sequences, which indicates the effectiveness of our 
method. More details can be seen in the following parts of this paper.

Results
In this section, we take a benchmark dataset [51] as a case to evaluate the performance 
of our proposed method. The dataset is composed of 1947 protein sequences across 
multiple bacterial species, categorized into two groups, i.e., 399 type IV secreted effec-
tors (T4SE) as the positive samples and 1548 non-T4SE as the negative samples. The 
1947 protein sequences are randomly divided into two subsets for training and testing, 
respectively. The training set consists of 973 sequences, among which 199 T4SE and 774 
non-T4SE sequences are randomly selected from positive and negative samples, respec-
tively. The left 200 T4SE and 774 non-T4SE samples constitute the testing set. Besides, 
we choose PSSM, which is composed of 400 variables, as the encoded feature. Following 
the procedure shown in Fig. 1, the experimental results of score accumulation, ensemble 
classification, variable selection and the corresponding classification results are listed as 
follows.

Results of score accumulation

We randomly extract 70% of samples from the training set and choose a classifier with 
the lowest classification error rate as the base classifier at each round. Meanwhile, scores 
representing the importance of variables are calculated. After 1000 rounds of resam-
pling, training and scoring (i.e., r = 1000 ), we obtain the accumulated scores of each 

Fig. 1  A framework of variable selection for identifying different proteins
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variable from PSSM. The corresponding scatter plot is shown in Fig.  2a. Its horizon-
tal and vertical coordinates correspond to 400 variables and their accumulated scores, 
respectively. In addition, the frequency of each selected base classifier is illustrated in 
Fig. 2b.

It can be seen in Fig. 2a that the accumulated scores are all relatively low. Since the 
accumulated scores of the 400 variables have no apparent distinction, all these variables 
are considered to be enumerated at the following step instead of selecting variables with 
high accumulated scores, as having been stated in [52].

In Fig.  2b, it can be seen that MLP is automatically assigned as the base classifier 
for 74.7% of 1000 round resampling. On the contrary, DTC and SVM have never been 
selected for score accumulation.

Results of ensemble classification on testing group

The ensemble classifiers have been built using 1000 rounds of resampling and training 
on the training set in each dimension, with 400 variables incrementally added in the 
descending order according to their accumulated scores. Then, the 400 ensemble classi-
fiers, each of which keeps 1000 base classifiers, are applied to the testing set. As a result, 
a line chart (see Fig. 3) is obtained with its horizontal corresponding to the dimensions 
with variables incrementally added in the descending order according to their accu-
mulated scores. The vertical coordinates are referred to the Acc and AUC values in 

Fig. 2  Results of score accumulation
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the incremental dimensions. It can be seen in Fig. 3 that it is the first 25 variables with 
descending accumulated scores that form a 25-D feature from PSSM for effective identi-
fication of T4SE.

Moreover, some quantitative results are shown to indicate the effectiveness of the 
obtained 25 variables for classification. Table 1 lists the max, mean and min values of 
Accs and AUCs by incrementally adding the variables after the 25th one of the 400 vari-
ables in a descending order according to their accumulated scores. It can be indicated 
that features enlarged with higher dimensions can achieve only similar Accs and AUCs 
as the 25 variables do.

Classification results of the selected variables

In order to show the effectiveness of the selected 25 variables, the confusion matrix, Pre-
cision, Recall and F1−measure are calculated in order to make a quantitative compari-
son. In addition, ROCs together with AUCs are listed as qualitative results.

Results of ROC and AUC between the first 25 selected variables and all 400 compo-
nents of PSSM using ensemble classification are shown in Fig. 4. The similar ROC curves 
and AUC values indicate that the selected 25 variables keep a comparable classification 
capability with PSSM.

Besides, results of ROC and AUC using the ensemble classifier consisting of 1000 sin-
gle base classifiers with the selected 25 variables are illustrated in Fig.  5. By making a 
careful comparison between Figs. 4b and 5, it can be seen that ensemble classification 
with automatic assignment of base classifier keeps a better ROC curve and AUC value 
(i.e., 0.9287).

Moreover, quantitative results among ensemble classification with automatic assign-
ment of a base classifier and the ensemble classifier with a single base classifier are listed 
in Table 2. It can be seen that the ensemble classifier with automatic assignment of a base 
classifier on the 25 selected variables keeps a high TP (i.e., 157) compared with most of 
the other classification strategies. Besides, it has better values of Precision, Recall and 
F1−measure (i.e., 0.904, 0.903 and 0.903) compared with the other ensemble classifier 
with a single base classifier on the 25 selected variables. As to the results of the ensemble 

Fig. 3  A line chart of ACCs and AUCs corresponding to the incrementally added variables from feature PSSM 
with their accumulated scores in a descending order
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Table 2  Quantitative results among  ensemble classification with  automatic assignment 
of base classifiers and the ensemble classifier with single base classifiers

Classifier Dimension Confusion matrix Positive 
class

Precision Recall F1-measure

Automatic 
assignment

400 Classified as Non-T4SE T4SE Non-T4SE 0.943 0.938 0.940

Label non-
T4SE

726 48 T4SE 0.765 0.780 0.772

Label T4SE 44 156 Weighted 
average

0.906 0.906 0.906

Automatic 
assignment

25 Classified as Non-T4SE T4SE Non-T4SE 0.944 0.933 0.938

Label non-
T4SE

722 52 T4SE 0.751 0.785 0.768

Label T4SE 43 157 Weighted 
average

0.904 0.903 0.903

DTC 25 Classified as Non-T4SE T4SE Non-T4SE 0.925 0.950 0.937

Label non-
T4SE

735 39 T4SE 0.782 0.700 0.739

Label T4SE 60 140 Weighted 
average

0.896 0.899 0.896

GBM 25 Classified as Non-T4SE T4SE Non-T4SE 0.926 0.953 0.939

Label non-
T4SE

738 36 T4SE 0.797 0.705 0.748

Label T4SE 59 141 Weighted 
average

0.900 0.902 0.900

kNN 25 Classified as Non-T4SE T4SE Non-T4SE 0.931 0.919 0.925

Label non-
T4SE

711 63 T4SE 0.700 0.735 0.717

Label T4SE 53 147 Weighted 
average

0.884 0.881 0.882

LDA 25 Classified as Non-T4SE T4SE Non-T4SE 0.927 0.925 0.926

Label non-
T4SE

716 58 T4SE 0.713 0.720 0.716

Label T4SE 56 144 Weighted 
average

0.883 0.883 0.883

LR 25 Classified as Non-T4SE T4SE Non-T4SE 0.883 0.957 0.919

Label non-
T4SE

741 33 T4SE 0.756 0.510 0.609

Label T4SE 98 102 Weighted 
average

0.857 0.865 0.855

MLP 25 Classified as Non-T4SE T4SE Non-T4SE 0.930 0.946 0.938

Label non-
T4SE

732 42 T4SE 0.775 0.725 0.749

Label T4SE 55 145 Weighted 
average

0.898 0.901 0.899

NB 25 Classified as Non-T4SE T4SE Non-T4SE 0.942 0.875 0.907

Label non-
T4SE

677 97 T4SE 0.620 0.790 0.695

Label T4SE 42 158 Weighted 
average

0.876 0.858 0.863

SVM 25 Classified as Non-T4SE T4SE Non-T4SE 0.925 0.924 0.924

Label non-
T4SE

715 59 T4SE 0.706 0.710 0.708

Label T4SE 58 142 Weighted 
average

0.880 0.880 0.880
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classifier with automatic assignment of a base classifier on PSSM (i.e., 400 components), 
the selected 25 variables can also achieve comparable results.

Discussions
Experimental results have indicated the effectiveness of variable selection from the 
encoded feature PSSM. In this section, we will further discuss the special composition of 
our variable selection method and the classification results.

Purpose of using base classifier selection

The automatic assignment of a base classifier is creative in this paper. Giving consid-
eration to the sample distribution of resampling, we designed the strategy of automatic 
assignment. Due to the limited sample size, resampling is only an approximation to the 
population. In our previous work, it has been pointed out that different base classifi-
ers should be considered according to various sample distributions [52]. However, the 
base classifier was interactively appointed in [52]. The pan chart in Fig. 2b can also show 
this phenomenon, which indicates that base classifiers selected at a higher percentage 

Fig. 4  Comparison results of ROC and AUC between all 400 components and the selected 25 variables using 
ensemble classification
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Fig. 5  Results of ROC and AUC using different base classifiers with the selected 25 variables
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may fit the population better. Besides, quantitative results listed in Table 2 indicate the 
power of using automatic assignment compared with the interactive appointment of a 
base classifier.

Purpose of using a line chart for variable selection

In fact, a line chart shown in Fig. 3 is a semi-automatic way for variable selection. Here, 
it goes against the interactive way that uses a manual selection within a table or on a 2-D 
scatter plot [52]. Also, it abandons the automatic way of automatic clustering [53] on 
accumulated scores. Due to the limited distribution of the accumulated scores with rela-
tively low values, the variables have no apparent distinction. It probably means variables 
are highly correlated. In that case, variable orders instead of values are to be considered.

Comparisons between classification results

We compared the classification results of our method with PredT4SE-Stack [6]. As 
shown in Table 1, the max, mean and min values of Accs and AUCs on the testing set 
exhibit a better result than the classification results on its training set using PreT4SE-
Stack. The best classification Acc value using PredT4SE-Stack on its training set is 0.911. 
Most of the other meta-classifier got a lower Acc value and AUC value than the mean 
Acc and AUC obtained using our method. However, classification results of Pred4SE-
Stack on its testing set are better than those using our method. In fact, the classification 
results on its testing set are even better than those on its training set. By careful obser-
vation, it is found that parameters of base classifiers are manually set every time in [6]. 
That’s why PredT4SE-Stack gets better classification results on its testing set. Anyway, 
seeking better classification results by setting parameter values doesn’t make any sense 
for variable selection.

Conclusion
In order to solve the problem of variable selection from an encoded feature representing 
protein sequences, we propose a variable selection method based on ensemble classi-
fication with an automatic assignment of base classifiers. Variable ordering is obtained 
according to score accumulation on training samples. Then, ensemble classifiers are 
established from one to all dimensions of the encoded feature according to variables 
incrementally added in the descending order. Using the ensemble classifiers on testing 
samples, a line chart is drawn for variable selection. Ultimately, evaluation metrics are 
made to estimate the effectiveness of selected variables. Taking a dataset containing pro-
tein sequences categorized into T4SE and non-T4SE group as a case, the performance of 
the proposed method is evaluated.

Methods
In this section, we will expound our method in detail. As illustrated in Fig. 1, our method 
has seven steps, each of which is framed in a dashed box. Each step which keeps its name 
labeled within the dashed box, corresponds to a following subsection.
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Sample division

We make a balanced sample division at the first step. That is, samples derived from a cat-
egory are divided into two equivalent parts. As a result, half of the samples from differ-
ent categories form a training group; while, the left ones constitute a testing group. It is 
noteworthy that this sample division should be performed in a completely random way.

Base classifier selection

A base classifier is automatically assigned at the second step. We make a set of base 
classifiers including decision tree classifier (DTC), gradient boosting machine (GBM), 
k-nearest-neighbor (kNN), linear discriminant analysis (LDA), logistic regression (LR), 
multi-layer perceptron (MLP), naive bayesian (NB) and support vector machine (SVM). 
Each one is equally assigned in an automatic way corresponding to every round of res-
ampling and training module. In each round j, 70% of training samples are randomly 
selected in a full dimension of an encoded feature for training each base classifier. The 
remaining 30% of training samples are regarded as the out-of-bag samples for calcula-
tion of the classification error rate Errj , as is expressed in Eq. (1). The base classifier with 
the lowest classification error rate is automatically assigned in round j.

Score accumulation

Score accumulation is made at the third step. Once a base classifier is automatically 
assigned according to the classification error rate calculated on the out-of-bag samples 
in round j, permutations are to be made. As to each variable i of the encoded feature, 
only one-time permutation of the expression values from the out-of-bag samples is per-
formed. The corresponding classification error rate is denoted as Err0j (i) . Accordingly, a 
score representing the importance of variable i is expressed as scorej(i) = Err0j (i)− Errj . 
After r rounds of resampling, training and scoring, the accumulated score of variable i is 
expressed as 

∑r
j=1 scorej(i)/r.

Variable ordering

Variables are reordered at the fourth step. A 2-D scatter plot is to be made with its 
horizontal and vertical coordinates corresponding to the variable indices and the accu-
mulated scores, respectively. Besides, variables are to be sorted in a descending order 
according to the accumulated scores. If the accumulated scores of the variables have no 
distinction (i.e., the accumulated scores are all relatively low), all the variables rather 
than the significant variables selected using previously proposed clustering method [53] 
are to be enumerated at the following step.

Ensemble classification

Ensemble classifiers are established at the fifth step. Again, r rounds of resampling and 
training are performed to achieve ensemble classifiers in each dimension according 
to variables incrementally added in their descending order. As to 1-D space, the vari-
able with the highest accumulated score is considered. At each round of resampling, 
the base classifier with the lowest classification error rate is trained. Altogether, r base 



Page 12 of 15Zhang et al. BMC Bioinformatics          (2020) 21:480 

classifiers are selected as the ensemble classifier in 1-D space. This procedure is repeated 
with a variable keeping a lower accumulated score added, until the full dimension of the 
encoded feature or the full dimension of significant variables has been considered.

Variable selection

Variable selection is accomplished at the sixth step. In each dimension, the established 
ensemble classifier is applied to the testing samples. The accuracy (Acc) expressed in 
Eq. (2) and the area under curve (AUC) of the receiver operating characteristic (ROC) 
are calculated. Accordingly, a line chart is obtained with its horizontal and vertical 
coordinates corresponding to the variable indices in their descending order and the 
corresponding Accs and AUCs in different dimensions. A dimension threshold can be 
made when Accs and AUCs are keeping almost the same with dimension incrementally 
increasing. Thus, the variables that really help to recognize proteins with specific func-
tions are selected from the encoded feature.

Measure

Evaluation metrics are made to estimate the effectiveness of selected variables at the sev-
enth step. The classification error rate is expressed as follows,

where TP, TN, FP and FN represent the number of true positive, true negative, false 
positive and false negative, respectively. On the contrary, Acc is shown as follows,

Besides, we choose four widely used quantitative measurements. The confusion matrix 
illustrates TP, TN, FP and FN together. Besides, Precision and Recall are computed as 
follows,

In addition, F1−measure is a harmonic average of Precision and Recall, which is 
expressed as

Moreover, the ROC and AUC are also provided here as qualitative measurements.
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Acc:: Accuracy;; AUC:: Area under curve;; DTC:: Decision tree classifier;; GBM:: Gradient boosting machine;; kNN:: k-nearest-
neighbor;; LDA:: Linear discriminant analysis;; LR:: Logistic regression;; MLP:: Multi-layer perceptron;; NB:: Naive bayesian;; 
PseAAC:: Pseudo-amino acid composition;; PSI-BLAST:: Position-specific iterated blast;; PSSM:: Position-specific scoring 

(1)Err =
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TP + FN + TN + FP
.
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.
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