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Background: The understanding of the importance of RNA has dramatically changed over recent years. As in the
case of proteins, the function of an RNA molecule is encoded in its tertiary structure, which in turn is determined
by the molecule’s sequence. The prediction of tertiary structures of complex RNAs is still a challenging task.

Results: Using the observation that RNA sequences from the same RNA family fold into conserved structure, we
test herein whether parallel modeling of RNA homologs can improve ab initio RNA structure prediction.
EvoClustRNA is a multi-step modeling process, in which homologous sequences for the target sequence are
selected using the Rfam database. Subsequently, independent folding simulations using Rosetta FARFAR and
SImMRNA are carried out. The model of the target sequence is selected based on the most common structural
arrangement of the common helical fragments. As a test, on two blind RNA-Puzzles challenges, EvoClustRNA
predictions ranked as the first of all submissions for the L-glutamine riboswitch and as the second for the ZMP
riboswitch. Moreover, through a benchmark of known structures, we discovered several cases in which particular
homologs were unusually amenable to structure recovery in folding simulations compared to the single original

Conclusion: This work, for the first time to our knowledge, demonstrates the importance of the selection of the
target sequence from an alignment of an RNA family for the success of RNA 3D structure prediction. These
observations prompt investigations into a new direction of research for checking 3D structure “foldability” or
“predictability” of related RNA sequences to obtain accurate predictions. To support new research in this area, we
provide all relevant scripts in a documented and ready-to-use form. By exploring new ideas and identifying
limitations of the current RNA 3D structure prediction methods, this work is bringing us closer to the near-native
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Background

Ribonucleic acid (RNA) is one of the key types of mole-
cules found in living cells. It is involved in a number of
highly important biological processes, not only as the car-
rier of the genetic information but also serving catalytic,
scaffolding and structural functions, and more [1]. The
interest in the field of non-coding RNA such as circular
RNAs [2], long non-coding RNAs [3] has been increasing
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for the past few decades with new types of non-coding
RNAs discovered every year. Similarly to proteins, a 3D
structure of an RNA molecule determines its function. In
order to build a 3D model of an RNA particle, one can
take advantage of high-resolution experimental tech-
niques, such as biocrystallography [4, 5], cryo-EM [6], and
nuclear magnetic resonance spectroscopy [7]. However,
experimental techniques are tedious, time-consuming, ex-
pensive, require specialized equipment, and not always
can be applied. An alternative and complement to experi-
mental techniques are methods for computational model-
ing. However, the results of the RNA-Puzzles [8, 9], a
collective experiment for RNA structure prediction, show
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that while accurate modeling of RNA is achievable,
there is still room for improvement. In particular, re-
cent tests [10] have demonstrated significant progress.
Although encouraging, this progress still leaves the
field without methods that can reliably predict RNA
tertiary structure in a consistent way.

Just like proteins, RNAs can be grouped into families
[11] that have evolved from a common ancestor. Se-
quences of RNAs from the same family can be aligned
to each and equivalency at the level of individual resi-
dues can be represented by a multiple sequence align-
ment (MSA). The analysis of patterns of sequence
conservation or the lack thereof can be used to detect
important conserved regions, e.g., regions that bind li-
gands, active sites, or are involved in other important
functions. An accurate RNA sequence alignment can be
used to predict secondary structure, the Watson-Crick
base pairing pattern for the RNA, a key precedent for
subsequently modeling RNA tertiary structure. Accord-
ing to the CompaRNA [12] continuous benchmarking
platform, methods that exploit RNA alignments, such as
PETfold [13] outperform single sequence predictive
methods for RNA secondary structure.

RNA alignments can be used to improve tertiary struc-
ture prediction. Weinreb and coworkers [14] adapted
the maximum entropy model to RNA sequence align-
ments to predict long-range contacts between residues
for 180 RNA gene families. They applied the information
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about predicted contacts to guide in silico simulations
and observed significant improvement in predictions of
five cases they researched. Another method was pro-
posed by Martin Weigt’s group [15]. These methods are
reviewed elsewhere [16].

In this work, a distinct way to use RNA alignment for
tertiary structure prediction is investigated. The proposed
approach explores the use of multiple sequence alignment
information and parallel modeling of RNA homologs to
improve ab initio RNA structure prediction method. A
new approach, named EvoClustRNA, takes advantage of
incorporation of evolutionary information from distant se-
quence homologs and is based on a classic strategy of pro-
tein structure prediction [17]. By building on the
empirical observation that RNA sequences from the same
RNA family typically fold into similar 3D structures
(Fig. 1), we tested whether it is possible to guide in silico
modeling by seeking a global helical arrangement, for the
target sequence, that is shared across de novo models of
numerous sequence homologs. To the best of our know-
ledge, EvoClustRNA is the first attempt to use this ap-
proach for RNA 3D structure prediction.

We tested the EvoClustRNA coupled with two RNA
3D structure prediction methods, SIimRNA [21] and
Rosetta FARFAR (fragment assembly of RNA with full-
atom refinement) [22]. SImRNA uses a coarse-grained
representation, relies on the Monte Carlo method for
sampling the conformational space, and employs a

Thermoanaerobacter pseudethanolicus (4gk8)

Thermoanaerobacter tengcongensis (4gqlm)

Fig. 1 RNA families tend to fold into the same 3D shape. Structures of the riboswitch c-di-AMP solved independently by three groups: for two
different sequences obtained from Thermoanaerobacter pseudethanolicus (PDB 1D: 4QK8) and Thermovirga lienii (PDB ID: 4QK9) [18] for a sequence from
Thermoanaerobacter tengcongensis (PDB ID: 40LM) [19] and for a sequence from Bacillus subtilis (PDB 1D: 4 W90) (the molecule in blue is a protein used
to facilitate crystallization) [20]. There is some variation between structures in the peripheral parts, but the overall structure of the core is conserved

Thermovirga lienii (4gk9)

Bacillus subtilis (4w90)
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statistical potential to approximate the energy and iden-
tify conformations that correspond to biologically rele-
vant structures. Similarly, Rosetta FARFAR uses coarse-
grained representation and the Monte Carlo sampling.
The main difference between the methods is how the
simulation is performed. SImRNA starts from an un-
folded conformation of an RNA molecule and runs a
replica-exchange Monte Carlo simulation to fold it. By
contrast, Rosetta builds initial conformations using a li-
brary of fragments and performs the Monte Carlo sam-
pling to generate a low-resolution model. This procedure
is repeated to obtain 10,000-20,000 models. The models
can then be further refined in an all-atom potential to
yield more realistic structures.

We also describe the usage of a tool that we have de-
veloped for clustering visualization named Clanstix. The
tool allowed to understand the relationship between
models for various homologs and reference structures.

Moreover, we report tests in the RNA-Puzzles 13 and
14 blind modeling trials, systematic benchmarking of the
approach, and a description of the automated workflow
that is now made available for the research community.

Results

EvoClustRNA workflow

In this work, we propose a new methodology together
with ready-to-use implementation (EvoClustRNA), that
can contribute to the improvement of RNA 3D structure
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prediction. The EvoClustRNA method takes as input (i)
an alignment file, (ii) a folder with models generated for
homologous sequence, and (iii) a file that maps sequence
names from the alignment with filenames of models.

The input preparation for the workflow has to be per-
formed manually by the user (Fig. 2. 1-2). An input
alignment can be obtained from the Rfam database or
generated by the user. Sequences in the alignment
should be sorted by length, and the redundancy removal
procedure should be applied to remove similar se-
quences. In the proposed protocol, the shortest homo-
logs are modeled using the SimRNAweb server or/and
Rosetta. At the final stage of the input preparation, the
top 100 models from a simulation should be moved to
the input folder for the EvoClustRNA workflow.

We recommend to fold the shortest homologs because
the average accuracy of de novo prediction of RNA 3D
structure deteriorates with the increased length of RNA
(e.g., [10, 23]). The volume of the conformational space
that needs to be sampled grows exponentially with the
chain length [24, 25]. Furthermore, de novo structure pre-
diction methods rely on multiple approximations (e.g.,
coarse-grained representations, crude statistical potentials)
thus with the increased size of the system under study
small errors accumulate. Moreover, the computational
cost increases with the molecule size for the calculation of
energy for each conformation, which also increases the
computational cost for a fixed simulation length.

>RP13 target
GGGUCGUGACUGGCGAACAGGUGGGAAACCACCGGGGAGCGACCCCGG
CAUCGAUAGCCGCCCGCCUGGGC

SimRNA several diverse homologous sequence

1. the target sequence, a subset of homologous
sequences are selected using the RFAM database

2. run independent folding simulations using Rosetta or

Fig. 2 The workflow implemented as EvoClustRNA - as an example of a structure prediction of the ZMP Riboswitch (RNA-Puzzle 13). (1)
Sequences of homologs are found for the target sequence, and an RNA alignment is prepared. (2) Using Rosetta and/or SimRNA structural
models for all sequences are generated. (3) The conserved regions are extracted and clustered. (4) The final prediction of the method is the
model containing the most commonly preserved structural arrangements in the set of homologs

4. the model of the target sequence is selected
based on the most common structural
arrangement of helical regions

3. extract evolutionary conserved helical
regions from all obtained models and cluster
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When the input files are ready, the next step of the
process (Fig. 2. 3—4) can be executed. The EvoClustRNA
package contains tools to make the process as easy as
possible, starting from processing input models to obtain
all-vs-all core RMSD matrix (evoClustRNA.py), auto-
mated clustering procedure (evoClust_autoclustix.py),
ending with a script to calculate the accuracy of predic-
tion (evoClust_calc_rmsd.py). The model of the target
sequence with the highest number of neighbors is se-
lected as the final prediction.

The full workflow can be accessed at GitHub https://
github.com/mmagnus/EvoClustRNA with the use cases,
e.g., for the RNA-Puzzle 13 (https://github.com/mmag-
nus/EvoClustRNA /tree/master/test_data/rp13).

Blind predictions with EvoClustRNA in the RNA-Puzzles
EvoClustRNA was tested on the RNA-Puzzle 13 prob-
lem. The target of 71 nucleotides was an RNA 5-
aminoimidazole-4-carboxamide riboside 5’-monopho-
sphate (ZMP) riboswitch, which can up-regulate de novo
purine synthesis in response to increased intracellular
levels of ZMP [26]. The alignment for this riboswitch
was downloaded from the Rfam database (Rfam ID:
RF01750), whence ten homologs were selected for mod-
eling with Rosetta. The secondary structures for all ho-
mologs were devised with Jalview based on the Rfam
alignment. The pseudoknot was suggested in the available
literature [27] and it was used for modeling. The Evo-
ClustRNA prediction with an RMSD of 5.5 A with respect
to the reference structure (Fig. 3) was the second in the
total ranking of RNA-Puzzles. The final prediction was
made based on the visual inspection of the best clusters,
which were obtained by using the EvoClustRNA method.
EvoClustRNA was also used in the RNA-Puzzles for
modeling problem 14. The RNA molecule of interest
was the 61-nucleotide long L-glutamine riboswitch,
which upon glutamine binding undergoes a major con-
formational change in the P3 helix [28]. It was the first
RNA-Puzzle, for which the participating groups were
asked to model two forms of the RNA molecule: one
with a ligand (“bound”) and another one without a lig-
and (“free”). However, the EvoClustRNA method was
used only to model the “bound” form. The alignment for
this RNA family (RFAM: RF01739) was downloaded
from the Rfam database, whence two homologs were se-
lected for modeling with Rosetta. It was suggested in the
literature [29] that the structure included an E-loop
motif. This motif was found in the PDB database and
was used as a rigid fragment during the modeling. Three
independent simulations were performed and the final
prediction was obtained in a fully automated manner.
The native structure of the riboswitch superimposed on
the model obtained with the EvoClustRNA method is
shown in Fig. 4. The EvoClustRNA prediction was
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Fig. 3 The RNA-Puzzle 13 - the ZMP riboswitch. The superposition of
the native structure (green) and the EvoClustRNA prediction (blue).
The RMSD between structures is 5.5 A, the prediction was ranked as
the second in the total ranking of the RNA-Puzzles (according to the
RMSD values)

ranked at the first place in the overall ranking with 5.5 A
RMSD with respect to the native structure. Details of
these results were reported in an article describing
RNA-Puzzles Round III [10].

Accuracy of prediction for RNA family

To compare the accuracy of predictions for sequences of
homologs, the core RMSD was used. The predictions
were made for diverse homologous molecules that dif-
fered in sequence and length, therefore standard RMSD
could not be used. Core RMSD took into account only
C3’ atoms of conserved cores. The conserved cores de-
termined based on input alignments were of the same
sequence length, so there is always the same number of
atoms to be compared (see Methods for details). For
each RNA family, one target sequence (sequence of the
reference structure taken from the PDB database) and
four sequences of homologs were processed. Full names
of the sequences and secondary structures used for
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is 5.5A

Fig. 4 The RNA-Puzzle 14 - L-glutamine riboswitch. The RMSD between the native structure (green) and the EvoClustRNA prediction (blue)

modeling can be found in the Additional file 4, in the
text and the figure, sequences will be referred to with
three-letter identifiers. For different sequences that be-
long to the same Rfam family, divergent prediction ac-
curacy was observed both for SimRNA and Rosetta
(Fig. 5, raw data can be found in Additional file 6).
Interestingly, for 5 out of 8 RNA families for Rosetta
and 4 for SImRNA, sequences of homologs yielded more
accurate models than folding the target sequence. For
example, in the case of the tRNA family, the best models
from SimRNA were generated for a tRNA-Lys sequence
(accession number: AB009835.1, referred as “tab”) from
Drosophila melanogaster (fruit fly). These models reached
a core RMSD of 5 A, in contrast, the best model of the tar-
get sequence achieved a core RMSD of 7 A to the refer-
ence structure. Similarly, for the TPP riboswitch, the best
models from Rosetta were obtained by folding a sequence
from Streptococcus agalactiae (AL766847.1, “tal”).
Surprisingly, SimRNA and Rosetta performed differ-
ently for the same sequences. In 26 out of 40 folded
sequences, Rosetta outperformed SimRNA (models
with the lowest core RMSD to the reference struc-
ture). For example, for the target sequence and all se-
quences of homologs of the THF riboswitch, Rosetta
generated more accurate models than SImRNA. Similarly
for the RNA-Puzzle 14, Rosetta in the best 100 generated
more accurate models for a sequence from the marine
metagenome (AACY023015051.1, “cy2“) homolog. In con-
trast, in the case of the adenine riboswitch, SImRNA gen-
erated more accurate models for the target sequence and

a sequence from Clostridium difficile (AAFV01000199.1,
“a99”).

Together, these data indicated that folding sequences of
homologs could potentially enrich with accurate predic-
tions a pool of models taken for clustering.

Using MSA information to enhance the accuracy of
predictions
To test if accurate predictions of sequences of homologs
could improve the prediction of the structure of the tar-
get sequence, other variants of the method were com-
pared to the controls, and the results are shown in Fig. 6
and the summary of the results can be found in the
Additional file 5 and raw data in the Additional file 7.
The following eight variants of EvoClustRNA and con-
trols were compared to each other. As controls, the stand-
ard protocols for Rosetta FARFAR (“Rosetta”) and SimRNA
(“SIimRNA”) were used. To test the clustering procedure it-
self without the use of any homologous sequences, three
different procedures were considered where the input was:
the top 500 models from SimRNA and Rosetta combined
(“SimRNA+Rosetta”), the top 1000 models from Rosetta
(“Rosetta Toplk”), the top 1000 models from SimRNA
(“SIimRNA Top1k”). The full EvoClustRNA procedure was
tested with the input including 1000 models generated for
five homologous sequences (the top 200 models per
sequence) from SImRNA (“EvoClustRNA|SimRNA”) and
Rosetta (“EvoClustRNA |Rosetta”) separately, and where
500 models (the top 100 per one sequence) produced with
Rosetta and 500 models (100 per one sequence) and with
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Fig. 5 Core RMSD [A] for the best 100 models for sequences of homologs with SIimRNA and Rosetta. Tar stands for “Target” sequence. Adenine
riboswitch: a04 (Clostridioides difficile, AAML04000013.1), a99 (Streptococcus pyogenes, AAFV01000199.1), b28 (Oceanobacillus iheyensis, BA000028.3),
u51 (Bacillus subtilis, U51115.1); ¢-di-GMP riboswitch: gap (Clostridium tetani, AEO15927.1), gba (Bacillus halodurans, BA0O00004.3), gbx
(Peptoclostridium difficile, ABFD02000011.1), gxx (Deinococcus radiodurans, AE000513.1); TPP riboswitch: tc5 (Xanthomonas campestris, CP000050.1),
tae (Geobacter sulfurreducens, AE017180.1), th2 (Corynebacterium diphtheriae, BX248356.1), tal (Streptococcus agalactiae, AL766847.1); THF
riboswitch: tha (Marvinbryantia formatexigens, ACCL02000010.1), hak (Oribacterium sinus, ACKX01000080.1), hag (metagenome sequence,
AAQK01002704.1), hcp (Natranaerobius thermophilus, CP001034.1); tRNA: taf (Tetrahymena thermophila, AF396436.1), tm5 (Rana catesbeiana,
M57527.1), tab (Drosophila melanogaster, ABO09835.1), tm2 (Methanothermus fervidus, M26977.1); RNA-Puzzle 13: zcp (Ralstonia pickettii,
CP001644.1), znc (Bradyrhizobium sp. ORS 278, CU234118.1), zc3 (Ralstonia solanacearum, CP025741.1), zza (Caulobacter sp. K31, CP000927.1); RNA-
Puzzle 14: a22 (marine metagenome, AACY022736085.1), aa2 (Synechococcus sp. JA-2-3B'a(2-13), AACY020096225.1), aj6 (Cyanophage phage,
AJ630128.1), cy2 (marine metagenome, AACY023015051.1) RNA-Puzzle 17: sequences were obtained from the alignment provided by [30]: 521
_199011), hcf (HCF12C_58327), s23 (2210131864), pis (sequence experimentally investigated in [30])
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SimRNA were combined into one input (“EvoClustR-
NA|Rosetta+SimRNA”).

SimRNA Toplk reached the lowest median of RMSD,
better by 1.77 A to control, SimRNA, and better than
Evo|SimRNA by 1.61 A. For Rosetta, Rosetta Toplk and
Evo|Rosetta scored worse than the control by 0.31 A and
2.83 A respectively. Evo|SimRNA achieved the lowest
core RMSD with the difference to the control, SImRNA,
of 2.26 A. For variants of Rosetta, the best one was
the control, Rosetta. In terms of INFs, the accuracy
of prediction for Rosetta and Evo|Rosetta was the
same (0.77). In the case of the SImRNA, Evo|SimRNA
achieved INF of 0.67 and SimRNA 0.74. The differ-
ences between benchmarked variants were not statisti-
cally significant (the Wilcoxon, non-parametric statistical
test to examine if related paired samples come from the
same distribution).

The comparison of the two clustering modes, half
and 1-of-6 mode, can be found in the Additional file 1:
Figure S1.

The analysis was performed also for various combina-
tions of sequences of homologs (See the Additional file 2),
e.g., taking the target sequence and one sequence of
homolog one by one, then sequences of two homologs,
then three and four in all possible combinations (Add-
itional file 1: Figure S1). The results of an analysis of
core RMSD of all possible combinations of five input se-
quences of homologs for all 8 RNA families investigated
in this work: Adenine riboswitch (Ade), c-di-GMP ribos-
witch (GMP), TPP riboswitch (TPP), THF riboswitch
(THF), tRNA, RNA-Puzzle 13 (RP13), RNA-Puzzle 14
(RP14), RNA-Puzzle 17 (RP17). This analysis was per-
formed with the evox_all variants.py from the Evo-
ClustRNA package. Also in these tests, the statistically
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significant overall improvement of the prediction of vari-
ants of EvoClustRNA over the controls was not detected.

Accurate predictions of structures for sequences of
homologs

Encouraged by the results from the folding sequences of
homologs, we searched for more sequences to investi-
gate how they fold. Because of the computational cost of
predictions, we limited our analysis to four RNA families
modeled with SimRNA: purine riboswitch, RNA-Puzzle
17, cyclic-di-GMP riboswitch, THF riboswitch (Fig. 7,
raw data can be found in Additional file 8).

Once again, we were able to identify sequences that
yielded more accurate models than the target sequence,
defined as a number of models of lower core RMSD
than the best model for the target. For the adenine
riboswitch four sequences gave more accurate solutions,
from Streptococcus pyogenes (AAFV01000199.1, “a99”,
three models), Bacillus cereus (AE016877.1, “ae0”, one
model), Clostridium botulinum (CP001581.1, “cpl”,
twelve models), Bacillus cytotoxicus (CP000764.1 “cp07”,
one model) than models for the target sequence. The
best model for the “ae0” sequence was of core RMSD
3.13, which is better by 1.12 A than the best model for
target sequence (core RMSD of 4.25 A).

In the case of the RNA-Puzzle 17, the majority of
the models are close to the 20 A, however, some ho-
mologs gave single accurate models, below core
RMSD 10 A: “hcf’ (HCF12C_58327, one model), “bsk”
(BS_KBB_SWE26_205m_c1114943, three models), “s23”
(2236876006_041573, eleven models) (sequences and ac-
cession codes are taken from [30]). The striking case is the

“rum” (RUMENNODE_3955907_1) homolog. This se-
quence yielded six models more accurate than the best
model for the target sequence. The best of these models
with the core RMSD as low as 4.13 A was better by 1.48 A
than the best model for target sequence (core RMSD of
561A).

For the THF riboswitch, none of the sequences of ho-
mologs gave better predictions than the target sequence.
Interestingly, for one of the homologs, Alkaliphilus
metalliredigens (CP000724.1, “cp7”), a cluster of accurate
solutions were generated (around 6A). This cluster
enriched the final pool of models used for clustering and
improved the selection of the final model.

In the case of the cyclic-di-GMP riboswitch, the re-
sults were consistent and comparable to the models for
the target sequences and all sequences gave models of
the same accuracy, with core RMSD ranging from 6.5 A
to 15 A, after removing outliers for Peptoclostridium dif-
ficile (ABFD02000011.1, “gba”) sequence. Two homologs
generated better models than the target sequence:
AE000513.1 (“gxx”, 6 models) and AM180355.1 (“aml”,
one model).

We also wanted to test if the results for sequences of
homologous RNAs are consistent between simulations
with different initial seed values. Seed values are num-
bers that are used to create initial starting points for a
simulation, and are typically assigned by a pseudo ran-
dom number generator. Because of the high computa-
tional cost of simulations, this analysis was done only for
five cases (three independent runs with pseudo random
seed values) of RNA-Puzzle 17 using SimRNA (See Add-
itional file 9: Figure S3). The core RMSDs are not the
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Fig. 7 Core RMSD [A] for the best 100 models for an extended set of sequences of homologs modeled with SimRNA (Purine riboswitch, RNA-
Puzzle 17, THF riboswitch, cyclic-di-GMP riboswitch). Tar stands for “Target” sequence. The first four sequences are the same as in Fig. 5. used here
for comparison to sequences of additional homologs. Full list of sequences and secondary structures used for modeling can be found in the
Additional file 4. The horizontal line depicts the RMSD of the best model for the target sequence

J

same between runs because of the random seed values,
however, the trend for some sequences (e.g., “rum”) to
generate accurate models is preserved. Simulations for
“JCV” sequence did not give any models below 10 A
threshold, while for “rum” sequence twenty-one models
were obtained below this threshold.

Example: sampling of conformational space for the RNA-
Puzzle 17 and the TPP riboswitch

To understand whether there were structures that shared
the same 3D structure in comparison with the native

structure in the pool of 500 models of homologs, the results
of clustering were visualized with CLANS [31]. To perform
this analysis, we implemented a new tool called Clanstix (a
part of the rna-tools package (https://rna-tools.readthedocs.
io/en/latest/tools.html#module-rna_tools.tools.clanstix.rna_
clanstix). CLANS uses a version of the Fruchterman—Rein-
gold graph layout algorithm to visualize pairwise sequence
similarities in either two-dimensional or three-dimensional
space. The program was designed to calculate pairwise at-
traction values to compare protein sequences; however, it is
possible to load a matrix of precomputed attraction values
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and thereby display any kind of data based on pair-
wise interactions. Therefore, the Clanstix program from
the rna-tools package was used to convert the all-vs-all
RMSD distance matrix, between selected for clustering
fragments from the EvoClustRNA |SimRNAweb runs, into
an input file for CLANS.

The results of clustering with CLANS are shown in
Fig. 8. In this clustering visualization, 100 models of five
homologs are shown (each homolog uniquely colored,
models of the target sequence are colored in lime).
Models with a pairwise distance in terms of RMSDs
lower than 6A are connected. The experimentally
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determined reference structure (Fig. 8a) was added to
this clustering to see where it would be mapped.
Interestingly, the native structure was mapped to a
small cluster, in which there are three models for the
target sequence. The cluster medoid (Fig. 8b) achieved an
RMSD of 7 A to the reference structure. This clustering
visualization showed that there were models generated
with the correct fold, but none of them were selected as
the final prediction. In the absence of the information
about the reference structure, the default prediction
of EvoClustRNA was the medoid of the biggest clus-
ter (Fig. 8c).

Fig. 8 Clustering visualized with Clanstix/CLANS for RNA-Puzzle 17 and TPP riboswitch for models generated with SImRNA. RNA-Puzzle 17 (a-c):
(a) the native structure, (b) the model with the close fold to the native, detected in a small cluster, (c) the biggest cluster with the model that
was selected as the final prediction by EvoClustRNA. TPP riboswitch (d-f): (d) the native structure, (e) the model with the close fold to the native
(f) the biggest cluster with the model that was selected as the final prediction by EvoClustRNA
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An analogous analysis was performed for the results of
clustering of EvoClustRNA|SimRNAweb runs for the
TPP riboswitch. Models with a pairwise distance in
terms of RMSDs lower than 9 A are connected. Interest-
ingly, the reference structure (Fig. 8d, dot) was mapped
to a cluster of models of one of the homologs (Fig. 8f,
blue). The medoid of this cluster (Fig. 8f) achieved a
core RMSD of 9 A to the native structure. This cluster
was devoid of models for the target sequence and in-
cluded only models of its homologs. Since SimRNAweb
was not able to detect non-canonical interactions, most
of the structures were in “open” conformation and were
dissimilar to the reference structure. The default predic-
tion of EvoClustRNA (Fig. 8e) achieved an RMSD of 24
A with respect to the reference structure.

We also looked at the diversity of models generated by
the two methods used in this study. Figure 5 shows that
the top 100 models from SimRNA tend to be more simi-
lar to each other as compared to the top 100 models
from Rosetta. The results of clustering for the TPP
riboswitch are shown in the Additional file 3. For this
visualization, the top 100 models from each method
were considered. The different diversity of models from
each modeling method can be detected. The top 100
models generated with Rosetta were more diverse and
sampled much bigger conformational space. In contrast,
the top 100 models from SimRNA were similar to each
other and sampled limited conformational space. This
observation is important for further analysis when one
combines models from different predictive methods to
use them with EvoClustRNA.

Discussion

We present a computational workflow for processing
RNA alignments to perform concurrent simulations with
SimRNA and Rosetta that could improve RNA 3D struc-
ture prediction. We wanted to understand if by enrich-
ing a pool of models used for clustering with models
obtained from folding sequences of homologs, we can
influence the selection of the final model and thus im-
prove RNA 3D structure prediction. To test this idea,
the EvoClustRNA program was implemented. The work-
flow is free to use and can be downloaded from https://
github.com/mmagnus/EvoClustRNA.

Initially, the EvoClustRNA approach was tested on
two blind RNA-Puzzles challenges. The predictions
ranked as the second for the ZMP riboswitch (RNA-
Puzzle 13) as the first of all submissions for the L-
glutamine riboswitch (RNA-Puzzle 14). Encouraged by
these results, we tested the method on a dataset of 8
RNA families.

The clustering results shown in Fig. 8. shows that Evo-
ClustRNA was able to sample conformational space effi-
ciently and near-native structures were generated during
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simulations. Incorrect predictions were made because of
the problem with the energy function to score models
properly and the accurate models were not enriched in
the top 100. This kind of visualization could prompt
new hypotheses to be tested experimentally, in contrast
with folding a single sequence only.

We discovered several cases in which sequences of in-
dividual homologs were folded to more accurate struc-
tures than the original target sequence. This observation
demonstrated that RNA 3D structure prediction can be
improved by the consideration of sequences homologous
to the target sequence. However, many other homologs
folded poorly and were not helpful. Further investigation
may allow sequence features to be identified that would
allow better curation of sequences of homologs that are
more likely to lead to convergent models. Interestingly,
the computational “foldability” of a sequence depends on
which package is used, SImRNA or Rosetta (Fig. 5), per-
haps relating to different libraries of fragments that the
different packages use, or different choices in modeling
helices, particularly pseudoknots. Another potential solu-
tion would be to investigate if this “foldability” is related
to free energy calculated by secondary structure prediction
methods or to the potential of particular sequence variants
to form stable structures and crystallize [4, 32, 33].

The workflow described in this study can be combined
with any method for RNA tertiary structure prediction,
and this is one of the possible lines of further research.
As shown here, SimRNA and Rosetta achieved different
prediction accuracy depending on the folded sequence,
e.g., for the THF riboswitch (Fig. 5, “tha” sequence).
Therefore, other RNA 3D structure prediction methods
could be tested to see if they enrich the pool of accurate
models used for clustering with EvoClustRNA.

The approach described here could be combined with
direct-coupling analysis, proposed for example by [14, 15].
In this approach, a DCA analysis should be performed for
an alignment to generate restraints for several homolo-
gous sequences. These sequences could be then folded
and EvoClustRNA could be applied to select the final
model or to visualize possible folds of an RNA molecule.

Conclusions

We present a complete bioinformatics workflow for pro-
cessing RNA alignments to perform concurrent simula-
tions with different RNA 3D structure prediction
methods, here exemplified by SimRNA and Rosetta. The
workflow has proven useful for RNA modeling, as revealed
by successful predictions for the RNA-Puzzles experiment
[10]. At the current stage, the fully-automated method
does not always provide a significant improvement over
single sequence modeling. However, we discovered several
striking cases in which particular homologs were folded to
more accurate models than the original target sequence.
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This work, for the first time to our knowledge, demon-
strates the importance of the selection of the target se-
quence (from many variants in a multiple sequence
alignment) for the success of RNA 3D structure predic-
tion. This discovery prompted both Bujnicki and Das lab
to use modeling of sequences of homologs in RNA-
Puzzles and became a new routine in the modeling pipe-
line. To support new research in this area, we provide all
relevant scripts in a documented and ready-to-use form.
By exploring new ideas and identification of limitations of
the current RNA 3D structure prediction methods, this
work is bringing us closer to the near-native computa-
tional RNA 3D models.

Material & Methods

Reference structures

All structures solved experimentally and used in this
study were obtained from the Protein Data Bank [34]
and parsed to a standardized format with rna-tools
(https://github.com/mmagnus/rna-tools).

Benchmark dataset

To evaluate the performance of the presented method-
ology, we compiled a dataset of 8 RNA sequences: five
RNA sequences from [14]: Adenine riboswitch (Ade,
PDB ID: 1Y26, RFAM ID: RF00167) [35], Thiamine
pyrophosphate-sensing riboswitch (TPP, PDB ID: 2GD],
RFAM ID: RF00059) [36], tRNA (PDB ID: 1FIR, RFAM:
RF00005) [37], c-di-GMP-II riboswitch (cdiGMP, PDB
ID: 3Q3Z, RFAM ID: RF01786) [38], Tetrahydrofolate
riboswitch (THF, PDB ID: 4LVV, RFAM ID: RF00059)
[39] and three RNA-Puzzles: 13 (5-aminoimidazole-4-
carboxamide ribonucleotide riboswitch, ZMP riboswitch,
PDB ID: 4XW7, Rfam id: RF01750) [26], 14 (L-glutamine
riboswitch, GInA, PDB ID: 5DDO, RFAM ID: RF01739)
[28], 17 (Pistol ribozyme, PDB ID: 5K7C, RFAM ID:
RF02679) [40].

Multiple sequence alignment generation and selection of
homologs

Each query sequence was taken from the corresponding
PDB file. The MSA was obtained from the Rfam data-
base [41] and in the case of the Pistol ribozyme, the
MSA was published as the supplementary data provided
by [30]. MSAs were reduced (using JalView [42], se-
quence similarity threshold 90%) to keep only diverse
representatives. In theory, all sequences could be folded
but because of the computational costs of simulations
(6-10h per sequence for 80 CPUs, using either SimR-
NAweb or Rosetta FARFAR), we decided to fold only
four of the shortest sequences from the MSA. Once
the final set of homologs to be folded was selected,
the positions common to all sequences selected were
determined.
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The list of all the sequences and secondary structures
used in the benchmark of EvoClustRNA and a list of
links to the SimRNAweb predictions can be found in
Additional file 4.

RNA 3D structure prediction

For each sequence chosen for folding, secondary struc-
ture predictions were generated based on the MSA. Two
methods were used in this study: SimRNA and Rosetta.
For Rosetta, a total of 10,000 decoys were generated for
the target sequence and each homologous sequence
using the Rosetta FARFAR protocol [22]. For SImRNA
prediction, the SimRNAweb server was used [43] using
the default parameters.

Both modeling steps can be performed in a semi-
automated way with rna-tools (M.M. et al., unpublished,
software available for download at https://github.com/
mmagnus/rna-tools) as well as the pipeline of tools fa-
cilitating modeling with Rosetta (https://rna-tools.read-
thedocs.io/en/latest/tools.html#rosetta) and SimRNA/
SimRNAweb (https://rna-tools.readthedocs.io/en/latest/
tools.html#simrnaweb).

The Rosetta method

The method used to generate and select models has
been described previously [44], but will be reviewed here
briefly. Inspired by the Rosetta protein modeling tool
[45] methodology, Fragment Assembly of RNA
(FARNA) predicts the tertiary structure by assembling
short 3-residue fragments, and then sampling using a
Monte Carlo algorithm, guided by a knowledge-based
energy function. The method was improved in 2010 by
adding new energy terms within the force field specific
for RNA molecules. The improved method was called
Fragment Assembly of RNA with Full-Atom Refinement
(FARFAR). This FARFAR protocol was used for model-
ing in this work. A total of 10,000 independent simula-
tions are carried out (starting from different random
number seeds) for each query sequence, and the result-
ing structures are clustered as previously reported [44].
For short RNA fragments (up to 32 nucleotides) Rosetta
can be accessed via the “Rosetta Online Server That In-
cludes Everyone” (ROSIE) [46]. However, in this work
much longer sequences were modeled, so the Rosetta
package was used locally at the HPC (High-Performance
Computing) provided by the International Institute of
Molecular and Cell Biology or, for the ZMP riboswitch
RNA-Puzzle, on the Stanford BioX? cluster.

The SimRNA method (as implemented in the SimRNAweb
server)

SimRNAweb [43] is a user-friendly online interface for
modeling RNA 3D structures using SimRNA [21].
SimRNA uses a coarse-grained representation of RNA
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molecules, the Monte Carlo method to sample the con-
formational space, and relies on a statistical potential to
describe the interactions in the folding process. SimR-
NAweb makes SImRNA accessible to users who do not
normally use high-performance computational facilities
or are unfamiliar with using the command line tools.
The simplest input consists of an RNA sequence to fold
RNA de novo. Alternatively, a user can provide a 3D
structure in the PDB format, for instance, a preliminary
model built with some other technique, to jump-start
the modeling close to the expected final outcome. The
user can optionally provide secondary structure and dis-
tance restraints and can freeze a part of the starting 3D
structure. The web server is available at http://genesilico.
pl/SimRNAweb. In this work, all simulations were per-
formed using the default parameters of the server. The
lowest energy 100 and 200 models (called also in this
work the top 100 and top 200) were generated based on
SimRNA trajectories using rna-tools, i.e., the rna_simr-
naweb_download_job.py script (https://rna-tools.read-
thedocs.io/en/latest/tools.html#simrnaweb).

Selection of common positions (conserved core)
Structural fragments corresponding to the evolutionarily
conserved regions (common for all homologs) deter-
mined from the alignment are processed using evo-
ClustRNA.py resulting in an all-vs-all core RMSD
matrix. Next, the matrix is passed to the clustering
script, evoClust_clustix.py to perform automated cluster-
ing in two modes: “1-of-6” and “half”.

Clustering routine
EvoClustRNA uses the clustering procedure imple-
mented earlier by Irina Tuszynska for the analysis of
RNA-protein complex models [47] and used in the
NPDock server [48]. The method is an implementation
of an algorithm used for clustering with Rosetta for pro-
tein structure prediction [49], also described in [17].
Briefly, a fraction of lowest-energy structures for each
homolog is taken for clustering. The clustering procedure is
iterative and begins with calculating a list of neighbors for
each structure. Two structures are considered as neighbors
when the RMSD between them is smaller than a given dis-
tance cutoff. evoClust_clustix.py in the package is a program
that performs a clustering for a user-defined cutoff, e.g, for
RMSD equal to 7 A. However, to find a proper cutoff, an it-
erative procedure of clustering starts from 0.5A and is
incremented by 0.5 A, until the required criterion is met.
Two criteria were tested in this work, called “1-of-6” and
“half” In the “l-of-6” mode, the clustering was stopped
when the first (the biggest) cluster contained 1/6 of all struc-
tures taken for clustering. For example, for five homologs,
500 structures were clustered and an iterative clustering
stopped when the first cluster contained over 80 structures.
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In the second mode tested, “half,” the clustering procedure
was finished when the first three clusters contained over half
of the structures. Thus, for five homologs, 500 structures
were clustered, and the iterative clustering stopped when
there were at least 250 structures in the three biggest clus-
ters. This iterative procedure is implemented in evoClust_
autoclustix.py that is a wrapper for evoClust_clustix.py.

Model selection

The final 3D model for the target sequence is the first
occurrence of the model for the reference sequence in
the clustering output starting from the top of the file. It
there is no model for the reference sequence in the first
cluster, then the second cluster is processed, and so on.
This analysis is done by evoClust_get_models.py auto-
matically based on the output files generated by the clus-
tering procedure.

Workflow implemented as EvoClustRNA

The scripts to perform the analysis are implemented in
Python 3 and freely available at https://github.com/
mmagnus/EvoClustRNA with the detailed documenta-
tion under the link http://evoclustrna.rtfd.io.

Evaluation

To assess the accuracy of predictions (1) the Root Mean
Square Deviation (RMSD) is used to compare models to
reference structures based on the Euclidean distance be-
tween a given pair of corresponding atoms and (2) the
Interaction Network Fidelity (INF) is used to compare
networks of interactions (base pairing, stacking) between
models and reference structures.

RMSD is defined by the following formula:

where § is the Euclidean distance between a given pair
of corresponding atoms. RMSD is calculated for all
heavy atoms.

Secondary structure comparisons are calculated based
on outputs of ClaRNA [50] using the Interaction Network
Fidelity (INF) value that is computed as:

TP TP
INF = X
TP + FP TP + FN

where TP is the number of correctly predicted base-base
interactions, FP is the number of predicted base-base
interactions with no correspondence in the solution
model, and FN is the number of base-base interac-
tions in the solution model not present in the pre-
dicted model [10].
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Both metrics mentioned above, RMSD and INF, are
used to calculate the distance between the generated
models and reference structures. However, they cannot
be applied directly to compare models for diverse hom-
ologous molecules that differ in sequence and length. So
to deal with this issue, a new metric based on RMSD
was implemented as core RMSD. Core RMSD considers
only C3’ atoms of conserved cores (that are of the same
size). The conserved cores determined based on input
alignments are of the same sequence length, so there is
always the same number of atoms to be compared.
However, full atom RMSD for the cores cannot be calcu-
lated because the sequences can vary. That is why only a
single atom, C3’, is used in this metric. Naturally, this
metric is not only used for evaluation of the accuracy of
predictions but also for clustering.

Calculations for evaluation of predictions are per-
formed with evoClust_calc_rmsd.py program that is built
around Biopython [51].

Structure visualizations

Structure visualizations in 3D were generated with
PyMOL (version 1.7.4 Edu Enhanced for Mac OS X by
Schrodinger) [52].

Statistical analyses

Statistical analyses and visualization of the data were
carried out with Python 2.7 using following Python
packages: Matplotlib [53], Pandas, Seaborn [54], Jupyter
(former IPython) [55]. The differences between bench-
marked variants were tested with the Wilcoxon non-
parametric statistical test implemented in SciPy.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-019-3120-y.

Additional file 1: Figure S1. The comparison of two clustering mode,
"half" and "1-of-6" (related to Fig. 6).

Additional file 2: The analysis was performed also for various
combinations of sequences of homologs (related to Fig. 6). The results of
an analysis of core RMSD of all possible combinations of five input
sequences of homologs for all 8 RNA families investigated in this work:
Adenine riboswitch (Ade), c-di-GMP riboswitch (GMP), TPP riboswitch
(TPP), THF riboswitch (THF), tRNA, RNA-Puzzle 13 (RP13), RNA-Puzzle 14
(RP14), RNA-Puzzle 17 (RP17). This analysis was performed with the evox_-
all_variants.py from the EvoClustRNA package. Each sequence of
homologs was ordered from 1 to 3. A mode "h1" means models of the
first homolog and the target sequence used for clustering, "h2" means
models of the second homolog and the target sequence. "h234" means
that models of three homologs were considered during clustering, the
second homolog, third and fourth. For each variant 5 top clusters are
shown and the first cluster is marked with a black dot. The first panel
combines the results for SSIMRNA and Rosetta, the second panel shows
the results for SIMRNA and the third only for Rosetta.

Additional file 3: Figure S2. The comparison of top100 of Rosetta and
SimRNA. Top 100 models from SimRNA vs Rosetta visualized with
Clanstix/CLANS for models of the target sequence for the TPP riboswitch.
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Models obtained with (A) Rosetta and (B) SImRNA. Top 100 models from
Rosetta are very different from each other and they cluster around the
correct, reference structure (pointed by the red arrow). Top 100 models
from SimRNA showed less diverge and cluster all altogether.

Additional file 4: List of all the sequences and secondary structures
used in the benchmark of EvoClustRNA and a list of links to the
SimRNAweb predictions.

Additional file 5: Summary of analysis for Fig. 6.

Additional file 6: All data required to generate Fig. 5.
Additional file 7: All data required to generate Fig. 6.
Additional file 8: All data required to generate Fig. 7.

Additional file 9: Figure S3. Analysis of replicates for SImRNA
simulations with different initial seed values for RNA Puzzle 17.
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