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Abstract

Background: Identification of biological specimens is a requirement for a range of applications. Reference-free
methods analyse unprocessed sequencing data without relying on prior knowledge, but generally do not scale to
arbitrarily large genomes and arbitrarily large phylogenetic distances.

Results: We present Cnidaria, a practical tool for clustering genomic and transcriptomic data with no limitation on
genome size or phylogenetic distances. We successfully simultaneously clustered 169 genomic and transcriptomic
datasets from 4 kingdoms, achieving 100 % identification accuracy at supra-species level and 78 % accuracy at the
species level.

Conclusion: CNIDARIA allows for fast, resource-efficient comparison and identification of both raw and assembled
genome and transcriptome data. This can help answer both fundamental (e.g. in phylogeny, ecological diversity
analysis) and practical questions (e.g. sequencing quality control, primer design).
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Background
Unequivocal identification of biological specimens is a
major requirement for reliable and reproducible (bio)-
medical research, control of intellectual property by bio-
logical patent holders, regulating the flow of biological
specimen across national borders, enforcing the Nagoya
protocol [1] and verifying the authenticity of claims of
the biological source of products by customs authority.
Several methods for species identification have been

developed based on DNA analysis, that can be classified
as probe-based and nucleotide sequencing based methods.
Probe-based technologies include microarrays, PCR
probes, DNA fingerprinting and immunoassays involving
the hybridization of DNA samples with predetermined
sets of probes or primers. Such methods are cheap and
allow precise identification, but may fail in cases where

target DNA is not precisely matched by the probes or
primers. Alternatively, nucleotide sequencing methods
have been developed to increase accuracy, flexibility and
throughput. These can be separated into complete or
targeted approaches. Targeted identification of short
and highly variable genomic regions by exome capture,
Expressed Sequence Tag (EST), DNA barcoding and
ribosomal DNA (rDNA) sequencing has been used for
many years. Targeted DNA sequencing can be done it-
eratively for taxonomic identification at subspecies, ac-
cession and cultivar levels. Whole Genome Sequencing
(WGS) and RNA-seq using Next Generation Sequencing
(NGS) technology, examples of complete sequencing
methods, have the highest information content of all
methods, although its high cost has prevented it from
being adopted massively. However, with the recent re-
duction of costs and increase in throughput, NGS starts
to become more prevalent, making it a feasible alternative
method for species identification. This calls for the cre-
ation of a new a set of tools to comprehensively analyse
the deluge of data.
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Methods for species identification based on NGS data
can be separated into two main classes: reference-based
and reference-free methods (reviewed in [2]). Reference-
based methods usually map the sequence reads to the
genome of a close relative and infer the phylogeny by
aligning the observed polymorphisms. This technology
requires quality control (cleaning) of the data, mapping
the data to the genomic sequence of a close relative, and
detection and comparison of polymorphisms [3]. In con-
trast, reference-free methods (RFMs) are designed to
analyse unprocessed sequencing data without any previ-
ous knowledge of its identity. The data can be compared
against other datasets of unknown samples, in the case
of metagenomics comparing population structures [4–13]
or against a panel of known species. In the latter case, it
can identify a previously unknown sample, giving it an ap-
proximate position relative to the known species.
RFMs can be based on the Discrete Fourier Transform

(DFT), compression and k-mers. DFT methods, such as
in [14], transform nucleotide sequences into frequency
statistics and compare these for species classification. Al-
though remarkably fast, these methods are not able to
store the differences between the genomes for further
enquiry, yielding no insight into sequence composition.
Compression based methods calculate the distance be-
tween pairs of sequences by analysing the reduction in
computer memory usage when both sequences are
compressed together [15]. However, compression-based
methods are time and resource intensive for large ge-
nomes or large datasets.
Given a set of samples S = {s1, s2,…, sn}, represented ei-

ther by assembled genome or transcriptome sequences
(.fasta files) or by unprocessed sequencing data (.fastq
files), k-mer based methods split the nucleotide se-
quences into all constituent substrings of length k. The
presence/absence or counts of these k-mers are then
used to calculate a dissimilarity D(si, sj) between each
sample pair (si, sj), which should be minimal for samples
with identical sequence composition. Several implemen-
tations of k-mer based RFMs exists, such as FFP [16],
CO-PHYLOG [17], NEXTABP [18], MULTIALIGNFREE
[19], KSNP [20] and SPACED WORDS/KMACS [21].
Although their underlying principles are generally useful
for the analysis of large data collections, most imple-
mentations are designed for either analysis of a limited
portion of the data, such as organelles or ribosomal DNA,
or analysis of closely related species (such as bacteria, in
metagenomics applications). As a consequence, it is not
feasible to apply these tools on large amounts of whole-
genome sequencing data or to analyse data that spans
large phylogenetic distances. Two exceptions are the AAF
[22] and REFERENCEFREE [23]. In AAF, the authors suc-
cessfully clustered infra-family plant species using whole
genome sequencing data; in REFERENCEFREE, it was

demonstrated that it is possible to find polymorphisms
shared by subsets of samples by counting and merging sets
of k-mers. This latter method was effectively applied in
[24] to compare 174 chloroplast genomes. As this ap-
proach is similar to ours, we compare our tool with their
software.
Here we present CNIDARIA, an algorithm that em-

ploys a novel RFM strategy for species identification
based on k-mer counting, designed from the ground up
to allow analysis of very large collections of genome,
transcriptome and raw NGS data using minimal re-
sources. CNIDARIA improves over previous methods
and overcomes their limitations on size and phylogenetic
distance by allowing fast analysis of complete NGS data.
To this end, it can export a database with pre-processed
data so that new samples can be quickly compared
against a large database of references, without the need
to re-process all the data. In contrast to the method pro-
posed by REFERENCEFREE, CNIDARIA is much faster,
produces smaller files, is able to produce phylogenetic
trees and uses the popular and fast k-mer count software
JELLYFISH [25], allowing for easy integration in existing
NGS quality checking pipelines. We demonstrate the
performance and capabilities of CNIDARIA by analysing
169 samples, achieving excellent identification accuracy.

Implementation
CNIDARIA works with both raw sequencing data and
assembled data, both from WGS and RNA-seq sources, in
any combination. It uses k-mers extracted by JELLYFISH
[25], a fast k-mer counting tool that produces a database
of all k-mers present in a query sequence. The advantage
of JELLYFISH over comparable software is its ability to
create a sparse, compressed database in which the k-mers
are ordered according to a deterministic hashing algo-
rithm, thus allowing for the parallel and efficient merging/
processing of the databases since all k-mers are in the
same predictable order across different databases. CNI-
DARIA performs a parallel merge of the sorted sparse
databases created by JELLYFISH, creating another sparse
database containing, for each k-mer, its sequence and a
fixed size binary array indicating its presence/absence in
each sample. For parallelization, as the number of possible
k-mers is 4k, where k is the k-mer size, each instance of
CNIDARIA processes all k-mers corresponding to the

range p−1ð Þ � 4k
n ; p � 4k

n

h i
for p = 1,…, n, with n equal to

the total number of instances. The partial databases
created by each CNIDARIA instance can then simply
be concatenated to create a full database containing all
k-mers.
While merging the JELLYFISH databases into a single

database, CNIDARIA extracts the number of k-mers
shared between each pair of samples and then uses this
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information to calculate the distance between the sam-
ples. For that we used, by default, the Jaccard distance
as described in CO-PHYLOG [17]:

DJaccard si; ; sj
� � ¼ 1−

V ij

V i þ V j−V ij

Here,Vij is the number of k-mers shared by both sam-
ples si and sj, Vi is the number of k-mers in sample si
and Vj is the number of k-mers in sample sj. When si is
equal to sj, the distance is 0. In our implementation, we
use the number of valid k-mers in a sample, i.e. k-mers
shared with at least one other sample, to filter out unin-
formative and possibly erroneous k-mers. Please notice
that the k-mer frequency of each sample is ignored and
only their presence/absence used, allowing us to compare
divergent sequencing coverage, assembly statuses (from
raw data to fully assembled) and sources (DNA or RNA).
Besides the Jaccard metric, 70 other distance measures are
also implemented in the package.
The resulting distance matrix is then processed by

PYCOGENT v.1.5.3 [26], which clusters the data using

Neighbour-Joining and creates a phylogenetic tree in
NEWICK format. For easy visualization of the data, the
summary database can also be converted to a standalone
HTML page for (dynamic) display of the phylogenetic
tree and plotting any statistics of the analysis directly in
the tree. A graphical representation of these steps can be
found in Fig. 1.
CNIDARIA can be run in two modes: Sample Analysis

Mode and Database Creation Mode. Sample Analysis
Mode generates a Cnidaria Summary Database (CSD)
containing the total number of k-mers for each sample,
the number of k-mers shared by at least two samples
(valid k-mers), and the pairwise number of shared k-mers.
Database Creation Mode is an order of magnitude slower
than the Sample Analysis Mode but, besides generating
the same CSD file, it also exports a Cnidaria Complete
Database (CCD). The CCD file contains all k-mers present
in the datasets analysed, stored in using a two bits per nu-
cleotide encoding (same as JELLYFISH), and their respect-
ive presence/absence list. The CCD can be used as an
input to CNIDARIA itself in both modes, allowing new
samples to be directly compared against a pre-calculated

Fig. 1 Cnidaria analysis summary. The JELLYFISH software reads each of the source sequence files (in Fasta or Fastq formats), extracts their
k-mers (k = 3 in this example), canonizes them (by generating the reverse complement of each k-mer and storing only the k-mer which appears
first lexicographically), orders them according to a deterministic hashing algorithm (in this example, alphabetically) and then saves each dataset in
a separated database file (.jf). CNIDARIA subsequently reads these databases and compares them, side-by-side, by counting the total number of
k-mers (white circles), the number of valid k-mers (k-mers shared by at least two samples, black circles) and the number of shared k-mers for each
pair of samples as a matrix. Those values are exported to a Cnidaria Summary Database (CSD, a .json file) that is then used to construct a matrix
of, by default Jaccard, distances between the samples (Formula 1). This dissimilarity matrix is then used for Neighbour-Joining clustering and
exported as a NEWICK tree. Alternatively, Cnidaria can export a Cnidaria Complete Database (CCD, a .cne file) containing all k-mers and a linked
list describing their presence/absence in the samples. This second database can be used as an input dataset together with other .cne or .jf files
for new analysis
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larger dataset, speeding up the analysis significantly since
the speed of CNIDARIA is directly correlated to the num-
ber and size of the input files. Hence, the software permits
a shorter run time for the comparison of a new sample,
using Sample Analysis Mode, against a large reference
panel stored in a single larger CCD file.

Results and discussion
Data set
To validate the performance of CNIDARIA, we gathered
a collection of 135 genomic, transcriptomic and raw
NGS datasets covering a wide range of organisms. A list
of all samples can be found in Additional file 1: Table S1
[27–79]. All datasets were analysed using JELLYFISH
with canonized k-mers. Canonization is the process of
storing the lexicographically smallest k-mer between a k-
mer and its reverse complement. This step is required as
both molecules are technically the same: the existence of
one implies the existence of the other on the comple-
mentary DNA strand. The datasets were then split in 50
pieces and divided over 20 threads on an 80 core
Intel(R) Xeon(R) CPU E7- 4850 @ 2.00 GHz machine,
speeding up the analysis approximately 40 times com-
pared to single-thread analysis on the same machine.
We then created a Cnidaria Complete Database (CCD)
containing all 135 samples. K-mer counts, k-mer statis-
tics and Jaccard distances can be found in Additional file
2: Table S2, Additional file 3: Table S3 and Additional
file 4: Table S4, respectively.

Identification accuracy
To verify the accuracy of the clustering of the samples,
we used the 1-nearest neighbour algorithm on 30 samples
for supra-species level analysis (8 genus, 7 families, 7 or-
ders, 4 phylum and 3 kingdoms, described in Additional file
5: Table S5) and on 33 samples for species level analysis (11
species of the Solanum clade, described in Additional file 6:
Table S6). The 1-nearest neighbour classifier reports the

percentage of samples for which the sample with the smal-
lest distance belongs to the same rank at each phylogenetic
level (species, genus, family, order, phylum and kingdom).
We report the percentage of samples correctly classified in
Fig. 2 and Additional file 7: Table S7.

Influence of k-mer size
To investigate the influence of the k-mer size on the ac-
curacy of the phylogenetic inference of CNIDARIA, we
analysed the panel of 135 samples with k = 11, 15, 17, 21
and 31 (predefined hash sizes of 128 million, 256 million,
512 million, 1 billion and 4 billion, respectively). The
resulting statistics can also be found in Additional file 1:
Table S1.
Due to the low complexity of 11-mers, all possible k-

mer of this size were found in the datasets and all k-mers
were valid, i.e. shared by at least two samples (Table 1).
This carries little clustering information and generates
many zero distances (minimum dissimilarity) as shown in
Additional file 8: Figure S1, Additional file 9: Figure S2,
Additional file 10: Figure S3, Additional file 11: Figure S4,
Additional file 12: Figure S5, Additional file 13: Figure S6
to Additional file 14: Figure S7 and Additional file 4: Table
S4. Phylogenetic distances increase with k-mer size and
31-mers have most distances equal to 1, i.e. maximum dis-
similarity (except for highly related species), which does
not allow clustering of distant species. Therefore we chose
21-mers as the default k-mer size as it showed the best
trade-off between speed and discriminating power (con-
sistent with [23]).
15-mers and 17-mers yielded, at the supra-species level,

accuracy above 70 and 90 %, respectively, but below 75 %
at the species level. Both 21- and 31-mers allowed us to
correctly classify 100 % of the samples at the supra-species
level and 78 % at the species level (Additional file 7: Table
S7). The lower accuracy for species level classification in
the tomato clade can be attributed to introgressions and
sympatric speciation in tomato and is in agreement with

Fig. 2 1-nearest-neighbour analysis for species and supra-species levels at each taxonomic level for CNIDARIA and REFERENCEFREE using 21-mers
and Jaccard distance. Supra-species level analysis contains 30 samples (Additional file 5: Table S5) from 8 genus, 7 families, 7 orders, 4 phylum
and 3 kingdoms. Species level analysis contains 33 samples (Additional file 5: Table S5) from 11 species of the Solanum clade. Classification reports
the Leave-One-Out Cross-Validation error estimate (LOOCV) for 21-mers. Error bars indicate the minimum and maximum performance found
across the 71 distance metrics tested
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the clustering obtained by [27], which used whole genome
SNP analysis to construct trees. Compared to using 21-
mers, the use of 31-mers resulted in an increased run time
and disk usage without yielding a discernibly higher dis-
criminative power. This suggests 21 is a good k-mer size
for general purpose clustering. However, 31-mers are fre-
quently used for NGS data quality checking (reviewed in
[80]) and the same JELLYFISH database created for quality
checking can be used for species identification.

Influence of distance measure
In order to identify the best distance measure to apply,
71 binary distances measures were implemented in CNI-
DARIA according to [81] and the results can be found
in Additional file 7: Table S7. Some measures gave a bet-
ter sensitivity than the Jaccard distance at shorter k-mer
lengths, but in these cases the accuracy was below 100 %.
At k = 21, Jaccard distance presented an overall high ac-
curacy, although other methods achieved similar results.
We decided to use Jaccard as the default measure due to
its simplicity and equally high accuracy as other methods.

Joint analysis of DNA and RNA-seq data
Next, we expanded the 135 sample dataset (built using
Database Creation Mode) with 34 extra samples, 26 gen-
omic and 8 RNA-seq (Additional file 1: Table S1), using
21-mers and the faster Sample Analysis Mode. RNA-seq
samples were added to verify whether transcriptome
data would cluster with their genomic NGS counter-
parts, despite their small coverage of the genome length.
Results are shown in Fig. 3 and Additional file 15: Figure
S8. The clustering of the original 135 samples is not
changed and new samples cluster correctly according to
their phylogeny. The consistent clustering observed for
the RNA-seq dataset illustrates the ability of CNIDARIA
to use such data for accurate species identification.

Speedup by subsampling
To test the influence of data set size (and possibility of
speedup) we sample 2 % of the 21-mer dataset, by

analysing just 1 of the 50 pieces the data was originally
split into. Additional file 16: Figure S9 shows the phylo-
genetic placement of species in the trees constructed
using this dataset and Additional file 7: Table S7 shows
the classification accuracy. The tree is indistinguishable
from the one generated on the full dataset, illustrating
the ability of CNIDARIA to correctly classify samples
even at very low sequencing coverage. This suggests that
CNIDARIA should be able to correctly cluster and iden-
tify samples using small and affordable NGS sequencing
technology such as Illumina MiSeq nano runs (500 Mbp
in 2 × 250 bp reads, [82]).

Comparison with REFERENCEFREE
To demonstrate the advantages of CNIDARIA, we com-
pare it to a state-of-the-art tool called REFERENCEFREE
[23]. Its latest version (1.1.3) was downloaded and run in
conjunction with ABYSS [83] version 1.3.3. We run this
older version rather than the latest version (1.9.0) since
that was the version REFERENCEFREE was designed to
work with. REFERENCEFREE was run single threaded
on an Intel(R) Xeon(R) CPU E7- 4850 @ 2.00 GHz with
a k-mer size of 21, a minimum frequency of 0 (i.e. using
all k-mers appearing 1 or more times), no complexity fil-
ter and no sampling of k-mers. The list of shared k-mers
generated was then parsed using the CNIDARIA scripts
in order to generate a comparable phylogenetic tree,
since REFERENCEFREE does not provide a method for
phylogenetic analysis.
Using a subset of our data (41 assembled genomes,

Additional file 1: Table S1) containing 40 Gbp and 20
billion k-mers, REFERENCEFREE (Additional file 1: Table
S1) and JELLYFISH have a comparable speed for k-mer
counting, taking 4 h to count 445 million k-mers (2 % of
the total; Additional file 17: Table S8). REFERENCEFREE
then took 60 % more time than CNIDARIA in single
threaded Sample Analysis Mode for merging and summar-
izing the results (70 h vs. 44 h, respectively). Note that the
databases created by CNIDARIA can be re-used in subse-
quent comparisons, whereas REFERENCEFREE requires

Table 1 Summary of search space per k-mer size and number of k-mers found in datasets

k-mer
size

# Canonical
k-mer
combinations

% of k-mers found per sample % of k-mers found per sample, shared by at least two samples

Median MAD Median MAD

11-mer 2.10 × 1006 100.00 % 1.58 % 100.00 % 0.00 %

15-mer 5.40 × 1008 53.59 % 17.07 % 100.00 % 0.00 %

17-mer 8.60 × 1009 8.90 % 4.03 % 98.37 % 0.99 %

21-mer 2.20 × 1012 0.05 % 0.03 % 81.45 % 20.55 %

31-mer 2.30 × 1018 0.000000061 % 0.000000032 % 67.05 % 24.14 %

The second column contains the total number of possible k-mers, calculated as (4k-mer size/2), where the division by two is due to canonization. The third column
is the median and the Median Absolute Deviation (MAD) of the total number of k-mers found in the samples (Additional file 3: Table S3) divided by the number
of possible k-mers, showing the percentage of combinations actually found and, consequently, the saturation of the search space; the fourth column gives the
median and MAD of the percentage of valid k-mers (k-mers shared between at least two samples, Additional file 3: Table S3)
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all the k-mer count files to be merged again when re-run.
Moreover, CNIDARIA has the important advantage of be-
ing highly parallelizable while REFERENCEFREE can only
be run single threaded.
Regarding accuracy, Fig. 2 shows that REFERENCE-

FREE, using Jaccard distance and 21-mers, was slightly
less accurate than CNIDARIA, although it can achieve
comparable results with different distance measures
(Additional file 7: Table S7). Besides speed, CNIDARIA
(and JELLYFISH) use significantly less disk space due to
their binary formats. The files generated are smaller than
the equivalent files created by REFERENCEFREE, with
median sizes of 9.2 Gb vs. 42.2 Gb (and median absolute

deviations of 2.5 Gb and 11.0 Gb, respectively) for the
k-mer count file and 227 Gb vs. 2.1 Tb for the merged
k-mer count file, despite the merged k-mer count file
created by REFERENCEFREE containing only 2 % of
the total number of k-mers, all of which are present in
CNIDARIA.

Conclusions
We have introduced CNIDARIA, a tool to quickly and
reliably analyse WGS and RNA-seq samples from both
assembled and unassembled NGS data, offering signifi-
cant advantages in terms of time and space requirements
compared to a state-of-the-art tool. By clustering in total

Fig. 3 Results for the 21-mer dataset of 169 individuals using the Jaccard distance and Neighbour-Joining. The phylogenetic tree shows the
clustering of the samples without displaying branch lengths (plotted using iTOL, [85]). RNAseq samples are highlighted with a * in the outer
rim of the tree
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169 eukaryotic samples from 78 species (42 genus, 32
families, 27 orders, 5 phyla, 6 divisions and 3 kingdoms
from the Eukaryota superkingdom) we have demonstrated
that CNIDARIA can handle a large number of samples
from very distant phylogenetic origins, producing a reli-
able tree with up to 100 % classification accuracy at the
supra species level and 78 % accuracy at the species level,
the later value being low mostly due to interspecific cross-
ings. As CNIDARIA is also able to analyse RNA-seq data,
researchers can acquire, besides the species information,
physiological state information such as pathogenicity and
stress response of the sample for downstream analysis.
A database created in Database Creation Mode allows

querying directly for k-mers shared by a specified set of
samples, enabling comparisons useful in several applica-
tions. Examples include identifying and quantifying poly-
morphisms between closely related samples, quantifying
sequence diversity in the setup phase of large sequencing
projects for sample selection, and ecological diversity
analysis. In addition, k-mers shared exclusively by a set
of samples can be used for diagnostic primer design,
supporting the detection of target genes. Furthermore,
mismatching k-mers between a sample and a close relative
can be used to identify the source of contamination or
introgressions, as performed by [84].

Availability and requirements
Project name: Cnidaria
Project home page: http://www.ab.wur.nl/cnidaria;
https://github.com/sauloal/cnidaria/wiki
Operating system(s): 64-bit Linux
Programming language: C++ ×11 and Python 2.7
Other requirements: None to run; GCC 4.8 or higher

for compiling
License: MIT
Any restrictions to use by nonacademics: No

Additional files

Additional file 1: Table S1. Sample description. Intermediate headers
show database size and analysis time running with 1 thread (1×) or 20
threads (20×) for each CNIDARIA database group. Each line contains a list
of the names of the samples used, sequence ID, source type, source
name, reference, size of JELLYFISH database, size of input data, GC
content, percentage of Ns, number of sequences in the input data and
list of samples used in the REFERENCEFREE comparison. For each k-mer
size (11, 15, 17, 21 and 31 bp): number of distinct k-mers, total number of
k-mers, number of k-mers occurring only once, number of shared k-mers
and percentage of k-mers shared. Input data is in the form of assembled
genome (genomic - fasta files), raw genomic data (raw - fastq or BAM),
filtered genomic data (raw filtered - BAM) or RNA-seq. The 34 samples of
the extended dataset were used exclusively against the 21-mer dataset.
Analysis time and database sizes are calculated for each dataset and do
not correspond to the sum of the partial times and sizes. (XLS 87 kb)

Additional file 2: Table S2. Matrix containing the pairwise number of
shared k-mers. The diagonal contains the number of valid k-mers (k-mers
shared with at least 1 other sample) of a given sample. 11, 15, 17, 21

and 31-mers are shown as well as the 21-mer dataset downsampled to
2 % of its original size and 21-mer dataset with 34 extra samples.
(XLS 1217 kb)

Additional file 3: Table S3. Statistics of k-mer counting. Total number
of k-mers in each sample, total number of valid k-mers in each sample
(k-mers shared by at least two samples) and the percentage of valid
k-mers in each sample. 11, 15, 17, 21 and 31-mers are shown as well as
the 21-mer dataset downsampled to 2 % of its original size and 21-mer
dataset with 34 extra samples. (XLS 104 kb)

Additional file 4: Table S4. Matrix containing pairwise Jaccard distance
between samples. The diagonal is blanked but contains zeroes, meaning
identity; 11, 15, 17, 21 and 31-mers are shown, as well as the 21-mer
dataset downsampled to 2 % of its original size and 21-mer dataset with
34 extra samples. (XLS 2617 kb)

Additional file 5: Table S5. List of samples used for the 1-nearest-
neighbour analysis for supra-species classification and their respective
taxonomic ranks. (XLS 29 kb)

Additional file 6: Table S6. List of samples used for the 1-nearest-
neighbour analysis for species classification and their respective taxonomic
ranks. (XLS 26 kb)

Additional file 7: Table S7. 1-nearest-neighbour accuracy results for all
k-mer sizes, distance measures and programs. CNIDARIA is tested against
all k-mer sizes. REFERENCEFREE is tested using 21-mers. Cnidaria 21 2 % is
the dataset containing only 2 % of the data. (XLS 91 kb)

Additional file 8: Figure S1. Histogram of Jaccard distances for each
k-mer size of the 135 samples. A distance of 0 means identity while a
distance of 1 means no similarity. Using 11-mers most samples are identical
to each other. For 31-mers, most samples share no similarity with any other
sample except for phylogenetically closely related samples. 17 and 21-mers
show higher similarity between groups. (PDF 97 kb)

Additional file 9: Figure S2. Heatmaps of Jaccard distance and
phylogenetic trees of 135 samples using 11-mers. Here, 0 (red) means
identity between samples while 1 (blue) means no identity. Generally,
closely related species show high similarity with closely related species
and no similarity with outgroups. This leads to strong clustering inside
groups but loose coupling between groups. Trees in the left shows
phylogenetic distances while trees in the right ignores the distances, showing
the clustering more clearly; trees plotted using iTOL [85]. (PDF 1668 kb)

Additional file 10: Figure S3. Heatmaps of Jaccard distance and
phylogenetic trees from 135 samples using 15-mers. Here, 0 (red) means
identity between samples while 1 (blue) means no identity. Generally,
closely related species show high similarity with closely related species
and no similarity with outgroups. This leads to strong clustering inside
groups but loose coupling between groups. Trees on the left shows
phylogenetic distances while trees on the right ignores the distances,
showing the clustering more clearly. Trees were plotted using iTOL [85].
(PDF 1499 kb)

Additional file 11: Figure S4. Heatmaps of Jaccard distance and
phylogenetic trees from 135 samples using 17-mers. Here, 0 (red) means
identity between samples while 1 (blue) means no identity. Generally,
closely related species show high similarity with closely related species
and no similarity with outgroups. This leads to strong clustering inside
groups but loose coupling between groups. Trees on the left shows
phylogenetic distances while trees on the right ignores the distances,
showing the clustering more clearly. Trees were plotted using iTOL [85].
(PDF 1363 kb)

Additional file 12: Figure S5. Heatmaps of Jaccard distance and
phylogenetic trees from 135 samples using 21-mers. Here, 0 (red) means
identity between samples while 1 (blue) means no identity. Generally,
closely related species show high similarity with closely related species
and no similarity with outgroups. This leads to strong clustering inside
groups but loose coupling between groups. Trees in the left shows
phylogenetic distances while trees in the right ignores the distances,
showing the clustering more clearly; trees plotted using iTOL [85].
(PDF 1303 kb)

Additional file 13: Figure S6. Heatmaps of Jaccard distance and
phylogenetic trees from 135 samples using 31-mers. Here, 0 (red) means
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identity between samples while 1 (blue) means no identity. Generally,
closely related species show high similarity with closely related species
and no similarity with outgroups. This leads to strong clustering inside
groups but loose coupling between groups. Trees on the left shows
phylogenetic distances while trees on the right ignores the distances,
showing the clustering more clearly. Trees were plotted using iTOL [85]
(PDF 1292 kb)

Additional file 14: Figure S7. Phylogenetic tress with and without
branch lengths of 98 Solanum taxa from 13 species. The Lycopersicon
group (comprised of Solanum lycopersicum, S pimpinellifolium, S.
cheesmaniae and S. galapagense) clusters as a monophyletic group.
Sometimes the non-S. lycopersicum species cluster inside the S.
lycopersicum clade. We speculate these are S. lycopersicum varieties
containing introgression clustering with the donor species, consistently
with the findings of [27]. The Arcanum group (comprised of S. arcanum,
S. chmielewskii and S. neorikii) also clusters monophyletically, closer to the
Eriopersicon group, its sister group. The North Eriopersicon group
(comprised of S. huaylasense, S. chilense, S. peruvianum and S. corneliomulleri)
groups with the South Eriopersicon group (comprised of S. habrochaites, its
only member) and its sister group, Neolycopersicon (comprised of S. pennelli,
its only member). S. tuberosum and Nicotiana were added as outgroups.
Sample names ending in RAW are raw genomic data; names ending in
APLG and CLC are assembled genomes. Trees were plotted using iTOL [85]
(PDF 1862 kb)

Additional file 15: Figure S8. Results for the 21-mer dataset of 169
individuals using Jaccard distance and Neighbour-Joining. (A) phylogenetic
tree with distance; (B) phylogenetic tree without distance (tree branch
length); (C) heatmap of phylogenetic distances showing low inter-group
similarity and high intra-group similarity; (D) histogram of Jaccard distances
showing the same feature of low inter-group similarity and high intra-group
similarity. Sample names ending in RAW are raw genomic data; names
ending in APLG and CLC are assembled genomes; names ending in
RNA, RNAseq and mRNA are RNA-seq datasets. Trees were plotted
using iTOL [85] (PDF 2029 kb)

Additional file 16: Figure S9. Results for 2 % of the 21-mer dataset. (A)
phylogenetic tree with distance; (B) phylogenetic tree without distance;
(C) heatmap of phylogenetic distances showing low inter-group similarity
and high intra-group similarity; (D) histogram of Jaccard distances
showing the same feature of low inter-group similarity and high intra-group
similarity. Trees were plotted using iTOL [85] (PDF 1709 kb)

Additional file 17: Table S8. REFERENCEFREE datasets and statistics.
Datasets used in the REFERENCEFREE analysis with the respective number
of sequences, number of k-mers, number of valid k-mers (present in at
least two samples) and percentage of k-mers considered valid for each
dataset. On average, 0.016 ± 0.023 % of the data is used. (XLS 34 kb)
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