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Genomic prediction using preselected 
DNA variants from a GWAS with whole‑genome 
sequence data in Holstein–Friesian cattle
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Abstract 

Background:  Whole-genome sequence data is expected to capture genetic variation more completely than com-
mon genotyping panels. Our objective was to compare the proportion of variance explained and the accuracy of 
genomic prediction by using imputed sequence data or preselected SNPs from a genome-wide association study 
(GWAS) with imputed whole-genome sequence data.

Methods:  Phenotypes were available for 5503 Holstein–Friesian bulls. Genotypes were imputed up to whole-
genome sequence (13,789,029 segregating DNA variants) by using run 4 of the 1000 bull genomes project. The 
program GCTA was used to perform GWAS for protein yield (PY), somatic cell score (SCS) and interval from first to last 
insemination (IFL). From the GWAS, subsets of variants were selected and genomic relationship matrices (GRM) were 
used to estimate the variance explained in 2087 validation animals and to evaluate the genomic prediction ability. 
Finally, two GRM were fitted together in several models to evaluate the effect of selected variants that were in compe-
tition with all the other variants.

Results:  The GRM based on full sequence data explained only marginally more genetic variation than that based 
on common SNP panels: for PY, SCS and IFL, genomic heritability improved from 0.81 to 0.83, 0.83 to 0.87 and 0.69 to 
0.72, respectively. Sequence data also helped to identify more variants linked to quantitative trait loci and resulted in 
clearer GWAS peaks across the genome. The proportion of total variance explained by the selected variants combined 
in a GRM was considerably smaller than that explained by all variants (less than 0.31 for all traits). When selected vari-
ants were used, accuracy of genomic predictions decreased and bias increased.

Conclusions:  Although 35 to 42 variants were detected that together explained 13 to 19% of the total variance 
(18 to 23% of the genetic variance) when fitted alone, there was no advantage in using dense sequence informa-
tion for genomic prediction in the Holstein data used in our study. Detection and selection of variants within a single 
breed are difficult due to long-range linkage disequilibrium. Stringent selection of variants resulted in more biased 
genomic predictions, although this might be due to the training population being the same dataset from which the 
selected variants were identified.

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Genomic selection is increasingly applied in breeding 
programs for livestock species, e.g. [1, 2], and has led to 
dramatic increases in genetic progress [3], especially in 
dairy cattle. However until now, accuracies of genomic 

prediction are still not close to 1, although one of the 
expectations was that, compared to the currently used 
common single nucleotide polymorphism (SNP) panels, 
whole-genome sequence data would increase accura-
cies of genomic prediction. Because most of the causal 
mutations that underlie quantitative trait loci (QTL) 
are expected to be included as genetic markers in the 
sequence data, it is expected that causal mutations will 
be identified more precisely than with the common lower 
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density SNP chips [4] and that the reliability of genomic 
predictions and its persistency across generations and 
even across breeds [5, 6] will improve. This was con-
firmed on simulated data [7], but in practice, the use of 
cattle and chicken sequence data has not increased the 
reliability of genomic predictions [8, 9].

Several reasons may explain why the accuracy of 
genomic predictions does not increase when sequence 
data is used: (1) if the number of training individuals is 
small, the effects of QTL may be estimated with too 
large errors and thus, little advantage is gained by using 
sequence data [10]; (2) if training is performed within a 
breed or line, long-range linkage disequilibrium (LD) 
may prevent the precise localisation of quantitative trait 
nucleotides (QTN) when all sequence variants are fitted 
simultaneously [8]; and (3) many different linear combi-
nations of variants (that are in high LD) may occur and 
result in equally accurate genomic predictions for the 
same set of phenotypes. Therefore, it is not possible to 
construct a unique prediction equation and no benefit 
can be expected from using more precise measures at the 
DNA level (i.e. more variants). In fact, it might be better 
to use fewer variants that are located closer to the QTN, 
than to rely on the complex LD structure between vari-
ants for the prediction of selection candidates. This was 
also found in a simulation study for across-breed predic-
tion by Wientjes et al. [11].

These previous studies raise several questions i.e. how 
much of the total genetic variation is tagged by using dif-
ferent sets of variants, from commercial SNP chips up 
to whole-genome sequence data and to variants selected 
from a genome-wide association study (GWAS) using 
(imputed) sequence data, and how is accuracy of genomic 
prediction affected. Our objective was to compare the 
proportion of variance explained and the accuracy of 
genomic prediction based on imputed sequence data, 
lower density SNP panels, and preselected variants from 
a GWAS based on imputed whole-genome sequence.

Methods
Phenotypes
De-regressed proofs (DRP) were available for somatic cell 
score (SCS), interval between first and last insemination 
(IFL), and protein yield (PY) for 5503 Holstein–Friesian 
bulls provided by CRV (Arnhem, the Netherlands). DRP 
were calculated according to [12]:

where EBV is the estimated breeding value of a bull for a 
trait available from the national evaluations, and PA is the 
parent average of the bull for that trait. Effective daughter 
contribution, EDCEBV, represents the effective number 

DRP = PA+ (EBV− PA) ∗

(

EDCEBV

EDCprog

)

,

of daughters with phenotypes that contributed to the 
EBV of a bull [13] and was calculated according to [12] 
as α ∗ RELEBV/(1− RELEBV), where RELEBV is the pub-
lished reliability for EBV and α = (4 − h2)/h2, where h2 is 
the heritability of the trait. EDCprog = EDCEBV − EDCPA , 
where EDCPA = αRELPA/(1− RELPA) and RELPA =

(RELsire + RELdam)/4 [14]. As the number of daugh-
ters with phenotypic information for a trait increases, 
the reliability of the EBV of a bull and EDCEBV increase. 
The average EDCEBV (and its range) for animals in the 
training set was equal to 266 (24  to  971) for SCS, 643 
(47 to 4851) for IFL, and 245 (24 to 693) for PY.

Following van Binsbergen et  al. [8], the bulls were 
assigned either to the population used for variant detec-
tion (discovery population) in the GWAS (and training 
for genomic prediction) or to the validation population. 
Assignment was based on year of birth, bulls born before 
2001 (3416 bulls) were assigned to the discovery popula-
tion and bulls born between 2001 and 2008 (2087 bulls) 
to the validation population.

Genotypes
In total, 551 of the bulls in this study were genotyped 
with the Illumina BovineHD BeadChip (Illumina Inc., 
San Diego) and the other 4952 bulls were genotyped with 
a 50k SNP panel and imputed to BovineHD (734,403 
SNPs). Imputation from the 50k panel to the BovineHD 
SNP panel was performed with BEAGLE 3.3.0 [15, 16], 
using additional Holstein bulls in a reference set of 1333 
animals genotyped with the BovineHD SNP panel. For 
this first step, the error rate of imputation was low (with 
a slightly smaller reference population, it was equal to 
0.41%) [17]. The HD genotypes of the bulls were imputed 
to whole-genome sequence using the sequenced popula-
tion from the 1000 Bull Genomes Project Run 4 as refer-
ence population. This multi-breed reference population 
included 1147 sequenced animals with on average an 
11-fold coverage, among which 311 Holstein bulls. All 
the individuals were used as reference because earlier 
studies showed that a multi-breed sequenced reference 
population can be beneficial for imputation accuracy, 
especially for SNPs with a low minor allele frequency 
(MAF) [4, 18, 19]. Polymorphic sites, including SNPs and 
short insertions and deletions (InDels), were identified 
for the 1147 individuals simultaneously using the multi-
sample approach implemented in SAMtools’ mpileup 
along with BCFtools as described in Daetwyler et al. [4]. 
Genotype calls for the 1000 Bull Genomes reference pop-
ulation were improved with BEAGLE [15] using geno-
type likelihoods from SAMtools and inferred haplotypes 
in the samples. The sequence data contained 36,916,855 
bi-allelic variants of which 30,339,468 had four or more 
copies of the minor allele in the reference population and 



Page 3 of 14Veerkamp et al. Genet Sel Evol  (2016) 48:95 

were used for imputation. Imputation of HD genotypes 
to whole-genome sequence was done using standard set-
tings in MINIMAC2 [20] and the pre-phased reference 
genotypes that resulted from BEAGLE. MINIMAC2 gave 
empirical imputation reliabilities (squared correlations 
between imputed and true genotypes for typed SNPs 
only) of 0.99 on average per chromosome including only 
the SNPs with MAF higher than 0.01, except for chromo-
somes 2, 4, 5, 26, and 27 where the average per chromo-
some ranged between 0.63 and 0.66.

GWAS using sequence information
For the three traits analyzed, the bulls in the discovery 
set were used to perform a GWAS in which each variant 
was fitted separately and a genomic relationship matrix 
(GRM) based on the BovineHD SNPs was constructed to 
account for population structure. The mixed linear model 
based association analysis (MLMA) in the package GCTA 
[21] was used. All sequence variants (SNPs and biallelic 
InDels) with a MAF higher than 0.01 (n =  13,789,029) 
were tested for their association. The model was:

where y is the vector of DRP of all individuals, µ is the 
overall mean, 1 is a vector of ones, Z is an incidence 
matrix that links records to bulls, g is a vector of the 
genomic breeding values of all individuals, b is the addi-
tive (fixed) effect of the candidate variants to be tested for 
association, x is a vector of the variants’ genotype indica-
tor variable coded as 0, 1 or 2, and e is a vector of ran-
dom residuals. Genomic breeding values were assumed 
to be distributed as g|GRM, σ 2

g ∼ N (0,GRMσ 2
g ), where 

GRM is the genomic relationship matrix calculated from 
the variants present on the BovineHD chip, and σ 2

g  is the 
additive genetic variance picked up by the markers. For 
ease of computation, σ 2

g  is estimated based on the null 
model without variants and then fixed while testing for 
the association between each of the variants and the trait. 
Diagonal and off-diagonal values of the GRM were calcu-
lated following [22, 23] as:

where GRMijk is the estimated relationship between indi-
viduals j and k at locus i, and N  is the number of variants. 
The genotypes of the variants (xi) were coded as 0, 1 or 2, 
and pi is the allele frequency of the allele for which the 
homozygous genotype was coded as 2. Residual effects 

y = 1µ+ Zg + bx + e,

GRMjk =
1

N
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were assumed to be distributed as e|σ 2
e ∼ N (0, Iσ 2

e ) , 
where σ 2

e  is the residual variance. This is not the usual 
estimate of the residual variance associated with an indi-
vidual phenotype, but the residual of the DRP. Ideally the 
DRP should have been weighted according to the EDC 
but this was not feasible in GCTA.

Manhattan plots were created using the R package 
qqman [24] excluding all variants with a −log10(p) less 
than 1 for computational ease.

Selection of variants
From the full set of 13,789,029 imputed sequence vari-
ants (ISQ), SNPs that were present on the two commonly 
used SNP panels (50k or Bovine HD) were selected as 
subsets. Then, the GWAS results for the discovery pop-
ulation were used to select 10 subsets of variants within 
ISQ, HD and 50k variants, which totalled 33 sets of vari-
ants. Selection was “p value based” using arbitrary cut-
off levels of 3 and 5 for the −log10(p). A disadvantage is 
that selecting variants purely on a −log10(p) threshold 
results in many variants in one region being selected for 
genomic prediction, due to LD between variants and to 
running regression on each variant separately. There-
fore, we also carried out a conditional and joint GWAS 
(COJO) using the results from the single-variant GWAS 
model [25]. In the COJO analysis, variants were added 
to the model one by one, starting with the variants that 
had the most significant effect, on the basis of joint and 
conditional significance level from the GWAS. The joint 
and conditional significant level is the significance level 
from the GWAS results conditional on the LD with the 
selected variants already in the model and the joint sig-
nificance level of these variants. Variants were added to 
the model only when more variance was explained com-
pared to that obtained with the other variants already in 
the model. By performing the COJO, the large number of 
variants led to computing limitations for the calculation 
of LD and selection from all variants, while the large fam-
ily structures of the dataset led to over-fitting due to high 
collinearity between the variants. Collinearity resulted 
in grossly overestimated conditional variant effects and 
inflated p values. In order to circumvent these two issues, 
four different COJO analyses were performed. For the 
first two analyses, all variants with a −log10(p) less than 
3 were a priori removed and variants that were in LD 
(defined as r2) with the variants already in the model with 
an r2 higher than 0.8 were not added in the forward selec-
tion step. Then, variants were selected based on a condi-
tional and joint significance level −log10(p) greater than 
3 (COJO3) or 5 (COJO5). For the third and fourth COJO 
analyses, all variants were considered a priori, but it was 
assumed that variants that were more than 100 Mb apart 
were in complete linkage equilibrium. Thus, estimated 
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effects were not adjusted for loci that were more than 
100  Mb apart since they are assumed to be independ-
ent, and the LD threshold was only applied for loci that 
were less than 100  Mb apart. Also, variants that were 
in LD with the variants already in the model with an r2 
higher  than 0.5 were not added. Then, variants were 
selected based on a conditional and joint significance 
level −log10(p) higher than 5 (COJO5LD) or the 100 vari-
ants with the largest effect were selected (COJO#100).

Variance explained by the selected variants
The first method to evaluate the value of the selected var-
iants consisted in estimating the variance of the DRP that 
can be explained by the variants for the validation ani-
mals. The estimated genetic variance was expressed as a 
proportion of the total variance i.e. the so-called genomic 
heritability (h2) [26] as relevant for the DRP. This herit-
ability is not directly comparable to the usual heritability 
of a single phenotypic record since the estimated resid-
ual variance is not directly comparable with the residual 
variance of a single phenotypic record. Using the 33 
sets of variants (Tables 1 and 2), the 33 GRM were cal-
culated following [22] as described above, and variance 
components were estimated using GREML in GCTA. 
Variances were not only estimated using the GRM for the 
subsets of selected variants, but also by using a comple-
mentary GRM (GRMc) based on the remaining variants 
that were not selected for inclusion in the GRM for the 
subsets of selected variants. For example, the 50k panel 
contained 49,580 variants, thus the remaining 13,739,449 
(=13,789,029  −  49,580) variants were used to create 
the complementary GRMc. For the scenarios with vari-
ant selection based on the 50k SNP or Bovine HD pan-
els only, no additional pruning on LD was performed 
for the GRMc. For the “p value based variant selection” 
(Table  1), a GREML analysis with these GRMc matri-
ces reflected the variance explained by variants without 
an association with the trait. For the subsets selected 
with the COJO analysis (Table 2), many variants in high 
LD with the selected variants were still present in the 

remaining set. Therefore, an additional step was per-
formed to exclude from the GRMc not only the selected 
variants but also the variants that were in significant LD 
(p < 0.01) with the selected variants. GCTA was used to 
search for variants in significant LD with the selected 
variants [21], and the search was limited to a 2-Mb win-
dow on either side of each selected variant.

Finally, each GRM was fitted together with its GRMc to 
obtain a more conservative and probably better estimate 
of the variance explained by the selected set of variants. 
When fitting multiple GRM, GREML will partition the 
variances according to the maximum likelihood.

Accuracy of genomic predictions with selected variants
The second method to evaluate the value of the selected 
variants consisted in calculating genomic predictions 
for the validation animals (GEBV) and correlating these 
with the phenotypes of the same animals. Since GCTA 
excluded by default the animals without phenotypes 
from the GRM, several steps were required. First, using 
GREML in GCTA, each of the 33 GRM was fitted sepa-
rately for the discovery (training) animals. Secondly, 
BLUP solutions for the effects of variants were back-
solved from the GEBV for the discovery animals. Finally, 
using the package PLINK (v1.90b3c 64-bit; 2 Feb 2015; 
http://pngu.mgh.harvard.edu/purcell/plink/; [27]), the 
BLUP solutions for the effects of variants were used to 
calculate the GEBV for the validation animals. Similar to 
the estimation of the variance, GEBV for the validation 
animals were also computed using both the GRM and the 
complementary GRMc simultaneously in the GREML 
model, followed by back-solving the effects of variants 

Table 1  Number of variants in each of the subsets of vari-
ants selected from the SNP panels and selection criteria

Trait Selection criteria Imputed sequence (ISQ) HD 50k

All variants 13,789,029 656,044 49,580

PY −log10(p) > 3 24,387 1238 120

−log10(p) > 5 2,194 159 27

SCS −log10(p) > 3 23,346 1203 98

−log10(p) > 5 1539 90 7

IFL −log10(p) > 3 22,833 987 61

−log10(p) > 5 853 27 4

Table 2  Number of variants in each of the subsets of vari-
ants selected using COJO, and number of variants in  link-
age disequilibrium (LD) with  the selected variants, which 
were ignored in the GRMc

Trait Selection criteria Number of vari-
ants in subset 
of selected variants

Number of variants 
in LD with selected 
variants

PY COJO3 90 1,650,152

COJO5 64 1,154,416

COJO5LD 35 615,586

COJO#100 100 1,688,270

SCS COJO3 195 3,241,932

COJO5 215 3,449,212

COJO5LD 42 757,095

COJO#100 100 1,652,678

IFL COJO3 264 3,835,730

COJO5 209 3,151,538

COJO5LD 35 607,631

COJO#100 100 1,675,727

http://pngu.mgh.harvard.edu/purcell/plink/
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and calculating the breeding values with the combined 
solutions.

Accuracy of genomic prediction was calculated for the 
validation animals as the correlation between the DRP 
and GEBV for the different traits, assuming that the 
DRP was based on very many progeny. Furthermore, the 
regression coefficient of the DRP on the GEBV was calcu-
lated to evaluate the bias of predictions.

Results
GWAS
The GWAS results for PY, SCS and IFL are in the Man-
hattan plots in Figs. 1, 2 and 3 (Q–Q plots are in Addi-
tional file  1: Figure S1, Additional file  2: Figure S2, and 
Additional file  3: Figure S3). Compared to SNP data, 
when sequence data was used, the peaks became higher 
and sharper, suggesting a more precise detection of the 
QTL. For PY, a strong association was found with the 
diacylglycerol O-acyltransferase 1 (DGAT1) gene, and 
each of the three traits, were associated with several addi-
tional variants (−log10(p)  >  5) when using the imputed 
sequence data. The total number of variants with a −
log10(p) value higher than 3 or 5 differed only slightly 
between traits when using the sequence data (Table  1), 
and was larger than expected by chance (13,789 and 138 
for −log10(p) > 3 and −log10(p) > 5 respectively). If only 
the SNPs on the 50k and HD panels were considered, 
more SNPs with a −log10(p) higher than 3 and 5 were 
found for PY than for SCS and IFL.  

In the COJO analysis, variants were selected only when 
they explained more variance than the other variants 
already added in the model (starting with the most sig-
nificant variant). When performing the COJO3 analysis 
(preselection of variants with a −log10(p)  >  3), 195 and 
264 variants were retained for IFL and SCS, respectively, 
while for PY only 90 variants were selected (Table  2). 
However, when performing the COJO5LD analysis (using 
the more stringent LD criteria of 0.5, i.e. assuming no LD 
between variants that were more than 100 Mb apart and 
−log10(p) > 5), between 35 and 42 variants were selected 
and their number for each trait varied little. Many of the 
remaining variants within the 2-Mb window on either 
side of the selected variants were in significant LD with 
the selected variants (as shown in Additional file 4: Figure 
S4), and up to 3,449,212 variants were excluded from the 
GRMc (Table 2).

Variance explained by the selected variants
The GRM of all the variants in the full sequence data 
resulted in genomic heritabilities (h2) of 0.83, 0.87 and 
0.72 for PY, SCS and IFL for the validation animals 
(Table  3), respectively. Compared to these values, the 
decrease in h2 when the HD or 50k SNP panels were 

used was only marginal (less than 0.04), which indicates 
that little additional genetic variance is picked up by the 
sequence data.

Selection of variants based on the −log10(p) value 
resulted in fewer variants being used for the GRM and 
the proportion of variance explained by the GRM was 
smaller. Exceptions were found for variants selected 
with a −log10(p) > 5 from the full sequence data for PY 
and SCS; in this case, h2 increased with fewer variants 
compared to when the variants were selected with a −
log10(p)  >  3. However, estimated phenotypic variances 
were highly inflated for this scenario (see Additional 
file  5: Table S1): 621  kg2, 55 SCS2, and 28 d2 compared 
with 308  kg2, 19 SCS2 and 16 d2, for PY, SCS and IFL, 
respectively. Also, when the lower density SNP panels 
were used and the variants were strongly selected, and 
when variants from sequence data were selected with 
a −log10(p) higher than 3, the estimated phenotypic 
variances were inflated but to a much lesser extent. This 
inflation of the h2 was probably due to the properties of 
the GRM when it was calculated from a few variants in 
high LD with each other. Comparing the GRM from HD, 
50k, and ISQ −log10(p)  >  5 variants with the GRM ele-
ments from ISQ variants in Additional file  6: Figure S5 
and Additional file 7: Table S2, it is clear that the ISQ −
log10(p) > 5 GRM contained many off-diagonal elements 
that were equal to the size of the diagonal elements, and 
therefore, in the analysis, the GRM had to adjust for 
positive definiteness. When the few variants selected 
from the COJO analysis were used, h2 were not inflated, 
for example the GRM from the 100 most informative 
variants in the discovery population resulted in h2 that 
ranged from 0.17 to 0.23 in the validation population. 
Still, it was clear that even the variants selected from 
GWAS with (imputed) sequence data could not compete 
in terms of variance explained with a GRM based on a 
larger number of variants (e.g. 50k).

Another way of testing the importance of selecting 
variants was to investigate how much h2 was lost when 
the selected variants were discarded from the GRM, i.e. 
the complementary variants in the GRMc. In the sce-
narios that applied a simple SNP selection, fitting only 
the GRMc resulted in a drop in h2 that was less than 
0.01 compared to fitting the full sequence data. With the 
COJO scenario, the drop in h2 compared to fitting the full 
sequence data was less than 0.04 (results not shown).

To judge the relative importance of the GRM and 
GRMc, both GRM and GRMc were fitted together in a 
single model (Table 4). For PY, SCS and IFL, in nearly all 
the scenarios with the p value-based selection, the sum 
of the two h2 was close to the total genetic variance that 
was explained by the full sequence information (0.83 for 
PY, 0.87 for SCS, and 0.72 for IFL), except in the analysis 
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with the HD GRM and its GRMc, which resulted in highly 
inflated estimates of h2 for PY and IFL. Separately, the 
HD GRM and the GRMc can both fully explain the 
genetic variance and among the SNPs that were used to 
build the GRMc, some are probably in strong LD with 
variants on the HD chip. Consequently, estimation of the 
genetic variance for these two sets of data with redundant 
information is probably difficult. For the three traits, the 

combined effect of GRM and GRMc for −log10(p)  >  5 
selection from imputed sequence variants (ISQ), i.e. 
weighting the selected variants differently from the rest 
of the variants, resulted in a very small improvement of 
0.01 for the combined h2. In comparison with the p value-
based selection, the COJO scenarios resulted in lower h2 
since many variants were removed from the GRMc on 
the basis of LD with the selected variants. The 50k panel 

Fig. 1  Manhattan plot for protein yield (PY) using Bovine 50k (a), BovineHD (b) and ISQ data and variants after selection (COJO5LD in green) (c). 
Significance of variants effects (−log10(p)) based on the GCTA single variant analyses for protein yield (PY) using Bovine 50k (a), BovineHD (b), and 
full sequence data (ISQ) and the variants selected after the COJO5LD analysis (green) (c)
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explained 85% (= 0.70/0.82) of the genetic variance for PY 
and only 15% was partitioned to the rest of the variants 
on the sequence, whereas the 50k panel explained 56 and 
70% for SCS and IFL. For the COJO analyses, the sum of 
the two h2 was smaller than the total genetic variance that 
was explained by the full sequence information, but the 
selected variants from the GWAS accounted for 6 to 18% 

of the total genetic variance, when they were estimated 
conditional on the GRMc for the complementary variants.

Genomic prediction with selected variants
Using ISQ variants or any of the two SNP panels resulted 
in the same prediction accuracy for PY (0.68), SCS 
(0.70 to 0.71) and IFL (0.60) (Table 5). Compared to these 

Fig. 2  Manhattan plot for somatic cell score (SCS) using Bovine 50k (a), BovineHD (b) and ISQ data and variants after selection (COJO5LD in green) 
(c). Significance of variants effects (−log10(p)) based on the GCTA single variant analyses for somatic cell score (SCS) using Bovine 50k (a), BovineHD 
(b), and full sequence data (ISQ) and the variants selected after the COJO5LD analysis (green) (c)
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values, the prediction accuracy for all scenarios decreased 
when the number of variants in the GRM decreased. 
However, compared to the simple selection of variants 
with a −log10(p) > 5, there was a clear advantage in the 
COJO analyses especially for IFL and to a lesser extent 
for SCS. For IFL, the prediction accuracy increased from 
0.27 for the GRM based on ISQ −log10(p) > 5 to between 
0.30 and 0.38 for the COJO scenarios while the number 
of variants decreased from 853 to between 35 and 264. 

All variant selection scenarios showed a clear bias (slope 
<1.0) in the scale of the predictions (Table 5). In general, 
the bias increased as selection was more stringent and 
the number of selected variants decreased.

When both GRM and GRMc are fitted together 
(Table 6), in the simple variant selection scenarios, all the 
variants are used but accuracy of genomic prediction may 
differ between models, because a separate weight is given 
to the variants in the GRM and GRMc. Apart from two of 

Fig. 3  Manhattan plot for interval first last insemination (IFL) using Bovine 50k (a), BovineHD (b) and ISQ data and variants after selection (COJO5LD 
in green) (c). Significance of variants effects (−log10(p)) based on the GCTA single variant analyses for interval between first and last lactation using 
Bovine 50k (a), BovineHD (b), and full sequence data (ISQ) and the variants selected after the COJO5LD analysis (green) (c)
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the variant selection scenarios, no increase in accuracy was 
observed in any scenario when fitting GRM and GRMc 
compared with fitting the ISQ GRM for all variants. Bias in 
the prediction was smaller than when each GRM was fit-
ted separately. When variants were selected from HD with 
−log10(p)  >  5 and fitted in a GRM separately from the 
GRMc with the remaining ISQ variants, prediction accu-
racies for PY and SCS were 0.01 higher than when all ISQ 
variants were fitted through the GRM. This result is simi-
lar to that mentioned above for the h2, and is in contrast to 
that of the scenarios fitting −log10(p) > 3 separately, which 
resulted in lower accuracy and more bias.

Discussion
The objective of this study was to identify the usefulness 
of imputed sequence data, in particular regarding the 
proportion of variance explained by different sets of vari-
ants for three traits PY, SCS and IFL, and for the accu-
racy of genomic prediction. Full imputed sequence data, 

lower density SNP panels, and preselected variants from 
GWAS that used imputed whole-genome sequence were 
considered. Using the GRM based on full sequence data 
explained marginally more variation than that based on 
the common SNP panels. Compared to SNP data, the use 
of sequence data allowed to identify more variants linked 
to QTL, and peaks across the genome were sharper, 
which is in line with other studies using the data of the 
1000 Bull Genomes Project [4]. This study clearly showed 
that the 35 and 42 selected variants from the COJO anal-
ysis led to h2 that ranged from 0.13 to 0.19 when fitted 
alone, and from 0.05 to 0.08 when the GRM is compet-
ing with a GRM based on the full ISQ information. Thus, 
such QTL information should be beneficial in genomic 
prediction. However, no clear benefit for genomic pre-
diction was detected with our data where training and 
validation populations were both composed of Holstein 
animals.

Improving genomic prediction
The fact that sequence data did not improve genomic 
prediction was previously reported using the same data 
[8, 28]. In the study of van Binsbergen et al. [8], a Bayesian 
variable selection method was used with all ISQ variants 
fitted simultaneously, but the Manhattan plots in that 
study demonstrated the difficulty of precise QTL detec-
tion. QTL were detected, given the prediction accuracy 
achieved, but the effects were smeared across DNA vari-
ants that were in high LD with each other. Calus et al. [28] 
investigated the split-and-merge approach to alleviate the 
severe n ≪ p problem with sequence data. Neither of 
these two studies showed an advantage of using sequence 
data for genomic prediction. Both studies suggested and 
discussed several explanations for these results and some 
of these still hold in our study. One explanation concerns 
the imputed sequence data used, with imputation accu-
racy being low for some chromosomes. Poor imputa-
tion could be due to errors in the genomic map, which 
reduce accuracy of prediction and detection of causal 
mutations. Also the training set is relatively small with 
highly related animals in contrast with the large number 
of variants available from ISQ. Still, the prior expectation 
for our study was that, by pre-selecting the ISQ variants 
some of the limitations (e.g. extreme p >> n and strong 
LD between many SNPs) would be overcome [11, 29], 
and more precise QTL detection with ISQ variants would 
lead to higher accuracy of genomic prediction, especially 
since ISQ helps to identify more precisely the variants 
that are associated with the traits [4]. Our results also 
demonstrated that ISQ helped to identify the QTL, and 
a limited number of selected variants explained 11 to 14% 
of the genetic variance, even when fitted with the com-
plementary GRMc at the same time. Hence, there is no 

Table 3  Phenotypic variance (h2) explained in  2287 vali-
dation animals fitting GRM based on  the selected set 
of  variants for  protein yield (PY), somatic cell score (SCS) 
and interval first–last insemination (IFL)

ISQ are all imputed sequence variants, and HD and 50k are the SNPs on the 
common HD and 50k panels. Variants were selected using GWAS results on 3469 
discovery animals
a  Inflated phenotypic variance (see Additional file 5: Table S1)

Trait Selection criteria ISQ HD 50k
Selected set of variants 
(GRM)

PY All variants 0.83 0.82 0.81

−log10(p) > 3 0.53a 0.40 0.22

−log10(p) > 5 0.60a 0.43a 0.22a

COJO3 0.21

COJO5 0.19

COJO5LD 0.19

COJO#100 0.23

SCS All variants 0.87 0.84 0.83

−log10(p) > 3 0.57a 0.45a 0.19

−log10(p) > 5 0.72a 0.25a 0.03a

COJO3 0.31

COJO5 0.31

COJO5LD 0.16

COJO#100 0.22

IFL All variants 0.72 0.70 0.69

−log10(p) > 3 0.51a 0.32 0.14

−log10(p) > 5 0.50a 0.15a 0.03

COJO3 0.25

COJO5 0.23

COJO5LD 0.13

COJO#100 0.17
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doubt that associated regions were identified for all three 
traits. However, when weighting this prior information in 
a separate GRM, it was difficult to improve the accuracy 
of genomic prediction compared with the common SNP 
panels. This confirms the expectation that, within the 
Holstein population, it is probably difficult to increase the 
accuracy of prediction, due to the small size of the effec-
tive population and the long-range LD in the population, 
as was previously demonstrated in a simulation study by 
MacLeod [30]. Hence, using ISQ and selected variants 
might be especially beneficial for across-breed prediction 
in small populations [31] or when traits are used with 
some QTL having large effects, as for fat percentage [32].

Bias in genomic prediction
Our study showed that the bias in genomic prediction 
became stronger when variants were strongly prese-
lected. Regressions of DRP on GEBV were expected to be 
1, but we found that the stronger the selection of variants 
was, the stronger the bias was when comparing the pre-
dictions in the validation animals. When all ISQ variants 

or the SNPs on the common panels were fitted in a sin-
gle GRM, the bias in the slope of prediction was limited 
(slope  >  0.86). Also, when GRM and GRMc were fitted 
together, the bias in the genomic prediction was more 
controlled. However, when strongly selected variants 
were used, the genomic predictions became more biased, 
with slopes even lower than 0.5. Szyda et al. [33] showed 
that genomic predictions for milk yield were biased when 
3  k variants were selected for their effect on milk yield 
[33]. Brondum et  al. [32] reported no extra bias when 
1623 selected SNPs were added to the 54  k SNP panel, 
but when the 1623 SNPs were fitted with their own vari-
ance in a model with the 54 k SNPs, the bias increased for 
some traits.

GEBV could be biased because reported effects of 
SNPs on a trait tend to be larger in magnitude than the 
true effects of these SNPs. This phenomenon is well-
known, as discussed by Goddard et al. [34]; it is known 
as the “Beavis effect” [35] and has been described as a 
form of the “winner’s curse” [36]. The reason underlying 
the “Beavis effect” is that effects are estimates, and the 

Table 4  Phenotypic variance explained (h2) in  2287 validation animals for  protein yield (PY), somatic cell score (SCS) 
and interval first –last insemination (IFL)

COJO analysis with −log10(p) > 3 (COJO3) or −log10(p) > 5 (COJO5); ISQ are all imputed sequence variants, HD and 50k are the SNPs on the common HD and 50k 
panels

Variances are estimated fitting GRM and GRMc together in one model where GRM were based on the selected set of variants and GRMc on the complementary 
variants. Set of variants that were selected using GWAS results on 3469 discovery animals

Trait Selection criteria ISQ HD 50k ISQ HD 50k ISQ HD 50k
Selected set of variants
(GRM)

Complementary set of variants 
(GRMc)

Sum of GRM and GRMc

PY All variants 0.83 0.98 0.70 0.00 0.12 0.83 0.98 0.82

−log10(p) > 3 0.19 0.15 0.09 0.61 0.65 0.73 0.80 0.80 0.82

−log10(p) > 5 0.10 0.04 0.03 0.74 0.79 0.80 0.84 0.83 0.83

COJO3 0.11 0.70 0.81

COJO5 0.10 0.71 0.81

COJO5LD 0.08 0.73 0.82

COJO#100 0.09 0.72 0.82

SCS All variants 0.87 0.87 0.48 0.00 0.38 0.87 0.87 0.86

−log10(p) > 3 0.22 0.15 0.05 0.60 0.68 0.80 0.82 0.83 0.85

−log10(p) > 5 0.24 0.03 0.01 0.64 0.84 0.85 0.88 0.87 0.86

COJO3 0.14 0.68 0.81

COJO5 0.14 0.66 0.80

COJO5LD 0.05 0.79 0.84

COJO#100 0.08 0.76 0.83

IFL All variants 0.72 0.85 0.50 0.00 0.21 0.72 0.85 0.70

−log10(p) > 3 0.20 0.12 0.05 0.51 0.57 0.64 0.70 0.69 0.69

−log10(p) > 5 0.11 0.03 0.03 0.63 0.69 0.70 0.73 0.72 0.72

COJO3 0.11 0.57 0.67

COJO5 0.12 0.57 0.69

COJO5LD 0.07 0.64 0.71

COJO#100 0.08 0.64 0.71
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uncertainty of these estimates is not taken into account. 
When selecting significant SNPs, we tend to select those 
for which the uncertainty of the estimate has a positive 
effect on the variant effect. As pointed out by Goddard 
et al. [34], when effects of variants are fitted as random 
effects, this form of the “Beavis effect” is expected to be 
minimised, since estimates are regressed towards the 
mean, at least when proper variances are used for each 
SNP. However, we selected the variants and subsequently 
trained them for genomic prediction in the same (dis-
covery) population. Thus, the fact that the validation was 
biased, was a form of the “Beavis effect”: the combined 
effect of a small set of preselected SNPs was overesti-
mated since the SNPs were selected to have an effect in 
the same training population.

Another reason for the observed bias is that, rather 
than the estimates being biased, the bias comes from 
the overlap between discovery and validation data due 
to relationships between discovery and validation ani-
mals. Overlaps between the validation and discovery data 
cause bias due to the prediction error covariance between 
the phenotypes and predictions [37]. Initially, the effect 
of overlap in the validation and discovery data might be 

considered as very small here, since validation animals 
were excluded from both the GWAS and the derivation 
of the prediction equation, and bulls had highly accu-
rate EBV. However, the validation population consisted 
of animals from subsequent generations of the training 
animals, e.g. 84% of the validation animals had their sire 
included in the discovery data [28]. Hence, DNA variants 
selected from the GWAS were validated within the same 
families from the discovery population. Also, the pheno-
types used are DRP derived from the EBV from national 
genetic evaluations, in which all records are estimated 
simultaneously, and therefore the validation animals are 
strictly speaking not a completely external and independ-
ent population. The phenotypic records of the daugh-
ters of the young bulls might have also contributed to 
the breeding values of the sires of the young bulls, and 
thus result in erroneous correlations between the valida-
tion and training or discovery set [38]. The consequence 
would be that the estimates are not necessarily biased, 
but the validation was biased due to correlations between 
the residuals between the training and validation sets.

Which of these underlying reasons is the major cause of 
the bias observed in our study is not clear. Also, to what 

Table 5  Prediction accuracy in  2287 validation animals, and  the intercept and  slope for  the regression of  phenotype 
on  the breeding value estimated using GRM with  different selected sets of  variants for  protein yield (PY), somatic cell 
score (SCS) and interval first–last insemination (IFL)

ISQ are all imputed sequence variants, HD and 50k are the SNPs on the common HD and 50k panels. Set of variants that were selected using GWAS and subsequently 
trained in 3469 discovery animals

Trait Selection criteria ISQ HD 50k ISQ HD 50k ISQ HD 50k
Accuracy Intercept Slope

PY All variants 0.68 0.68 0.68 −0.6 −0.6 −0.7 0.90 0.90 0.89

−log10(p) > 3 0.58 0.56 0.42 2.3 3.6 6.9 0.73 0.65 0.57

−log10(p) > 5 0.39 0.30 0.28 7.2 8.7 9.4 0.54 0.51 0.71

COJO3 0.40 7.2 0.45

COJO5 0.38 7.7 0.41

COJO5LD 0.33 8.1 0.51

COJO#100 0.34 7.2 0.47

SCS All variants 0.70 0.71 0.70 100 100 100 1.02 1.03 1.03

−log10(p) > 3 0.63 0.55 0.36 100 100 101 0.82 0.79 0.70

−log10(p) > 5 0.40 0.22 0.11 100 101 101 0.79 0.66 0.57

COJO3 0.48 100 0.64

COJO5 0.48 100 0.60

COJO5LD 0.35 100 0.68

COJO#100 0.39 100 0.66

IFL All variants 0.60 0.60 0.60 99 99 99 0.88 0.87 0.86

−log10(p) > 3 0.51 0.45 0.31 99 99 99 0.70 0.62 0.52

−log10(p) > 5 0.27 0.16 0.10 99 98 98 0.47 0.51 0.77

COJO3 0.38 99 0.45

COJO5 0.35 99 0.41

COJO5LD 0.30 99 0.52

COJO#100 0.32 99 0.45
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extent the bias is controlled by fitting additional variants 
is not completely clear yet. Given the importance of vali-
dation results in practical breeding (i.e. used to assess the 
scale and reliability of published breeding values), more 
thought should be given on the validation of genomic 
breeding values within populations. For example, what 
are the effects of removing the sires of the validation pop-
ulation on the bias and accuracy when selected SNPs are 
used, or using separate populations for discovery, train-
ing and validation.

Variant selection
To benefit from the use of sequence data, it needs to be 
combined with a careful variant selection to pinpoint the 
QTN [29, 39]. Detection of causal variants based on the 
data only proved to be difficult due to the large number 
of variants, and the high LD between variants due to the 
family relationships in our discovery population. Initially, 
variant selection was based purely on −log10(p) values 
of the GWAS results. When a high −log10(p) threshold 
was maintained, variants were selected from a few chro-
mosomal regions, but the resulting GRM from these 
selected variants had poor properties (see Additional 

file 6: Figure S5 and Additional file 7: Table S2), since the 
genotypes of too many animals within the population 
were not sufficiently different for these regions to esti-
mate genetic relationships that differ from 1. Therefore, 
simply selecting all associated variants was not a good 
criterion for variant selection. To overcome the issue of 
selecting variants from the same regions, we used dif-
ferent options of GCTA to do a conditional and joint 
(COJO) analysis [22]. The first COJO application used 
only variants pre-selected based on −log10(p) value (to 
reduce the number of variants) but calculated the condi-
tional and joint significance considering LD between all 
the variants across the whole genome. This variant selec-
tion was hindered by collinearity in the data. In spite of 
excluding from the model variants that were in LD with 
a r2 higher than 0.8, many variants were selected with 
large effects and −log10(p) values, calculated conditional 
on the joint effects already included in the model. Some-
times the same variants had no effect or effects close to 
zero −log10(p) in the first single variant analyses. Also, 
when comparing the LD between the variants, the COJO 
analysis selected few variants that were in moderate to 
high LD with each other and had opposite effects. Since 

Table 6  Prediction accuracy in  2287 validation animals, and  the intercept and  slope for  the regression of  phenotype 
on the breeding value estimated using the effects of variants from GRM and GRMc fitted together for different selected 
sets of variants for protein yield (PY), somatic cell score (SCS) and interval first –last insemination (IFL)

ISQ are all imputed sequence variants, HD and 50k are the SNPs on the common HD and 50k panels. Set of variants that were selected using GWAS and subsequently 
trained in 3469 discovery animals

Trait Selection criteria ISQ HD 50k ISQ HD 50k ISQ HD 50k
Accuracy Intercept Slope

PY All variants 0.68 0.68 0.68 −0.6 −0.6 −0.7 0.90 0.90 0.90

−log10(p) > 3 0.64 0.65 0.67 1.0 1.1 0.4 0.79 0.75 0.83

−log10(p) > 5 0.67 0.69 0.69 0.2 −0.5 −0.6 0.84 0.90 0.91

COJO3 0.64 1.4 0.72

COJO5 0.64 1.1 0.75

COJO5LD 0.67 0.2 0.84

COJO#100 0.63 1.2 0.79

SCS All variants 0.70 0.71 0.70 100 100 100 1.02 1.03 1.02

−log10(p) > 3 0.67 0.66 0.66 100 100 100 0.85 0.83 0.87

−log10(p) > 5 0.67 0.69 0.69 100 100 100 0.93 0.99 1.00

COJO3 0.63 100 0.76

COJO5 0.62 100 0.73

COJO5LD 0.65 100 0.88

COJO#100 0.62 100 0.83

IFL All variants 0.60 0.60 0.60 99 99 99 0.88 0.87 0.87

−log10(p) > 3 0.55 0.56 0.58 99 99 99 0.73 0.71 0.80

−log10(p) > 5 0.58 0.61 0.60 99 99 99 0.80 0.88 0.88

COJO3 0.51 99 0.60

COJO5 0.51 99 0.59

COJO5LD 0.57 99 0.76

COJO#100 0.54 99 0.70
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the estimates were unrealistic, alternative approaches 
were tested by controlling the LD between variants more 
stringently. Fewer variants were selected with COJO5LD 
and only using these in the GRM resulted in lower h2 and 
prediction accuracy, mainly because fewer variants were 
used. However, combining the COJO5LD together with 
the GRMc resulted in slightly higher h2 and higher pre-
diction accuracy and less bias for all three traits, than any 
of the other conditional and joint analyses. Thus, when 
selecting variants, the way that the variants are selected 
and LD is accounted for is important.

Ideally, Bayesian variable selection methods should be 
able to separate out the causal variants when all fitted 
together. However, using the same dataset as in our study, 
van Binsbergen et al. [8] did not succeed in detecting clear 
peaks and significance levels for variants in the Manhat-
tan plots when they were fitted all together, and detec-
tion of causal variants became even less precise using 
ISQ in comparison with HD variants [8]. Other studies 
have combined the biological information available on 
the functional classes that the variants belong to with the 
Bayesian variable selection (BAYESRC) [40]. However, in 
the case of a population with animals as closely related as 
in our Holstein discovery population, it remains intrinsi-
cally difficult to identify the causal variants very precisely.

Brondum et  al. [32] performed the GWAS in Nordic 
cattle for three separate breeds and for three different 
sets of traits. They selected QTL and three to five vari-
ants to tag each QTL and combined 1623 variants with 
the 50k SNP panel. In contrast to our study, they obtained 
improved accuracies within the breeds that were used for 
the GWAS, and the largest improvements in genomic pre-
diction were observed for a French Holstein population 
that was not used for the GWAS. Also, bias was improved 
when tested in the independent population of French 
Holsteins. An extensive study using sequence data, and 
using across-breed QTL and genomic prediction was per-
formed by van den Berg [41]. Using multibreed informa-
tion, increases in reliability of up to 10% were found for 
all the breeds, but they were sensitive to the selection of 
variants and the model used. In both these studies, LD-
pruning was used to select variants [32, 39]. Therefore, 
the use of sequence information should be accompanied 
by careful detection and selection of causal variants using 
concordance analysis or using biological information [29].

Conclusions
When only the Holstein breed is considered for the dis-
covery of variants and prediction, there is little advantage 
in using dense sequence data for genomic prediction, 
although 35  to  42 variants were detected that explained 

13  to  19% of the total variation when fitted alone, and 
5  to 10% of the variance when they were in competition 
with other variants. With the within-breed approach, 
detection of variants and their selection were difficult due 
to LD. Selection of variants gave more biased genomic 
predictions. It is unclear if predictions were more biased 
due to estimating the effects of selected SNPs in the 
same training population as that from which SNPs were 
selected, or if the validation was biased due to common 
family structure or to the use of common data in the 
national analyses between the training and validation sets.
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