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Abstract

Purpose: Ridesourcing services have become popular recently and play a crucial role in Mobility as a Service
(MaaS) offers. With their increasing importance, the need arises to integrate them into travel demand models to
investigate transport system-related effects. As strong interdependencies between different people’s choices exist,
microscopic and agent-based model approaches are especially suitable for their simulation.

Method: This paper presents the integration of shared and non-shared ridesourcing services (i.e., ride-hailing and
ride-pooling) into the agent-based travel demand model mobiTopp. We include a simple vehicle allocation and
fleet control component and extend the mode choice by the ridesourcing service. Thus, ridesourcing is integrated
into the decision-making processes on an agent’s level, based on the system’s specific current performance,
considering current waiting times and detours, among other data.

Results and Discussion: In this paper, we analyze the results concerning provider-related figures such as the
number of bookings, trip times, and occupation rates, as well as effects on other travel modes. We performed
simulation runs in an exemplary scenario with several variations with up to 1600 vehicles for the city of Stuttgart,
Germany. This extension for mobiTopp provides insights into interdependencies between ridesourcing services and
other travel modes and may help design and regulate ridesourcing services.

Keywords: Travel demand model, Agent-based model, Mode choice, Ridesourcing, Ride-pooling, Ride-hailing

1 Introduction
Ridesourcing services have become increasingly popular
during the past years and already play an important role
in the transport system in many places. Sometimes such
services are discussed as a solution to alleviate conges-
tion by car traffic or to complement public transport as
part of a Mobility as a Service (MaaS) offer. Yet, many
questions arise concerning the design and the effects of

these new mobility options: City administrations are
concerned with their impacts and discuss setting regula-
tions. Service providers are not sure which offer could
be most successful. Furthermore, these services influence
the use of other travel modes, such as car, bicycle or
public transport. Such interdependencies are generally
examined with travel demand models. However, as ride-
sourcing services present high correlations between de-
mand and service supply, it has been difficult to
integrate them into these models. In this paper, we
present an approach to integrate modeling of ridesour-
cing services in an agent-based travel demand model,
where the exact properties of the ridesourcing service, as
well as other mobility options people may have, are
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taken into account. This allows making assessments of
ridesourcing services, including their respective impact
on the rest of the transport system.
In general terms, ridesourcing services provide individ-

ual rides. Rides are performed on request by users, and
users pay a fee that is above mere compensation for the
driver [17]. Two different principles of ridesourcing ser-
vices exist. On the one hand, services may provide vehi-
cles to be used exclusively by one person plus her or his
possible companions. In this study, we use the term
ride-hailing to refer to these services. On the other hand,
the service provider may combine the ride requests of
different people with similar origins and destinations
into one vehicle. Thus, different people may ride to-
gether on parts of their ride. In this paper, we refer to
such services with the term ride-pooling.
As ridesourcing services work on request by users,

they are considered to be part of the field of mobility-
on-demand. This field includes other services such as
carsharing, bikesharing, public transport, and microtran-
sit [18]. In contrast, Mobility as a Service (MaaS) de-
scribes the combination of different transportation
modes within one platform offered to the user through a
joint interface. MaaS may, but does not need to, include
mobility-on-demand options [11].
This paper is structured as follows: In the following sec-

tion, we present how ridesourcing services are modeled in
travel demand models. Then, we give a short overview of
the travel demand modeling framework mobiTopp. Sub-
sequently, we present the outline of our model extensions
for ridesourcing and present the scenario for evaluation.
This is followed by the results of exemplary variations for
the operation of ridesourcing fleets of different types and
sizes within the city of Stuttgart (Germany). Finally, we
critically review the limitations of our method, discuss fur-
ther possible enhancements and draw conclusions on
applications.

2 Background
In the literature, there are different approaches for the
modeling of ride-pooling and ride-hailing services in the
context of travel demand models. However, many
methods do not fully integrate ridesourcing services into
travel demand modeling but perform ex-post calcula-
tions on the possible bundling of trips. This may be
combined with a new mode choice option and thus new
demand for the ridesourcing service, creating an iterative
process. An example is the PTV MaaS Modeller [16].
The demand from a (macroscopic) Visum model is dis-
aggregated and subsequently bundled into rides. This is
done with an algorithm used in logistics that solves a se-
quence of vehicle routing problems. Another modeling
approach is presented by Friedrich et al. [8]. In their al-
gorithm, ride-pooling tours are created within the

aggregated travel demand software Visum. The core of
this algorithm is to investigate if new ride requests can
be integrated into the shortest trip route of an already
planned tour. However, this approach simulates groups
of people instead of agents and vehicles.
In agent-based models, such as SimMobility and

MATSim, extensions to model ridesourcing services and
other dynamic modes exist [15] [12]. In SimMobility, au-
tomated mobility-on-demand services are integrated in
the pre-day-simulation which iterates towards an
optimum, meaning that in mode choice decisions, only
experienced travel times and cost are considered [2].
MATSim also uses an iterative approach based on expe-
rienced cost or benefits [1]. Using MATSim, an algo-
rithm to check how ride requests can be included into
an already existing tour in order to simulate a fleet of
shared taxis was developed [5]. Also, an alternative ap-
proach to modeling a ride-hailing scenario with autono-
mous vehicles to replace all privately owned cars exists
[4]. However, runs with 100% population may become
challenging computing-wise, as a high number of itera-
tions is required to achieve reliable results. Furthermore,
MATSim does not directly perform mode choice in the
sense of discrete choice theory. By doing so, such models
may be used to determine willingness-to-pay measures
as well as the value of time.
In the following, we present an integrated approach with

discrete choice models for mode choice in an agent-based
environment in which the whole population (100%) can
be simulated in a rather small computing time. This way,
we simulate interdependencies between the requests of
different agents and the possible waiting and travel time,
and thus mode choice on an individual level.

3 Travel demand model development and
evaluation framework
3.1 Travel demand model mobiTopp
mobiTopp is an activity- and agent-based travel demand
model, in which every person, household and car of the
study area is modeled [13, 14]. People are modeled as in-
dividual decision-taking agents. The decisions are taken
situation-dependent based on the current location, the
agent’s properties and the interaction with other agents.
mobiTopp consists of two parts, the initialization (so-
called long-term module) and the simulation (so-called
short-term module). In the long-term module, the syn-
thetic population with its agents is modeled, i.e., the
population with its attributes such as place of residence,
car ownership and occupational status. This is based on
structural data and representative samples of activity
patterns, among others. In the short-term-module, travel
demand based on the long-term module is modeled.
Travel behavior is simulated by applying destination and
mode choice models sequentially for each trip of an

Wilkes et al. European Transport Research Review           (2021) 13:34 Page 2 of 10



agent. For the destination choice, two types of activities
are distinguished: activities at fixed locations (previously
set during initialization, e.g., working location) and flex-
ible locations (e.g., leisure and shopping). A mode choice
follows the destination choice for each trip.
By default, mobiTopp supports five travel modes:

walking, cycling, public transport, car as driver, and car
as passenger. The actual choice set for each situation
consists of a subset of these five modes, considering the
availability of each mode. For instance, if one car is
available in a household, only one household member at
a time can use it as a driver. The mode choice itself is
made by a Multinomial Logit Model using the choice set
of the available modes. The utility function may contain
variables like distance, travel time, travel cost, transit
pass ownership, and sociodemographic variables.
mobiTopp is released open-source with multiple ex-

tensions and has been used in several projects already,
with different objectives of study. A model of the Region
of Stuttgart has been built and used for several prob-
lems, e.g., analyzing the effects of electric and hybrid
cars on electricity demand [19], gaining more insights
into public transport passenger trips [6] as well as
station-based and free-floating carsharing [10]. By com-
bining mobiTopp with MATSim, it is also possible to
use a complete agent-based toolchain [7]. Furthermore,
mobiTopp models for the area of Karlsruhe (Germany)
and Hamburg (Germany) are being developed.

3.2 New Ridesourcing extension
In standard mobiTopp, the travel times and costs for
each mode and origin-destination-pair are provided
through static matrices differentiated in several time pe-
riods a day. For regular modes this is sufficient. For ride-
sourcing particularly strong interdependencies between
the actions of different person agents exist. This is be-
cause the vehicle tours are planned on-demand based on
the requests. This influences the vehicles’ locations and
the vehicles’ tours, which in turn influence travel and
waiting times for other person agents. Consequently, the
approach of static matrices, which are calculated before
the simulation start, is not sufficient for these services.
Therefore, new methods (classes) to handle a fleet of

vehicles are introduced. They gather the most suitable
vehicle for a given ride request and determine travel and
waiting times dependent on the current locations by the
vehicles and the current bookings by other agents. These
new classes return this information during the mode
choice by an agent. The agent is not required to book at
this moment. Instead, first the travel and waiting time
for all modes is gathered, then the decision for a specific
mode is performed. If the ridesourcing mode is chosen,
the ride is booked and this booking is considered in the

tour of the vehicle and as such considered in future re-
quests by other agents.
There are several possibilities of how the vehicle fleet is

managed in detail, which determines how users are
assigned to vehicles and thus the calculation of travel and
waiting times. We include a simple algorithm for both
ride-hailing and ride-pooling, which uses an insertion-
based heuristic. Vehicles for ride-pooling may take several
users at a time and may perform detours to pick them up,
which affects the travel or waiting time of other users. In
contrast, rides in ride-hailing vehicles are performed
strictly chronologically by the time of their requests.
The vehicles are assigned in a fixed manner to the ride

requests, i.e. no re-assignment between the vehicles to
the passengers to optimize the bundling of requests is
performed. The travel times between the traffic analysis
zones are retrieved by origin-destination matrices. How-
ever, for every pick-up and drop-off action, extra time is
added, which represents the time required for the ve-
hicle to stop at a suitable location and for passengers to
enter or leave the vehicle.
Several operator-related features have been imple-

mented and may be configured. An overview on these
configuration parameters is given in Table 1.
The maximum tolerated waiting time is configured

with the parameter tmax _waiting. If the best offer among
all ridesourcing vehicles exceeds this waiting time, this
ridesourcing service is not available, i.e., the ridesourcing
request is rejected.
Rides of different users are only pooled in one vehicle

if the required detours for pick-up and drop-off do not
exceed certain thresholds. These thresholds are defined
relative to the originally planned waiting and travel times
for those users who are impacted by the detour because
of delayed departure (additional waiting time) or delayed
trip travel time (additional travel time). The maximum
additional waiting time is defined with the parameter
tmax _ increase, waiting and the maximum additional travel
time with the parameter tmax _ increase, travel. If picking up
a user would imply a larger detour, the ride request is
rejected.
The cost calculation for the trip may be based on costs

per minute of ride ct(t), distance between origin and des-
tination cs(s) and a base fee cbase. The price offered to
the agent is the sum of these cost components or (if this
is smaller) the maximum costs defined with the param-
eter cmax.
A rather simple algorithm for relocating unused vehi-

cles is also included. This is handled with predefined re-
location destination zones, which must be seen as zones
with high demand and sufficient parking infrastructure.
As soon as the last agent has alighted a vehicle and no
other ride is registered for that vehicle, the vehicle will
move in an empty run after a customizable waiting time

Wilkes et al. European Transport Research Review           (2021) 13:34 Page 3 of 10



(twait _ until _ relocation). Within the current implementation,
the destination of this empty run is the closest relocation
destination zone. Other strategies which, e.g., consider
the current demand, could be implemented as well.
This algorithm can be extended to include more ad-

vanced strategies, concerning e.g., the relocation or re-
optimization of vehicles. Alternatively, an external ve-
hicle fleet management with more sophisticated vehicle
control strategies can be connected to mobiTopp.

3.3 Evaluation scenario
The ridesourcing service schemes simulated for this
paper are based on a mobiTopp model for the region of
Stuttgart [9]. The model consists of around 2.7 million
agents, which represent the whole population of that re-
gion. However, in the following, we focus on the city of
Stuttgart only, which is the inner part of the region. The
basic model is extended by a ridesourcing service using
the algorithm described before. The mode choice model
parameters used for ridesourcing services are, in this
study, the same as those used for public transportation.
The present model also differs from the original model
with respect to simulation duration: we simulate one day
(Monday) only instead of a full week.
For our analyses, we use six different model variations

with different ridesourcing service schemes. We imple-
mented an exclusive ride-hailing service in two varia-
tions and implemented a ride-pooling service in three
variations. For comparison, we further have a business
as usual (BAU) variation without any ridesourcing ser-
vice. Except for fleet size, and in one variation the pri-
cing, the configurations are identical. The operating area
is the city of Stuttgart – only trips with both origin and
destination inside of Stuttgart can be made with these
services. Around 1.6 million trips fulfill this criterion.
We further defined 20 relocation zones throughout that
area, which are also used as initial positions of the vehi-
cles. For ride-pooling, the vehicles have a capacity of
four passengers. For ride-hailing, the capacity per vehicle
is one passenger.
Costs for a ridesourcing trip are calculated distance-

based at 0.60 € per kilometer (cs = 0.60 €, ct = 0). A fee of

cbase = 1 € is added for each booking to avoid that too
short trips are performed with the service. Each trip has
a maximum price of cmax = 10 €. These costs are similar
to public transport prices. In reality, these prices might
be too low for the exclusively used ride-hailing service;
however, we used these values to compare more easily
the results of the different service types. For the vari-
ation with elevated price, the values are multiplied with
1.5, giving cs = 0.90 €, cbase = 1.5 € and cmax = 15 €.
After a waiting time of 10 min (twait _ until _ relocation),

empty vehicles move to the closest relocation zone. For
the ride-pooling service, the maximum detour allowed
for one trip is 15 min for travel time (tmax _ increase, travel)
and 10min for waiting time (tmax _ increase, waiting).

4 Results
4.1 Internal effects of different ridesourcing schemes
In Table 2 we show different key figures related to the
ridesourcing services in the different variations. They are
based on trips made with the ridesourcing services only.
The overall booking numbers show an almost linear in-
crease in proportion to the number of vehicles. This ob-
servation lends plausibility to the assumption of an even
higher potential demand for ride-pooling services. While
the ride-pooling vehicles show between 103 and 115
bookings per vehicle, the number of bookings for the
ride-hailing service is between 65 and 72. The number
of vehicle kilometers traveled is higher for the ride-
hailing service compared to the ride-pooling service. At
the same time, the passenger-kilometer numbers are
roughly doubled for the ride-pooling service. This is ex-
plained by the different occupancy of the vehicles. While
the ride-pooling services show around 2.2 to 2.4 passen-
gers per vehicle, for the ride-hailing service this figure is
around 0.9. The decreased amount of vehicle kilometers
for the ride-pooling service can be explained with the
fact that due to the higher number of bookings, more
“dead” times for pick-up and drop-off occur in which
the vehicles do not move.
The average occupancy decreases with more vehicles

available. This is plausible, as with more vehicles, more
vehicles exist that cover the demand. The average

Table 1 Overview of configuration parameters for ridesourcing

Name Parameter Name Parameter

Time-related parameters

tmax _waiting Maximum waiting time twait _ until _
relocation

Waiting time until start of relocation

tmax _ increase,

travel

Maximal extension of the travel time [min] (only ride-
pooling)

tmax _ increase,

waiting

Maximal extension of the waiting time [min] (only ride-
pooling)

Cost parameters

ct(t) Costs per minute [€] cbase Base fee per ride [€]

cs(s) Costs per kilometer [€] cmax Maximal price per ride [€]
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distance traveled per booking decreases with an increas-
ing number of vehicles. This co-relates to a decreasing
average length of detours within each tour. A higher
number of vehicles probably leads to optimized tour
planning and lower mileage.
The mean distances between the origin and destin-

ation of the rides are similar for both service types.
However, due to the detours required for pick-up and
drop-off actions, the effective distance traveled, as well

as the average travel time per booking is significantly
higher for ride-pooling.
The ride-hailing services show higher waiting times

and lower average travel time. Consequently, the trip
speed (based on the shortest path between origin and
destination, i.e., not considering detours due to pick-ups
or drop-offs in between), including waiting time, is
higher for the ride-hailing services. The differences be-
tween the variations with elevated and regular price are

Table 2 Resulting key figures for the exemplary variations

key figure Ride-pooling
200 veh.

Ride-pooling
1600 veh.

Ride-pooling
1600 veh., price+

Ride-hailing
200 veh.

Ride-hailing
1600 veh

provider

number of bookings 23,058 165,104 164,934 14,377 104,249

mean number of bookings per vehicle 115 103 103 72 65

mean passenger kilometers per vehicle 917 km 731 km 733 km 361 km 327 km

mean vehicle kilometers traveled 294 km 266 km 266 km 366 km 335 km

mean simultaneous occupancy (passengers/vehicle)a 2.38 2.21 2.24 0.86 0.85

single trips

mean distance between origin and destination per booking 4.86 km 4.79 km 4.81 km 5.03 km 5.02 km

mean effective distance traveled per bookingb 7.95 km 7.09 km 7.11 km 5.03 km 5.02 km

mean travel time per booking 26 min 8 s 23 min 16 s 23 min 18 s 14 min 1 s 14min 1 s

difference between planned travel time and actual travel time 6min 41 s 6 min 22 s 6 min 22 s 0 s 0 s

user

mean costs per trip 3.91 € 3.87 € 5.82 € 4.01 € 4.01 €

mean waiting time 16 min 8 s 13 min 38 s 13 min 33 s 18 min 23 s 17min 35 s

journey speed incl. Waiting time 6.4 km/h 7.4 km/h 7.4 km/h 8.5 km/h 8.7 km/h

journey speed excl. Waiting time 12.0 km/h 13.3 km/h 13.3 km/h 20.5 km/h 20.5 km/h
aMean occupancy for the periods in which the vehicle is moving passengers or is on the way to a passenger. Idling periods are ignored. Periods in which vehicles
are moving between passengers or towards the first passenger are considered with an occupancy of 0. b Includes detours due to pick-up/drop-offs by
other agents

Fig. 1 Distances covered per booking in the different variations
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very small: while the costs per trip increase proportion-
ally to the price change, the other figures hardly change.
This is explained with a low price sensitivity in the mode
choice parameters used in this model.
Figure 1 shows the distribution of distances within the

ride-pooling variations with different vehicle fleet sizes.
While the proportion of trips from 9 km onwards is
nearly identical, differences are notable on shorter trips.
Ride-pooling is more intensely used for trips of up to
two (200 vehicles) or three kilometers (1600 vehicles).
Furthermore, for ride-pooling with an increasing num-
ber of vehicles, the proportion of short trips increases
while the proportion of longer trips decreases. We ex-
plain this as follows: With a larger fleet the waiting time
is less, as it is more probable that a vehicle is close by.
As slight time changes have a larger relative impact on
short travel times, ride-pooling becomes more attractive
for short trips.
The usage of the vehicles over the course of a day in

the different variations is presented in Fig. 2, using the
mean occupancy by all vehicles. It is well observable that
while in the 200 vehicles variations the occupancy
reaches its maximum values at around 6.00 h, the 1600
vehicles variations start to have these between 7.00 and
8.00 h. Generally, the mean occupancy is highest in the
ride-pooling variation with 200 vehicles, reaching a
mean occupancy of up to three passengers per vehicle
simultaneously. The 1600 vehicles ride-pooling variation
has slightly lower values, and from 20.00 h it lowers sig-
nificantly. The ride-hailing variations have values slightly
below 1. These values do not lower significantly at the
end of the day for the 1600 vehicles variation, which
shows that they are still utilized.
In Fig. 3 we show the number of passengers over the

course of the day for the ride-pooling services. It is

observable that at around 24.00 h approximately 50% of
the vehicles have only zero or one passenger in the 1600
vehicles variation. In contrast, the same number of vehi-
cles is filled with three or four passengers at the 200 ve-
hicles variation. Thus, while there is still sufficient
demand to fill the 200 vehicles, the 1600 vehicles are not
needed anymore at this time of the day.
Figure 4 shows an example of one random vehicle

from the variation with 1600 vehicles. The figure shows
its activities in one day, presenting pick-up and drop-off
events, empty runs, and utilization rates on an individual
level. Based on the data available for the movements of
each vehicle during one day, it would also be possible to
show spatial representations (e.g., for the areas the ve-
hicle is moving in to carry passengers in the course of
time).

4.2 External effects of different ridesourcing service
schemes
The change of the share at the trip-based modal split
per mode in the different variations is shown in Fig. 5. It
is calculated based on the trips performed in the city
area and shows the relative change of the modal split of
each mode compared to the BAU variation (i.e., a value
of − 10% means that the share of this mode is lowered
by 10%). It is observable that – with the given configur-
ation – the shares of public transport and car as passen-
ger are influenced most by ride-pooling. For ride-hailing,
car as passenger is much less influenced. Furthermore,
slight differences can be observed regarding the 1600 ve-
hicles ride-pooling variations with different price levels:
at higher price level, the bike share is less impacted,
while car as driver is chosen less often. Further analysis
on the reasons of these findings may be undertaken with
the data of the simulations.

Fig. 2 Mean occupancy of ridesourcing vehicles over the course of a day
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In Table 3 the changes of vehicle miles traveled for the
modes “car as driver” and the ridesourcing modes in the
different variations compared to the BAU variation are
presented. For the given services, the amount of add-
itionally driven vehicle kilometers of the ridesourcing
modes surpasses the saved vehicle kilometers by the car
mode, most notably for the ride-hailing services. Table 4
shows the changes of passenger miles traveled per mode.
While the overall number of passenger kilometers re-
mains roughly equal, the mileage of public transport is
decreased most in all variations. As no realistic parame-
ters for mode choice were used for these simulations,

these results should not be overinterpreted but must be
seen as a demonstration for possible analysis.

5 Discussion
The new extension for mobiTopp allows to model ride-
sourcing services with full integration into mode choice.
With different fleet sizes, we get different service quality
(travel times, waiting time, costs), which has a direct im-
pact on the usage of the ridesourcing mode as well as on
the usage of other travel modes. The results presented
above show that the extension works as expected and is

Fig. 3 Distribution of the number of passengers in ride-pooling vehicles over the course of a day

Fig. 4 Analysis of usage by a single vehicle
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sensitive to changes of input parameters such as fleet
size and costs.
Due to the microscopic approach of the modeling

framework, service configuration parameters such as
fleet size, maximum waiting times, or detour factors can
be used in a similar way as they are used in real services
– it is not required to recalculate these properties to fit
them into the model. Therefore actual service schemes
can be simulated relatively easily in the model.
The ridesourcing services can be analyzed with a wide

range of possibilities. We can evaluate the services and
their effects in a macroscopic way, analyzing times and
points of high demand. Additionally, due to having the
vehicles as agents, we can gather performance data on
microscopic level, analyzing the occupancy of vehicles
during the course of the day and other aspects. Further
analysis on different phenomena may be performed (e.g.,
spatial or temporal analysis of the occupancy).
Concerning effects on other modes, we see that in our

simulations mostly public transport and “car as passen-
ger” decrease when ridesourcing services are introduced.
This is due to the mode choice parameters and the ride-
sourcing configuration used in this example model. The
model configuration is set in such a manner that cost
changes only have a small impact on the probability of

usage. We did not provide realistic results on modal
shifts in this paper but presented the simulation results
as a technical demonstrator. For future work it is neces-
sary to carry out additional surveys on customers’ will-
ingness to pay and other factors influencing the usage
potential of ridesourcing services (e.g., using stated
choice interviews). Calibrating the model using realistic
mode choice parameters, among other aspects, would
then enable to study effects of real services.
Currently, the mode choice is made based on the wait-

ing and travel time offered to the agent at the time of
the ride request. However, due to detours by bookings
that occur afterwards, travel time for ride-pooling is
around 30% higher at the end of the trip. This is cur-
rently not considered in the mode choice. In reality,
people would know that they have to consider a certain
detour factor, or the provider would already include a
certain extra time when the person performs his book-
ing. An approach to overcome this may be through add-
ing a detour factor to the travel and waiting time.
Even though the computing performance was not in

the focus of the development yet, we are able to simulate
relatively huge fleets in 100% models with satisfying
computing time (e.g., one simulation day with 1600 ride-
pooling vehicles with high demand in 77 h). We estimate

Fig. 5 Change of modal split

Table 3 Changes of mileage compared to BAU variation - vehicle miles traveled [km]

mode Ride-pooling
200 veh.

Ride-pooling
1600 veh.

Ride-pooling
1600 veh., price+

Ride-hailing
200 veh.

Ride-hailing
1600 veh

car as driver - 19,642 - 118,092 - 118,281 - 8646 - 56,714

ride-pooling + 58,825 + 424,864 + 425,587 0 0

ride-hailing 0 0 0 + 73,285 + 536,738
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that due to the strong interdependencies between the
choices of different agents and because the vehicles have
a rather small capacity (compared to other means of
public transport), using 100% models is necessary for
simulating ride-sourcing services. Compared to other
simulation frameworks, no or only a small number of it-
erations is needed. Therefore, performing simulation
runs with the whole population (100% models) is feas-
ible. To simulate even larger fleets and to be able to
analyze more variations, further research and develop-
ment in improving the efficiency of the algorithms and
in speeding up the simulation would be required.
Many further questions may be investigated using this

modeling approach. This includes integrating other as-
pects to assess welfare impacts of different MaaS
schemes, as done in [3]. It is possible to simulate ride-
pooling and ride-hailing services simultaneously, the ef-
fects of such coexistence could be analyzed. Different
fleet control algorithms may be evaluated. Additionally,
we think that further research regarding understanding
the distinguishing factors of different service schemes is
needed. In mobiTopp, it is possible to simulate full
MaaS schemes, including a transit pass ownership, inter-
modal trips, and other mobility-on-demand services.
Performing such simulations bears further potentials.

6 Conclusions
As ridesourcing services are gaining popularity and im-
portance, the need arises to incorporate them into travel
demand models. For these individual services, a micro-
scopic travel demand model is the most suitable option
in transportation planning. This paper has shown how
these services may be simulated in the microscopic
travel demand model mobiTopp and which possible ana-
lyses result from this integration. With this module, be-
sides research, city planning authorities and mobility
service providers are able to scale future mobility solu-
tions by modeling, as well as determine effects and inter-
dependencies with other transport modes. In this paper,
we demonstrated the possible options for analyses using

a scenario with five different fleet sizes for ride-pooling
and ride-hailing services operating in the city of
Stuttgart.
There are several limitations in the results of the pre-

sented scenario, which thus mainly served as a technical
demonstrator. Most of all, we used the same decision
parameters for the mode choice of public transport and
ridesourcing services. In the future, these parameters will
be replaced by data gained from surveys explicitly cover-
ing the use of ride-hailing and ride-pooling vehicles. In
addition to the analyses described above, with this add-
itional data we will be able to show more realistic results
concerning the expected demand changes and mode
shifts within the different scenarios.
The results could be used both in planning and in sup-

plying ridesourcing solutions. Running simulations with
different prices for these services would lead to different
demand, which lead to different detour factors and vari-
ations in costs. Service providers could plan their ser-
vices according to their goals and then test these goals
using mobiTopp simulations. Thus, services can be opti-
mized with regards to costs and profits as well as to
meet demand as best as possible.
With this newly developed module for the travel de-

mand model mobiTopp new mobility services can be
modeled in a detailed and complex fashion as shown in
the paper. Shortly, we will offer the ridesourcing module
as an open-source extension. Researchers, service pro-
viders and other possible users will then be able to simu-
late such services including interdependencies with the
rest of the transport system.
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