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Abstract

Intelligent Transportation Systems (ITS) applications in public transportation have allowed for automated data
collection, which is particularly useful for planning and operations. While technological advancement of ITS has so
far been extensive, their usage for developing relevant planning and operational tools is rather limited. Research on
planning and operations of public transportation systems has not widely investigated the potential of combining
optimization models with data originating from ITS. Such applications, which could benefit from such an approach
include route planning, scheduling and resource allocation in real time. In this context, this paper investigates and
critically discusses potential models and methodologies in public transport planning and operations, which can
benefit from [TS data, highlights their potential and identifies possible research paths on that area. The overview of
literature collectively points to a series of common challenges faced by transportation professionals and underlines

the need for better decision support tools for ITS data.
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1 Introduction

The application of advanced communication, electronics
and information technologies for improving the efficiency,
safety, and reliability of transportation systems is com-
monly referred to as Intelligent Transportation Systems
(ITS) [1]. ITS have enabled the automated collection of
transportation data and their efficient transmission, allow-
ing for better, more informed decisions, primarily in
“real-time” operations. ITS data exhibit qualities of high
volume and continuity in time, which introduce new op-
portunities in transportation research and practice.

Up to now, developments in ITS have mostly focused
on the hardware side, with sophisticated data collection
systems applied in daily operations. Nonetheless, soft-
ware components exploiting ITS for planning and deci-
sion- making, have been developed to a lesser extent.
For instance, ITS data exploitation for public transport
strategic planning has only recently attracted attention,
as sustainability has become a pressing issue of modern
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times. Various ITS applications have enabled informa-
tion collection on several fronts, such as performance of
public transport, ridership and demand patterns [2, 3].
Examples include Automated Vehicle Location (AVL)
systems, which aid monitoring of schedule adherence
and permit more accurate development of schedules,
electronic fare payment systems and automatic passen-
ger counters, which allow for the collection of detailed
ridership data, and computer-aided dispatch systems
that help travel patterns to be tracked. As Chapleau et
al. [2] note, “smart card transactions data combined
with AVL and GIS (Geographic Information Systems)
constitute the ultimate survey for transit planning’.
However, the exploitation of such data in order to im-
prove strategic and operational planning of transporta-
tion systems has so far been overlooked by the research
community [4].

Currently data availability offers numerous opportun-
ities for analysis and extraction of information, yet a
small fragment of that information is exploited [5]. In
most cases, data transmitted by Geographical Position
Systems (GPS) and other equipment are processed by
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operators, while no commonly accepted decision sup-
port system exists for analyzing them [6]. Nevertheless,
operations research methods have the potential to assist
decision makers, by transforming huge data streams into
meaningful information; these methods can be used not
only to evaluate the performance of public transport, but
also predict future conditions and generate solutions to
planning problems.

The contribution of optimization models in ITS- sup-
ported decision making is three-fold. First, the advent of
ITS data undoubtedly opens new research paths for
optimization models in public transportation, allowing for
the investigation of topics, which require the fine
spatio-temporal granularity provided by such data (such as
the identification of supply and individual mobility pat-
terns) [3, 4]. Second, the availability of real-time informa-
tion necessitates suitable modifications to assignment and
trip planning algorithms, to account for passenger route
choice behavior and handle the dynamic nature of data [4,
6]. Third, the lack of matching socio-economic and trip
purpose attributes for trips captured through ITS records
calls for the development of appropriate methods, which
infer required information for model estimation [2, 3]. Evi-
dently, optimization algorithms have a vital role in advan-
cing the state-of-practice towards data-driven public
transport planning.

The scope of this paper is thus to systematically and
critically review the literature on optimizing public
transport systems and services, using AVL and Auto-
matic Passenger Count (APC)/Automatic Fare Collec-
tion (AFC) data. The literature on optimization models
supported by ITS data has not been systematically
reviewed so far, while relevant implementation and
methodological issues have not received much attention.
Furthermore, a comprehensive theoretical framework or-
ganizing such efforts is missing. As such, this study aims
to fill research gaps, by systematically organizing existing
work and identifying future research paths.

2 Literature review

The problem of planning efficient public transport sys-
tems subject to operational and resource constraints is
not tractable and thus usually treated as a sequence of
sub-problems solved at different stages [7]. There are
four distinct stages: strategic, tactical, operational and
real-time. At the strategic level, the design of the net-
work and passenger assignment are typically examined
as part of a long-term planning process. The tactical
planning stage refers to determining operational charac-
teristics of services, namely frequencies and timetables,
while operational planning pertains to scheduling and
dispatching problems. Finally, real-time applications deal
with daily operations and refer to control strategies.
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Herein, reviewed studies are classified as strategic, tac-
tical, operational and real-time, based on the decompos-
ition of public transport planning into stages, as proposed
in [7]. Furthermore, as certain studies may fit under more
than one category, these are classified depending upon
their prevailing research focus.

2.1 Strategic level

The value and potential of ITS data for strategic planning
has long been recognized [3, 4, 8]. Long-term transport
planning usually exploits data derived from surveys; these
lead to a static and confined picture of travel patterns, at-
tributed to the long intervals between survey updates and
limited samples [3-5]. In contrast, AFC data allow for
monitoring individual travelers over long periods of time,
thus contributing to an improved understanding of travel
behavior mechanisms [3]. The exploitation of AFC and
AVL data in this line of research allows for incorporating
temporal and spatial demand variations and dynamic pat-
terns into existing models [3, 5]. In this context, relevant
studies have mostly dealt with calibration of transit assign-
ment models. The main driver of this research direction
has so far been the enhancement of accuracy in transit de-
mand modeling.

2.1.1 Transit assignment

In traditional transit assignment models, passengers are
assumed to have no information on actual vehicle arrival
times and therefore, attractive path sets for passengers are
derived based on the approximation of average traveler
behavior [9, 10]. AVL systems however can provide pas-
sengers with actual information on vehicle arrivals, signifi-
cantly affecting boarding decisions [9]. Furthermore, AFC
data can reveal actual route choices and allow for con-
structing more accurate and diversified sets of potential
traveler paths [10]. In this context, ITS data have been
mostly used to calibrate transit assignment models and
improve accuracy in route choice estimation.

AVL/AFC data can aid in realistically modeling head-
ways and travel patterns, and therefore improve route
choice models [9-11]. Often, headways are assumed to
follow an exponential distribution, a hypothesis which
simplifies transit assignment models, as it does not require
a complete enumeration of all possible transit paths [9—
11]. In this context, relevant research work focuses on
using either AVL or AFC data for determining improved
travel paths in transit networks [9-11] and for calibrating
and/or validating transit assignment models [12-16].

In the same context, the use of AFC data as input in
agent-based, microsimulation models has been investi-
gated in the literature, as AFC transactions have the ad-
vantage of capturing the behavior of individual passengers
at an improved spatio-temporal resolution [3]. Indeed, the
disaggregate nature of AFC data permits the development
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of direct demand models, which emulate travel demand
dynamics, based on observed patterns and reduce model-
ing effort for agent-based simulation [17]. Relevant studies
used AVL and AFC data as inputs for agent-based microsi-
mulation models developed in the open-source platform
MATSim [18]; these models were used for realistically cap-
turing route choices [17], inferring daily activity patterns, in
conjunction with socio-demographic and land-use data [19,
20], and assessing the impact of pricing policies on travel
patters [21, 22].

Nevertheless, the inability to directly derive trip pur-
pose and capture trips made on other transport modes
confines the usefulness of AFC data [17, 19-22].

2.1.2 Network design

Traditionally, strategic network planning has been based
on fixed demand and travel times representing average
conditions, while the design process has relied on ex-
pected passenger flows derived from travel surveys,
socio-demographic data and the application of transit as-
signment models [4, 23, 24]. The availability of observed
demand and supply patterns from ITS streams presents
a unique opportunity for transitioning to data-driven de-
sign in public transport. Depending on the nature of in-
formation available, revealed performance issues or
mobility patterns can be exploited and appropriate de-
sign objectives can be defined for planning public trans-
port networks. So far, few studies focus on adjusting bus
route networks based on AVL data to improve perform-
ance [4]; these include bus route generation and sched-
ules [23], optimal stop spacing [25] and inferring trip
patterns along with bus network design [26].

2.2 Tactical level planning

Tactical level planning may largely benefit from longitu-
dinal ITS data; APC/AFC and AVL data available over
time, can capture frequent mobility patterns [2, 3, 8] and
reliability issues [4], respectively. Indeed, AFC data aid in
incorporating temporal and spatial demand variability in
tactical planning, as well as assessing traveler response to
service adjustments [2, 3]. Typically, in tactical-level deci-
sions, demand is assumed to be a-priori known [27], yet
in the presence of AFC data, several studies attempt to es-
timate origin — destination (OD) matrices in the context
of timetable/frequency/level of service adjustments. Such
studies are characterized as tactical, as the main driver is
the improvement of the service offered to passengers [7].

2.2.1 Optimal timetabling

Outcomes of studies focusing on optimal timetabling
studies are highly related to data availability and detail
level. For instance, APC data have been used to distin-
guish homogeneous bus ridership patterns and deter-
mine distinct bus headways [28] and loop detector data
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have been exploited for generating optimal bus sched-
ules assuming constant headways [29]. On the other
hand, the existence of AVL data contributes into expli-
citly considering travel time and headway variability
throughout the day in timetable design [30, 31].

Temporal demand patterns have also been extracted
using APC/AFC data and incorporated in multi-period
timetabling optimization models, to account for demand
variation over time [32-35]. Such patterns were inferred
from AFC data and incorporated in timetabling
optimization models [32, 34], while historical AVL and
APC data were exploited to obtain reliable bus dispatching
headways [33] or generate optimally coordinated timeta-
bles [35].

Overall, the lack of passenger arrival information has
been a limiting factor for timetabling studies; researchers
have so far resorted to the use of widely accepted as-
sumptions on passenger arrivals at bus stops; alterna-
tively, waiting times can be accurately estimated by
using video footage, crowdsourced mobile application
data [32] or by subtracting vehicle arrival and AFC time-
stamps [35].

2.2.2 Origin-destination and transfer inference

Service improvement decisions are contingent upon the
availability of route load profiles and preferred route
choices by transit users [3]. Regular travel surveys, albeit
of limited temporal and spatial coverage, provide full trip
details, including actual trip origins and destinations [2,
3]. On the contrary, extended AFC datasets can reveal
ridership patterns over a long timeframe for the entire
service network, yet a series of enrichment and inference
methods are required in this case to deduce linked trips
and journey edges [2, 21]. A popular field for these ap-
plications is that of bus systems without exit control; in
such cases, the alighting stop must be inferred in order
to generate trip sequences [36]. These studies may be
characterized as tactical, as they can be used for service
adjustments and better management of passenger flows
[3]. The contribution of optimization methods is rather
significant in this research area, as ridership estimation
relies on the enumeration of feasible paths, which obvi-
ously leads to computationally intractable problems.
Thus, the development of suitable and computationally
tractable optimization models has allowed for inferring
trip patterns from AFC data, while also exploiting large
amounts of temporal information [37].

Several studies have developed algorithms to estimate
origin-destination (OD) related data and structures using
AFC data: Trépanier et al. [38] exploited AFC data to ac-
count for similarities between trips over successive days
and identify transit alighting points, while Munizaga and
Palma [39] combined AFC and AVL data to describe
travel patterns for metro and bus trips. Other efforts
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focused on using AFC/APC data for modifying the itera-
tive proportional fitting (IPF) method [40], which has
been widely applied for estimating route-level OD matri-
ces from boarding and alighting counts [41, 42]. In de-
tail, as a seed OD matrix is required for IPF
implementation, Ji et al. [42, 43] derived such a matrix
within hybrid IPF-based methodologies, using APC data.
The simultaneous presence of AFC and AVL/farebox data
has also been exploited within rigorous estimation algo-
rithms to overcome the difficulty of distinguishing short
activities from transfers when trying to identify linked
trips [43-47].

In the same research direction, researchers attempted
to model route choice under known trip origins and des-
tinations for estimating passenger flows. A main contri-
bution of AFC data in this case is the imputation of
passenger behavioral choices. This allows for readjusting
optimization objectives and quantifying the disutility of
factors such as transfers and waiting times. Related stud-
ies have so far referred to urban railway networks, due
to the availability of both entry and exit point AFC
transactions in them and involved route choice modeling
[48-50] and the identification of flows in network trans-
fer points [51-54].

2.2.3 Activity modeling

The high spatio-temporal resolution of AFC data gathered
over long time periods creates an advantageous setting for
exploring the underlying mechanisms of travel behavior
compared to traditional survey collection methods [3].
Nonetheless, AFC data do not capture socio-economic
and trip purpose attributes, contrary to household and on-
board travel surveys [19-21]. To overcome this limitation
and improve the understanding of passenger behavior,
some tactical-level studies have focused on devising ap-
propriate methodologies for the identification of activity
patterns [44]. In contrast to rule-based approaches, rigor-
ous methodologies can yield more robust estimates for
home locations and trip purposes [37, 55].

Most studies on activity and pattern detection have
adopted segmentation approaches for the identification of
homogeneous groups of transit users and frequent travel
patterns using AFC data. Indeed, the presence of longitu-
dinal geospatial data has directed research attention into
clustering algorithms, the application of which is also con-
gruent with market segmentation research and can serve a
variety of policy-oriented questions [3]. A variety of clus-
tering methods have been explored so far. Agglomerative
hierarchical clustering has been employed to determine
periods of homogeneous flow [56] and distinguish users
with similar temporal behavior [57-59]. Similarly, a large
body of literature has applied k-means clustering to iden-
tify regular spatial and temporal patterns [60-62] and
understand social interactions between transit users [63].
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The suitability of the Density-Based Scanning Algorithm
with Noise (DBSCAN) for mining temporal and spatial
travel patterns has also been recognized in the respective
literature [64, 65], while modified versions of the algo-
rithm have been devised to improve performance [66] and
estimate residence and workplace locations of users [67].
As a general note, bi-level clustering procedures have been
employed to treat the spatial and temporal nature of ITS
data [68].

The aforementioned approaches utilize classic clustering
methods which largely depend upon the specification of
parameters, the specification of which warrants an exten-
sive analysis on its own. Aiming to overcome these chal-
lenges, El Mahrsi et al. [69] used generative model-based
clustering to investigate passengers’ temporal patterns and
station usage patterns. Furthermore, in most studies, clus-
tering methods are mostly applied to isolate spatial and
temporal clusters and in some cases, statistics are utilized
to estimate spatio-temporal relationships. Qi et al. [68]
pointed out that spatial or temporal travel patterns are in-
complete, as the dimensions of time and space cannot be
treated separately and proposed a suitable, three-step
methodology to discern regional mobility patterns using
ITS data. Finally, the increased computational complexity
of clustering methods renders them inapplicable for
large-scale real-world transit networks. In this context,
Kieu et al. [70] devised a spatial clustering algorithm to
generate user clusters with similar spatial and behavioral
features and highlighted its superior performance over
existing methods. As a final remark, the growing research
attention towards the application of unsupervised
methods [68, 69] and spatial analytics [67, 70] highlights
the potential contribution of these methods in the field of
activity detection.

2.3 Operational level

Operational-level planning refers to vehicle scheduling,
driver rostering, maintenance planning, as well as park-
ing and dispatching [7]. Associated planning decisions
benefit from the AVL data availability, as incorporation
of service reliability and trip time variation into typical
approaches can yield improved optimization models for
these planning tasks [4]. Still, few studies on operational
decisions have exploited AVL data, while so far, the only
problem addressed has been the generation of optimal
vehicle schedules. The associated Vehicle Scheduling
Problem (VSP) is that of the optimal allocation of ve-
hicles to trips, based on precompiled timetables, yet
in the presence of AVL data, operators can devise
more robust vehicle schedules based on observed trip
times [71-74]. Indeed, AVL data have allowed for
extracting periods of homogeneous running time [72] and
trip time probability distributions [73, 74] to determine re-
liable vehicle schedules that enhance service reliability;
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computationally efficient heuristic solution approaches
have been proposed to handle the increased problem
complexity. Evidently, there are still ample grounds for re-
search on the different sub-problems faced by operators
in the operational planning stage. The availability of APC/
AFC data can additionally allow for addressing associated
problems through the perspective of both passengers and
operators in multi-objective solution frameworks.

2.4 Real-time operations

AVL have been widely applied for real-time control of
public transportation systems and particularly for allevi-
ating bus bunching, large waiting times at stops and so
on [4]. Real-time bus location data permit the provision
of dynamic route guidance and traveler information,
contributing to reduced waiting times and an overall en-
hanced user experience [5].

2.4.1 Real-time trip planning

The advent of AVL data has enabled the incorporation of
real-time information in trip planning models. In the pres-
ence of real-time information, computationally intensive
transit planning models may be unsuitable to quickly gen-
erate optimal paths, while inherent assumptions on fixed
travel times and transit on-time performance should be
modified as well [75, 76]. Indeed, itinerary planning appli-
cations based on published transit schedules are subject to
inaccurate predictions since waiting and transfer times are
naturally time-dependent, thus require appropriate modi-
fications to be used in the real-time planning horizon [76].
Under this context, research efforts have been directed to-
wards efficient trip planning models, which explicitly in-
corporate real-time AVL data in order to accurately
represent bus arrival times.

A few studies have focused on the development of
modified shortest path algorithms in order to take into
account bus arrival information. Hickman [76] exploited
historical AVL records to derive on-time arrival prob-
abilities and determine possible passenger itineraries.
Using real-time GTFS data, Chen et al. [75] proposed a
reliability-based online trip planning model which expli-
citly considered schedule adherence and travel time un-
certainty. Capitalizing on the availability of different data
sources, Tien et al. [77] harnessed real-time AVL data
and real-time user location traces provided by mobile
devices to generate tailored trip plans.

The provision of information on alternative modes and
possible connections is reasonably more attractive to pas-
sengers yet requires the integration of additional data
sources. Under this scope, multi-modal trip planning sys-
tems using real-time GPS data from portable devices
along with real-time traffic data [78] and data from pas-
sengers’ mobile phones [79] have been presented in the
literature. In general, although ITS data are indispensable
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for the development of accurate itinerary planners, with-
out information on traffic conditions and alternative travel
options, such applications remain mainly targeted towards
regular public transport users. As such, these applications
can greatly benefit from data integration and web crawling
methods to merge different data streams.

2.4.2 Real-time control

Prior to the wide deployment of ITS, control strategies
were implemented by personnel located at designated con-
trol points; consequently, earlier control models assumed
no-real time information, rendering respective results in-
applicable in current ITS-supported transit systems [80].
The emergence of AVL systems has directed a lot of re-
search towards models for optimal real-time control, capit-
alizing on the availability of online information [4, 80].
Generally, three types of control strategies may be distin-
guished: station control (holding and station-skipping),
inter-station control and other strategies [81]. So far, several
models for optimal bus holding considering real-time infor-
mation have been proposed in the literature; the models
presented in [82, 83] considered real-time bus arrival infor-
mation, while other studies considered both online AVL
data and real-time passenger demand estimates [84—87].
The holding control problem has been formulated through
analytical models under deterministic [82] or stochastic ve-
hicle travel times and passenger loads [83, 84] and through
dynamic programming [85]. Several studies focused on pre-
dictive control, using AVL data to forecast vehicle arrival/
departures within the optimization framework [88]; GA-
based predictive control models featuring both holding and
stop-skipping strategies were formulated in [81, 86].
Exploiting real-time availability of bus location information,
rolling horizon mathematical programming models were
proposed for holding control and appropriate heuristic so-
lution frameworks, to handle increased computational
loads [87, 89, 90]. In a different approach, Yu and Yang [91]
used support vector machine regression to more accurately
predict vehicle departure times per stop and subsequently
employed GA optimization to determine the optimal hold-
ing time. A few studies directly exploited real-time APC/
AFC data to model passenger flows in holding control
optimization attempting to minimize travel times and de-
lays due to holding [80, 92-94].

However, aforementioned studies did not actually de-
termine optimal control strategies in a data-driven man-
ner, but relied on the estimation of arrival times through
prediction methodologies and simulation analysis to
evaluate proposed models [80, 88]. In this context, of
specific interest is the work in [95, 96], who explored the
practical applicability of optimal holding control models
proposed in the literature and underlined arising issues
on the topic.
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Table 1 summarizes existing publications utilizing ITS
generated data to optimize transit planning:

3 Main findings and research gaps

The emergence of ITS challenges conventional deci-
sion support methods, while at the same time creates
new research opportunities. This section identifies
data-related and methodological issues, gaps in exist-
ing literature and discusses how ITS are shaping new
pathways for developing ITS data driven models in
public transport planning.

3.1 Practical challenges arising in ITS data exploitation
The review of existing literature has shed light on cer-
tain practical issues, which have so far hindered the
widespread adoption of ITS-based models for public
transportation planning and design. These include, but
are not limited to:

e Additional data processing required: Many AVL and
AFC systems do not archive data in a readily utilized
manner, as they are primarily designed for system
monitoring [8]. This means that additional data
processing and analysis are required in order to
render this data useful to transit planners [4, 5, 96].

e Lack of integration among various data sources:
Cumbersome procedures are required, so that the
inputs required by a planning/design model, specific
practitioners” knowledge and the outputs of
monitoring systems may be consolidated in a
common framework.

e Different degrees of fleet penetration: While AVL
systems are typically installed on entire bus fleets,
the same is not true for APCs which may be
deployed on 10-15% of the fleet [8, 46]. The
availability of passenger demand data or lack thereof
dictates the analysis that can be undertaken, as
without APC/AFC the latter is inevitably limited to
operational characteristics such as speed, delay and
reliability.

e Current state of practice: The role of optimization-
based approaches has been somewhat limited to
supporting decision-makers rather than actually de-
ciding, while most studies address “stylized” problem
settings, lacking the degree of realism required in
practice [6].

e Increased computational requirements: Planning
models require the execution of more
computationally intense tasks, while traditionally
used well-known algorithms must be modified in the
case of real time information [9].

e Operators’ data-sharing policies: Certain operators
have adopted a data-sharing stance, spurring ITS re-
lated research. This, however, is not the typical case,
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as limited data sample availability is often reported
because of privacy concerns and operators’
restrictions.

3.2 Research opportunities

Combining optimization and ITS generated data for
public transport planning problems is a field with in-
creasing attractiveness by the research community. Pub-
lished work mostly deals with tactical or real-time
problems, while the lack of studies investigating design-
related and operational-level problems is observed [4].

3.2.1 Strategic level planning

Harnessing ITS data for the purpose of strategic-level
planning contributes to shifting towards data-driven and
demand responsive public transport service design. Of
specific interest is the concept of transit network re-
design [97]. While public transport network design has
been one of the most popular fields for optimization
methods [24], reformulating the associated problem in a
data-driven framework is not that straightforward. Simi-
larly, AVL data can provide insights on the actual per-
formance of public transport networks, permitting the
computation of performance metrics, which may be used
as design objectives. Furthermore, the analysis and
utilization of both AVL and APC/AFC data enables the
inclusion of social considerations, such as equity and ac-
cessibility in a realistic design process.

By integrating AFC and AVL data into Agent-based
Microsimulation models, various issues related to pas-
sengers’ response to different policies may be explored,
allowing for a more realistic representation of problems
investigated [98]. In this context, diverse passenger pref-
erences can be reproduced based on AFC, including
temporal flexibility and sensitivity to fare and service
changes, thus a series of strategic decisions, including
fiscal policy, can be evaluated [22]. Furthermore, the in-
corporation of AVL/GPS data into agent-based systems
can improve route choice and passenger behavior mod-
eling accuracy [19] and handle interactions with other
modes [17]. Overall, the strength of strategic analysis
using ITS data lies in the actual representation of supply
and demand, rendering potential long-term decisions
significantly more impactful. However, further research
is needed to explore how to exploit ITS data to restruc-
ture public transport networks and define appropriate
problem formulations.

3.2.2 Tactical level planning

Tactical planning decisions can benefit by analyzing pat-
terns of ridership and vehicle trajectories. Relevant stud-
ies have embedded statistical and simulation techniques
within optimization frameworks to account for the sto-
chastic nature of vehicle travel times captured through
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Table 1 Overview of studies using ITS data by research purpose and planning level

Author Date Data Research Purpose Level
Yan et al. 2006 Loop Detector Optimal bus route design Strategic
Liu et al. 2017 AFC Optimal bus route design Strategic
Li and Bertini 2008 AVL Optimal bus stop spacing Strategic
Poon et al. 2004 AFC Transit assignment Strategic
Fung et al. 2005 AFC Transit assignment Strategic
Vuk and Hansen 2006 APC Transit assignment Strategic
Bouman et al. 2012 AFC Transit assignment Strategic
Schmaocker et al. 2013 AFC Transit assignment Strategic
Ordonez Medina and Erath 2013 AFC Transit assignment Strategic
Lovric et al 2013 AFC Transit assignment Strategic
Zhu, et al. 2014 AFC Transit assignment Strategic
Lietal 2015 AVL Transit assignment Strategic
Chen and Nie 2015 AVL Transit assignment Strategic
Fourie et al 2016 AFC, AVL Transit assignment Strategic
Ali et al. 2016 AFC Transit assignment Strategic
Tavassoli et al. 2018 AFC, GTFS Transit assignment Strategic
Hadas and Shnaiderman 2012 AVL, APC Optimal frequency setting Tactical
Patnaik et al. 2006 APC Optimal headway setting Tactical
Gkiotsalitis and Cats 2018 AVL, APC, GTFS Optimal headway setting Tactical
Yan et al. 2006 Loop Detector Timetabling Tactical
Mazloumi et al. 2012 AVL Timetabling Tactical
Yan et al. 2012 AVL Timetabling Tactical
Sun et al. 2014 AFC Timetabling Tactical
Wang et al. 2017 AFC Timetabling Tactical
Guo et al. 2017 AFC Timetabling Tactical
Kusakabe et al. 2010 AFC Route choice modeling Tactical
Zhou and Xu 2012 AFC Route choice modeling Tactical
Van der Hurk et al. 2013 AFC Route choice modeling Tactical
Trepanier et al 2007 AFC OD flow estimation Tactical
Mc Cord et al. 2010 APC OD flow estimation Tactical
Munizaga and Palma 2012 AVL, AFC OD flow estimation Tactical
Gordon et al. 2013 AVL, AFC OD flow estimation Tactical
Jietal 2014 APC OD flow estimation Tactical
Jietal 2015 APC OD flow estimation Tactical
Xu et al. 2016 AFC OD flow estimation Tactical
Sanchez-Martinez 2017 AFC, AVL OD flow estimation Tactical
Gordon et al. 2018 Farebox, AFC OD flow estimation Tactical
Jietal 2011 AFC OD flow modeling Tactical
Ma et al. 2013 AFC OD flow modeling Tactical
Hofmann et al. 2009 AFC Transfer identification Tactical
Hong et al. 2016 AFC Transfer identification Tactical
Yap et al. 2017 AFC Transfer identification Tactical
Han and Sohn 2016 AFC Activity detection Tactical

Goulet-Langlois et al. 2016 AFC Activity detection Tactical
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Table 1 Overview of studies using ITS data by research purpose and planning level (Continued)

Author Date Data Research Purpose Level

Ma et al. 2017 AFC Activity detection Tactical
Zou et al. 2018 AFC Activity detection Tactical

Qi et al. 2018 AFC Activity detection Tactical
Agard et al. 2006 AFC Pattern detection Tactical
Morency et al. 2007 AFC Pattern detection Tactical
Agard 2009 AFC Pattern detection Tactical
Sun et al. 2013 AFC Pattern detection Tactical

El Mahrsi et al. 2015 AFC Pattern detection Tactical
Kieu et al. 2015 AFC Pattern detection Tactical
Kieu et al. 2015 AFC Pattern detection Tactical
Ghaemi et al. 2017 AFC Pattern detection Tactical
Zhao et al. 2017 AFC, AVL Pattern detection Tactical
Kieu et al. 2018 AFC Pattern detection Tactical
Shen et al. 2016 AVL Vehicle Scheduling Operational
Shen et al. 2016 AVL Vehicle Scheduling Operational
Shen et al. 2017 AVL Vehicle Scheduling Operational
Eberlein et al. 2001 AV Optimal Control Real-Time
Zolfaghari et al. 2004 AVL Optimal Control Real-Time
Yu and Yang 2009 AVL Optimal Control Real-Time
Chen et al. 2013 AVL,APC Optimal Control Real-Time
Asgharzadeh and Shafahi 2017 AVLAPC Optimal Control Real-Time
Luo et al. 2017 AVL, AFC Optimal Control Real-Time
Berrebi et al. 2018 AVLAPC Optimal Control Real-Time
Berrebi et al. 2018 AVL Optimal Control Real-Time
Hickman 2003 AVL Trip planning Real-Time
Tien et al. 2011 AVL Trip planning Real-Time
Zhang et al. 2011 AVL Trip planning Real-Time
Lietal 2012 AVL Trip planning Real-Time
Chen et al. 2016 GTFS Trip planning Real-Time

AVL records, and incorporated trip patterns exploiting
APC/AEC data.

Besides timetabling, the extraction of traveler flows
from AFC data allows for further tactical-level analyses,
rendering origin-destination inference a prominent re-
search path. The majority of earlier studies in this field
utilized fixed sets of assumptions and rules, sequentially
applied to select the most probable origins/destinations
[36, 99-102]. In contrast, optimization-based method-
ologies using AFC and AVL data can capture the effect
of service-related parameters on route-choice behavior,
improve the understanding of passenger choices during
service disruptions [49, 53], deduce missing information
[37] and estimate the percentage of transit users not
captured by AFC data [103]. Such studies have reported
improved estimation accuracy, underlining the potential of

devoting more research effort towards optimization-based
enrichment and validation processes [43, 47].

Spurred by the presence of geospatial data, as well as
the need to circumvent the lack of socio-demographic
and trip purpose information in ITS data, activity and
pattern detection has been a topic investigated in the lit-
erature [104]. Well-known clustering methodologies
have been employed to extract spatial and temporal pat-
terns from AFC data. These rely on arbitrary thresholds
and parameter values under some type of contextual in-
formation or user preferences. On the contrary, although
harder to design and implement, model-based clustering
methods can adapt to more complex data patterns and
can be used in conjunction with travel demand simula-
tion models [57, 69]. Along the same lines, machine
learning algorithms can be applied prior to segmentation,
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to transition from user-specified parameters to data-
driven inference [104]. Spatial analysis can also be
exploited to investigate the presence of spatial relation-
ships between ridership patterns and service characteris-
tics. The identification of these features can help correct
potential biases and derive underlying mobility principles
at different levels of aggregation. Such information may in
turn be used within optimization models to define more
appropriate design objectives for passenger-oriented ser-
vice adjustments or simply to ensure computational feasi-
bility in cluster-first/schedule-second schemes [20, 105].

3.2.3 Operational level planning

Overall, there is a lack of studies on operational planning
decisions using AVL/AFC data. In general, if suitably proc-
essed, ITS data can be used to reduce costs and improve
service level [106]. Specifically, because of AVL technology,
flexible routing and paratransit can be incorporated into
regular transit services, particularly for agencies operating
in low density areas. Although a few studies use AVL data
for vehicle scheduling, subsequent operational planning
steps have so far been neglected. Like timetabling and
scheduling, new problem formulations for dispatching and
parking allocation are required to deal with travel time vari-
ability. This is very important, since several operational
planning problems, such as vehicle parking and dispatching
need to be addressed daily [7]. What is more, the discrete
problems included in operational planning are computa-
tionally expensive [71]. In the case of the VSP for instance,
which is a NP-hard problem, devising computationally effi-
cient methods is a promising research area. Overall, given
the complexity of multi-period scheduling and dispatching
problems, the contribution of ITS supported optimization
methods in the operational planning stage is expected to be
significant [7].

3.2.4 Real-time operations

Real-time control strategies have significantly benefited
from the existence of AVL and APC/AFC data [4, 27].
Several directions for improving real-time control algo-
rithms may be identified in this case. Travel time predic-
tion algorithms could aid flexible routing solutions to
estimate how schedule deviations may alter running
times [107]. Few such studies were identified [76, 77], in-
dicating that this appears to be a promising research
path, which could also include performance comparisons
among different algorithms [96]. Furthermore, combin-
ing optimal control models and prediction methodolo-
gies is deemed a promising path [91], as existing studies
typically use model-based predictions for arrival times,
thus not performing a purely data-driven analysis [88].
As such,. Further, the availability of real-time passenger
demand data can significantly improve the performance
of control models in cases of overcrowding [87] and in
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the context of transfer synchronization [80]. Finally, con-
trol strategies are almost exclusively verified using simu-
lation, yet the implementation of a real-time holding
method involves technical challenges that can be over-
looked in a simulation environment [96]. Although it
can be hard to convince agencies to allow experimenta-
tion [94], such experiments lead to valuable conclusions
and advance both research and practice.

3.3 Research limitations

The advent of ITS data has undeniably enhanced model-
ing accuracy with respect to spatial and temporal charac-
teristics of mobility and highlighted new research avenues
along the way. Yet, the application of optimization tech-
niques has been relatively slower as apart from technical
challenges, a series of limiting factors are identified in the
process of devising ITS-supported models. Prominent is-
sues include the underlying data quality, the need for sup-
plementary data sources and the increased computational
burden faced by researchers.

3.3.1 Data quality considerations

Inevitably, benefits in modeling accuracy obtained by
exploiting ITS data naturally depend on the quality of
the data utilized [46, 105]. The latter is dictated by the
technical specifications of the ITS system deployed [72]
as well as the archiving process [8]. Indeed, benefits
stemming from ITS-supported decision making are
intertwined with the data reporting standards adopted
by operators. For instance, older/less advanced AVL sys-
tems produce reports which contain vehicle trajectory
data, lacking stop-level information [72], calling for
matching algorithms to couple raw location data to
route maps and schedules [8, 44]. Regardless of the type
of ITS, a series of similar data manipulation procedures
have been proposed to remove problematic entries and
impute missing values [2, 4, 44, 96]. Still, the success of
these methods is contingent on the underlying datasets,
while operator-specific data archival practice results in
peculiarities in captured data [8]. Mitigation of these
concerns is mostly dependent on public transport oper-
ator policies, through maintaining quality control and
post-processing procedures [8]. Interoperability is an-
other key issue, as the adoption of common standards
and input file specifications among agencies can advance
both research and practice [5, 8]. Interestingly, in the
realm of ITS-assisted operations, research progress
largely depends on applied practice, thus the creation of
various synergies between agencies, research institutions
and software development are crucial.

3.3.2 Supplementary data requirements
The use of ITS data may undeniably provide answers on
a broad spectrum of transportation research questions,
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from long-term planning to real-time control strategies.
Nevertheless, AFC and APC data have limitations for
some analyses, as critical elements required for decoding
traveler choices are lacking [19, 46, 105]. In this context,
demand-related issues such as mode shift behavior and
induced demand cannot be exclusively accounted for, by
solely using ITS data [17]. Furthermore, if AFC data are
available, passenger flows and activities may be inferred to
some extent, yet through a series of associated processes.
These include estimating alighting points through transac-
tion sequences, linking trips based on spatio-temporal co-
incidence and imputing trip purposes based on location
are most commonly employed [2].

Among required procedures, alighting point estima-
tion is the first and most important step for OD infer-
ence. This process requires the definition of arbitrary
thresholds for spatial and temporal proximity, reason-
ably resulting to the inability of linking a significant por-
tion of individual trips [39]. In this case, the validation
of inference methodologies is contingent on the avail-
ability of actual passenger counts [46, 53]. When survey
data is lacking, the inclusion of historical OD flow or
onboard survey data [42] and the comparison of differ-
ent estimation methodologies are alternative options to
assess consistency of results [46]. Similarly, transfer
identification is dominated by rules on maximum jour-
ney duration and elapsed time thresholds [102, 105].
Cross-referencing AVL and AFC records can generally
allow for higher precision in the estimation of bus to
bus or bus to metro transfers [102]. As a step towards
decreasing reliance on external data sources, the possi-
bility of endogenous validation has been proposed for
checking the validity of estimation of users’ home loca-
tion and trip distances [105, 108]. Nonetheless, exogen-
ous validation is still required for behavior-related
parameters such as willingness to walk [108].

Along the same lines, activity identification is often
conducted based on temporal windows linked to antici-
pated work/study schedules and/or spatial proximity to
points of interest. This approach obviously renders gen-
erated results largely dependent on subjective assump-
tions about typical passenger behavior [69, 104]. Point of
interest and land use data are generally easy to obtain
and perhaps the most widely used data source for char-
acterizing trip purposes [37]. If AFC records are linked
to fare types, a crude segmentation of users based on
age and occupation may allow for more insightful con-
clusions [2]. Alternatively, activities can be assigned
based on archived socio-demographic and census data
[19], while onboard complementary surveys are naturally
the most informative data source, yet sample rates are
typically low [100, 105].

Last, the availability of AFC data does not itself guar-
antee an accurate depiction of ridership patterns; apart
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from data quality and completeness, market penetration
for the operators is critical for the modeling accuracy
achieved [17]. A notable consideration refers to the is-
sues of user noninteraction and fare evasion, which can
lead to underestimating transit flows and may only be
captured by questionnaires and manual surveys [39,
103].

3.3.3 Computational effort

Collectively, researchers have agreed upon increased com-
putational costs associated with (a) processing ITS data
and (b) specifying optimization models across all planning
stages [29, 42, 43, 78, 94]. Optimization formulations ac-
counting for variability in input data, either through statis-
tics or simulation-based evaluation of objectives
reasonably entail the execution of additional processes
[31, 51, 54, 55, 85, 91]. Especially agent-based simulation
models require significant efforts for calibration and valid-
ation [18, 20]. Clustering approaches are also subject to
the large computational cost of processing vast amounts
of transactions [59, 65, 70]. Route choice modeling faces
similar challenges, as the incorporation of information
provision to passengers via ATIS is captured through
time-expanded transportation networks, increasing the di-
mensionality of the underlying path selection problem [9,
10, 39, 77, 78]. Reasonably, these issues are exacerbated in
the real-time planning horizon, as results must be gener-
ated in a timely manner [94].

A direct approach to computational effort consider-
ations is obviously the use of high computing power, yet
access to equipment of such specifications is among all
subject to budget availability. Distributed and cloud
computing is an efficient and cost-effective alternative,
as it allows for performing different procedures simul-
taneously, thus greatly reducing processing times [12].
However, identifying the tasks to be parallelized is not
straightforward, while computer science skills are re-
quired to a certain extent [6].

Recognizing the contribution of optimization models in
solving transportation problems, the shift from mathemat-
ical programming formulations towards powerful heuristic/
metaheuristic algorithms is a promising strategy. So far, ef-
forts have employed mathematical programming and heur-
istic approaches, despite the abundance of metaheuristics
for transit planning [24, 29, 73]. There are various oppor-
tunities for such applications. Adaptive metaheuristic and
dynamic programming algorithms can be applied to effi-
ciently handle dynamic real-time problems [6], while
population-based methodologies can produce optimal solu-
tions in a fraction of the time required by integer solvers
for multi-period problems [29, 35]. Still, transforming
time-varying data into appropriate encoding schemes for
metaheuristics is not straightforward, while it is computa-
tionally infeasible to manipulate solutions which occupy
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too much computer memory [91]. Research is thus needed
towards translating ITS data into suitable forms which can
be inputs to metaheuristic frameworks, as well as devising
hybrid algorithmic frameworks.

4 Emerging trends

The era of big data has cultivated a new reality in trans-
portation planning. Besides ITS, new data sources have
become available for capturing travel behavior mecha-
nisms and estimating relevant transportation models.
The overall explosion of data has in turn led to the ex-
ploration of automated planning frameworks, offering a
streamlined process for data manipulation.

4.1 Emerging data sources

Emerging data sources stemming from the ubiquitous
penetration of internet-based devices may be exploited
on their own or in conjunction to ITS data, to facilitate
transportation planning. Most notably, mobile phone
data have been at the core of relevant efforts due to their
broad spatial and temporal coverage and the possibility
of real-time updating, which can lead to more robust
and responsive transport models [109]. These data refer
to Call Demand Records (CDR) or sightings records, de-
pending on whether a trace is generated when a person
uses their phone to text/call or simply when the phone
connects to the network [110]. Along with their undeni-
able advantages, mobile data come with a unique set of
challenges. Researchers have collectively distinguished
the most prominent issues faced when dealing with mo-
bile phone data, namely oscillation/false displacement
and location uncertainty [110-112]. Despite these issues,
the immense research opportunities arising from mobile
phone data have spurred efforts, mainly in the computer
science field, towards methods and algorithms for over-
coming the difficulty of accurately estimating user loca-
tions and consequently, travel behavior models.

In contrast to ITS data, mobile phone data present the
major advantage of tracking users across all transport
modes and capturing a larger spectrum of activities.
While the event-driven nature of mobile phone data
might not allow for link travel time estimation, the high
penetration rates and long recording periods hold poten-
tial for estimating passenger flows [113]. Capitalizing on
the latter, a series of research efforts in passenger flow
estimation from mobile phone traces have been pub-
lished recently [109, 111, 112, 114-116]. Nonetheless,
these studies have either entirely neglected mode choice
[109, 111, 112, 115] or solely focused on vehicle trips
[114, 116], due to some limiting factors. Indeed, vehicle
trips may be validated through odometer readings [109],
known speed-space profiles [117],usage rates in geo-
graphical units corresponding to home locations of users
[116] or observed traffic counts [114, 116].
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For public transportation planning, OD matrices gen-
erated from mobile data must be post-processed to ob-
tain mode-specific trip tables [111]. So far, studies on
mode-choice inference from mobile data are scarce
[118], as researchers have underlined the complexity of
such a task [116]. Indeed, travel mode identification
from mobile phone records requires the use of multiple
data sources in conjunction to speed estimation and trip
matching algorithms [117, 119]. In terms of strategic
planning, data-driven transit network design has been
examined in [120, 121] using large-sample trajectory
data to (a) identify frequent mobility patterns (ignoring
mode choice) from mobile phone data and (b) generate
public transport routes. Mobile phone data has the po-
tential to facilitate microsimulation modeling, including
activity-based and agent-based modeling based on com-
plex network theory [122]. They can also serve as sup-
plementary data sources for AFC data to determine the
locations visited by an individual between successive
transaction records [21, 55]. However, like ITS data, mo-
bile phone data lack semantic information, such as
socio-economic attributes and trip purpose [109, 111].
In this context, segmentation approaches have been used
along with sets of rules and assumptions for activity in-
ference and trip distribution [109, 111]. Since clustering
approaches do not offer insights on the type of activity
performed, the frequencies of visits, land use patterns
and empirical rules can be exploited to impute the most
probable work/home locations activity types [118].

Still, the former approaches refer to OD matrices
which are not mode-specific, thus an additional step
would still be required for discerning public transport
trips. As an alternative approach, web-based and social
media information can be combined with AFC or other
ITS data to infer trip purpose and mode information,
particularly for special events [123]. Mode inference and
trip chaining can be performed based on data from
GPS-tracking devices, such as car navigation systems
[55]. Crowdsourced data can be helpful in providing
quality metrics for services offered or collecting informa-
tion on facilities such as bike paths [113, 117, 123].
These data can provide insights on the factors driving
passenger route choices [32] and enhance estimation ac-
curacy [77]. Further, by exploiting crowdsourced data in
conjunction with spatial data, the use of additional vari-
ables can be permitted to detect the type of activities
performed [104]. Still, such data are drawn from very
specific user groups, thus inherently suffer from sam-
pling bias and should be carefully interpreted [122].

Overall, the complexity and extensive data require-
ments to infer public transport trips have reasonably
hindered the application of mobile phone data for the
purposes of public transportation planning. So far, their
use for operational and real-time planning faces major
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challenges and entirely relies on the progress made at
the previous planning stages.

4.2 Integrated transit modeling

The disaggregate nature of AFC transactions and the
presence of trajectory data calls for new data mining
methods and algorithms, as well as advanced statistical
inference techniques [19, 20, 38, 122]. Responding to
the overarching need for better decision support tools
for ITS data, there exists some work on the develop-
ment of data-driven platforms for public transportation
planning [5, 124]. The latter integrate data mining
methods, regression models and visualization tech-
niques to assist in performance monitoring, predict and
evaluate potential impact of different transit strategies
and provide a more comprehensive understanding of
network dynamics overall. Unsupervised machine
learning tools can be employed to classify activities
based on AFC data without any preconceptions on ac-
tivity types [55], identify mobility patterns [68, 69] or
detect performance issues for which no prior know-
ledge exists [88]. Data-driven optimization models may
be employed following automated data cleaning and
processing and optimized design parameters can be
readily available to planners, operators and administra-
tive staff. Regardless of the level of sophistication in as-
sociated models, the commercialization of such tools
can directly contribute towards the wider adoption of
ITS-enabled analyses.

5 Conclusions

Optimization models have been useful planning tools for
decades and are utilized to solve problems at every stage
of the public transport planning process. The explosion
of data stemming from ITS systems calls for a readjust-
ment of such models to incorporate actual knowledge of
passenger demand patterns and bus arrival times. The
literature is slowly shifting towards the adoption of
data-driven planning approaches, introducing a new era
in transit planning.

Indeed, planners and engineers must extend the
capabilities of current models to adapt to the chal-
lenges posed by the wealth of available data. Moving
forward, the success of ITS-based public transport
planning lies on the integration of traditional trans-
port planning, advanced computer science algorithms
and data mining techniques. Collectively, however,
these issues put additional pressure on transportation
research to understand and implement computer sci-
ence algorithms and tools. It is relatively uncertain to
expect that the transportation community can inde-
pendently handle this challenge, but standardization
of main data processing steps and commercialization
of necessary tools may be an encouraging step in this
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direction. Research progress may be achieved by
open-sourcing relevant software and creating publicly
available resources for dealing with big data manipu-
lation. Above all, the cooperation between the fields
of computer science, advanced statistics and transpor-
tation planning is considered indispensable in the face
of the big data era.

In order to achieve the transition to data-driven
planning, existing and well-known algorithms and
models including transit assignment, route design and
shortest path algorithms must be suitably modified.
Particularly in the context of strategic planning and
demand- oriented improvements, the determination of
an appropriate data manipulation strategy to incorp-
orate ITS data into optimization frameworks in a
meaningful and computationally feasible manner is
not trivial. Up until now, there is no clearly defined
path for translating ITS data streams in meaningful
inputs, thus comparative analyses between different
approaches are needed to identify the most efficient
strategies.

The overview of the literature underlines that no data
source is independently adequate for efficiently applying
transportation-related optimization models and algo-
rithms. Research efforts should be devoted to automated
validation procedures, through the application of ad-
vanced artificial intelligence techniques to discover and
correct inconsistencies in the data sets. Such applica-
tions could be validated against survey estimates to de-
rive the most efficient inference methodologies, giving
rise to a new design paradigm.

To conclude, the relationship between optimization and
public transport planning, although being constantly rede-
fined, remains indispensable and will continue to evolve in
parallel with the emerging significance of the role of tran-
sit systems [7]. With the advent of big data, the contribu-
tion of optimization models in public transport planning
is multifaceted and is manifested in various problem- solv-
ing stages, from parameter calibration to results’ valid-
ation. It is thus expected that data-driven public transport
planning will be the mainstream approach in a few years,
following the introduction of ITS systems on urban cen-
ters under the sustainable mobility paradigm.
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