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Abstract 

Carbon dots (CDs) have raised broad interest because of their great potential in the fluorescence related fields, such 
as photocatalysis and bioimaging. CDs exhibit different optical properties when dissolved in various solvents. How-
ever, the effects of solvents during the process of preparation on the fluorescence emission of CDs are still unclear. In 
this work, CDs were prepared by a simple one-pot solvothermal route. Typical critic acid and thiourea were used as 
precursors. Through changing the volume ratio of water to N,N-dimethylformamide (DMF), we have obtained color 
tunable CDs, with the emission wavelength from 450 to 640 nm. TEM images, Raman and XPS spectra indicate that 
the particle size of CDs and the content of surface functional groups (C–N/C–S and C≡N bonds) increase with the 
increasing ratio of DMF to water, which results in the optimal emission wavelength red-shifted. The prepared multi-
color CDs may have prospects in the lighting applications.
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Introduction
Carbon dots (CDs) have attracted extensive interest in 
the past decades, due to their distinct characteristics, 
such as abundant raw materials [1], easy to prepare and 
low toxicity [2]. CDs also own excellent luminescent 
properties, including excitation and emission wavelength 
tunable [3, 4]. These unique features endow CDs with 
the great potential in the optical and biological applica-
tions, such as light-emitting devices [5], photocatalysis 
[6], biosensing [7] and bioimaging [8]. To date, it is still 
difficult to prepare multcolor CDs, and researchers have 
put much effort to enlarge the emission spectrum across 
the entire visible light. For example, Miao et  al. have 
synthesized a kind of CDs with multiple color emission 
through controlling the extent of graphitization and sur-
face functionalization [9]. With the increasing ratio of 
critic acid to urea and increasing reaction temperature, 
the emission wavelengths are shifted from blue to red, 
due to the increasing conjugation length and the quantity 
of surface functional groups. Zhu et  al. prepared multi-
fluorescence CDs via magnetic hyperthermia method 
in the three different cations [10]. Wang et  al. obtained 
multicolor emitting N-doped CDs under hydrothermal 
reaction from ascorbic acid and phenylenediamine pre-
cursors [11]. Besides, reported CDs can also have multi-
color luminescence owing to changing the concentration 
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of the precursors and pH in terms of a constant chemical 
structure [12].

On the other hand, solvents may play an important role 
in the photoluminescence (PL) of CDs. For example, Wu’s 
group has developed a type of CDs with tunable lumines-
cence independent of the excitation wavelength when 
dispersed in different solvents [13]. Similarly, Mei et  al. 
have obtained amphipathic CDs with tunable emission 
from blue to green and excitation-independent prop-
erty when dissolved in different solvents [14]. Ding et al. 
successfully prepared CDs with wide range wavelength 
by changing the solvent in reactions and found that the 
solvent controlled the carbonization processes during 
the solvothermal reactions [15]. Affecting tunable opti-
cal property is ascribed to the interactions between the 
surface groups of CDs and solvent molecules, including 
hydrogen bonding [16] and dipole–dipole interactions 
[17]. Bai et al. have synthesized multicolor CDs through 
solvent-responded strategy using r-CDs as initiator. Sol-
vent adhesion or various emissive defects on the surface 
of CDs can produce tunable luminescence in the various 
solvents [18]. Tian et al. obtained multicolor CDs through 
controlling bandgaps emission in three different solvents. 
The extents of decomposition and carbonization of pre-
cursors lead to the emission wavelength shift from blue 
to red of CDs [19]. Wang’s group found that CDs could 
emit excitation-independent fluorescence from green to 
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red when the as-prepared CDs dispersed in the different 
solvents, which is attributed to the intramolecular charge 
transfer [20]. Wei et  al. have shown tunable emission 
luminescence when the as-synthesised NCDs dispersed 
in different solvents [21].

The above studies are focused on the effects of solvent 
in the post-treatment of CDs. However, the effects of 
solvents during the process of preparation on the fluo-
rescence emission of CDs are still unclear. In this work, 
we prepared a kind of CDs, using a simple one-pot solvo-
thermal route. Critic acid and thiourea were adopted as 
precursors. Water and N,N-dimethylformamide (DMF) 
were used as solvents. We mainly investigated the influ-
ence of solvents through changing the volume ratio of 
water to DMF. The obtained CDs are color tunable, with 
the emission wavelength from blue to red. In addition, 
TEM images, Raman and XPS spectra were employed to 
characterize the particle size of CDs and the content of 
surface functional groups.

Materials and Methods
Materials
Hydrated critic acidic (C6H10O8), thiourea (CH4N2S), 
DMF (C3H7NO), ethyl acetate (C4H8O2), petroleum ether 
(30–60℃) were used in the preparation of CDs. All these 
agents were purchased from Shanghai Aladdin Biochem-
ical Technology Co. Ltd. Deionized water was used with 
18.2 MΩ cm−1 in all experiments.

Synthesis of Multicolor CDs
Multicolor CDs were prepared by a one-spot solvother-
mal route (Fig.  1a) using a series of volume ratios of 
water to DMF. In detail, 1.26 g (0.2 mol/L) hydrated critic 
acidic and 1.37 g (0.6 mol/L) thiourea were dissolved in 
30 ml mixed solution with various volume ratios of H2O 
to DMF, namely, 1:0 (pure water), 1:1, 1:5, 1:9 and 0:1 
(pure DMF). Then, each solution was translated into a 
Teflon-lined stainless-steel autoclave, followed by heat-
ing at 160 ℃ for 4  h. The corresponding prepared CDs 
were denoted as b-CDs, g-CDs, y-CDs, o-CDs, and 
r-CDs (Fig.  1b), respectively. After that, these solutions 
were filtrated by 0.22 μm membranes. Then, the purified 
solutions were added into the mixed solvent of petro-
leum ether and ethyl acetate to remove redundant DMF. 
Finally, the obtained CDs were used in the following 
characterizations.

Characterizations
The absorbance of multicolor CDs was detected by a Shi-
madzu UV-25500 PC UV/Vis absorption spectrometer. 
The functional groups of CDs were measured by Fou-
rier transform infrared spectroscopy (FT-IR, Thermo 
Scientific Nicolet iS50, America) over the range of 800–
4000  cm−1. All fluorescence spectra were performed by 
a fluorescence spectrophotometer (F-4600, Hong Kong 
Tian Mei Co., Ltd.). Raman spectra were measured by a 
HORIBA Scientific LabRAM HR Evolution high reso-
lution Raman spectrometer with laser frequency of 

Fig. 1  a One-pot hydrothermal synthesis route for CDs with distinct fluorescence characteristics. b Five CD samples under day light and 365 nm UV 
light. c Corresponding PL emission spectra of the five samples, with maximums at 440 nm, 530 nm, 580 nm, 610 nm, and 640 nm, respectively
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785  nm as an excitation source. The X-ray photoelec-
tron spectroscopy (XPS) experiments were performed 
by the ThermoFisher ESCALAB 250Xi spectrometer. The 
Atomic Force Microscopy (AFM, Bruker, Multimode-8) 
was employed to obtain the heights and sizes of CDs. The 
X-ray diffraction (XRD) characterization of CDs was con-
ducted by the Rigaku Ultima IV. High-resolution trans-
mission electron microscopy (HRTEM) micrographs 
were acquired at room temperature by the FEI F200C 
TEM operating at 200-kV.

Results and Discussion
Characterizations of b‑, g‑ and r‑CDs
Because the fluorescence of CDs is related to the parti-
cle size, the type and content of the functional groups, we 
performed a series of characterizations, taking b-CDs, 
g-CDs and r-CDs as examples. The size and morphol-
ogy of CDs are explored by TEM, as shown Fig.  2a–c. 
Based on the histogram of size distribution, the average 
sizes of b-CDs, g-CDs and r-CDs are 2 ± 1 nm, 4 ± 1 nm 
and 6 ± 1  nm, respectively (Fig.  2d–f). In addition, 
the HRTEM images highlight that the b-CDs have a 

crystalline lattice fringe of 0.21 nm, corresponding to the 
lattice plane (100) of graphic carbon [22]. The g-CDs and 
r-CDs possess crystalline lattice fringes of 0.21  nm and 
0.32  nm, corresponding to the lattice planes (100) and 
(002) of graphic carbon [23]. The XRD pattern of b-CDs 
exhibits a narrow peak centered at 6.8  Å (see Addi-
tional file 1: Figure S1a). The XRD patterns of g-CDs and 
r-CDs show not only a narrow peak located at 6.8 Å, but 
a broad peak center at 3.4  Å. The XRD results indicate 
that the b-CDs, g-CDs and r-CDs consist of small crys-
talline cores with a disordered surface, similar to the 
graphite lattice spacing [14, 24]. The AFM images pre-
sent the height distribution of b-CDs, g-CDs and r-CDs 
(see Additional file 1: Figure S1(b–d)). The average height 
of b-CDs, g-CDs and r-CDs is approximate 3 nm. These 
results clearly show that the particle sizes of CDs become 
larger gradually from b-CDs to r-CDs.

Figure  3a shows the Raman spectra of b-CDs, g-CDs 
and r-CDs, in which a G band at 1573 cm−1 and a D band 
at 1342  cm−1 correspond to the graphitic sp2 carbon 
structures and disordered sp3 carbon structures [25]. The 
ratios of IG/ID are 1.11, 1.20 and 1.24 for b-CDs, g-CDs 

Fig. 2  TEM images of b-CDs (a), g-CDs (b) and r-CDs (c). Insets specify the HRTEM images. The histograms of size distribution of b-CDs (d), g-CDs (e) 
and r-CDs (f)
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and r-CDs, implying the higher graphitization degree of 
CDs with the increasing ratio of DMF to water, consist-
ent with the TEM and AFM results. FT-IR and XPS char-
acterizations were further performed to investigate the 
type and content of the functional groups on the b-CDs, 
g-CDs and r-CDs. The FT-IR spectra of CDs are shown 
in Fig.  3b. The emerging peaks at 570–600  cm−1 (C–S 
bonding) [26] and 2050 cm−1 (–SCN bonding) [27] reveal 
the nitrogen and sulfur doping in the CDs. The peaks at 
~ 3370  cm−1 and 3160  cm−1 are stretching vibrations of 
O–H [28] and N–H. The peaks at 1710 cm−1, 1610 cm−1 

and 1410 cm−1 are designated to the νC=O of the -COOH 
groups, the bending vibration of C = C/N–H and 
C = C/O–H [27], respectively. Obviously, the order of the 
content of the oxygen-containing groups (especially for 
O–H) is b-CDs > g-CDs > r-CDs, which is opposite to the 
order of the particle size. These results demonstrate that 
the volume ratio of DMF to water in the solvothermal 
reaction has a significant effect on the particle size and 
the functional groups of CDs.

Furthermore, the atomic contents and functional 
groups of b-CDs, g-CDs and r-CDs were characterized 

Fig. 3  Raman spectroscopy (a) and FT-TR spectroscopy (b) of the three selected CDs

Fig. 4  XPS full-scan survey analysis of a b-CDs, b g-CDs, c r-CDs and C1s high-resolution level spectra of d b-CDs, e g-CDs and f r-CDs
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by XPS. As shown in Fig. 4a–c, the four diagnostic peaks 
located at 531 eV, 400 eV, 285 eV, and 163 eV correspond 
to O1s, N1s, C1s, and S2p, respectively. The ratios of O/C 
were 75%, 25% and 24% for b-CDs, g-CDs and r-CDs. The 
C1s spectra are divided into five peaks, namely, C=C/C–
C (284.5  eV), C–N/C–S (285.1  eV), C–OH (286.3  eV), 
C=O (288.3 eV), and O=C–OH (289.0 eV) [26] (Fig. 4d–
f). The sequence of the content of the oxygen-containing 
groups is b-CDs > g-CDs > r-CDs, consistent with the 
FT-IR results. In addition, the high-resolution N1s XPS 
spectra of b-CDs, g-CDs, and r-CDs are fitted by three 
components centered at C≡N (397.4  eV), pyrrolic N 
(399.4  eV), and graphite N (401.2  eV), respectively (see 
Additional file  1: Figure S2(a–c)). The high resolution 
spectra of the S2p also clearly show the peaks at 164.5 eV 
and 165.9 eV, corresponding to S2p3/2 and S2p3/1 spectra 
of the C–S–C bond in thiophene-type structure due to 
the spin–orbit splitting [29], which is agreement with sul-
fone bridges(–C–SOX–C) [29] (Figure S2d–f). From the 
detailed analyses of the N1s and S2p spectra in Table S1, 
the contents of C–N/C–S and C≡N bonds increase with 
the increasing ratio of DMF to water, compared with the 
decrease of the contents of oxygen-containing groups.

Optical Properties of b‑, g‑ and r‑ CDs
The UV–Vis absorption spectra of CDs present a well 
resolved n–π* transition at 320  nm [30], which origi-
nates from the functional groups of C=X (X=N, S, O). 
Meanwhile, b-CDs, g-CDs and r-CDs exhibit energy 
absorption bands at about 360 nm, 420 nm and 560 nm, 
respectively, as shown in Fig.  5a–c. Such energy bands 
are classically associated with the narrowing of electronic 
bandgaps, which leads to the fluorescence red-shift 
[31]. The position of energy absorption bands demon-
strates the wavelength region of fluorescent excitation. 
The optimal emission wavelengths of b-CDs and g-CDs 
are 440 nm and 530 nm, respectively. Unlike b-CDs and 
g-CDs, there are dual-emissive wavelengths located 
at 600  nm and 640  nm for r-CDs. With the increasing 
excitation wavelength, the PL peaks exhibit slight fluc-
tuations, which elucidates the excitation-dependent 
properties of b-CDs, g-CDs and r-CDs, implying a pos-
sible carbogenic core state emission [32]. Under solvo-
thermal conditions, decomposition performed between 
critic acid and thiourea to form N, S-doped CDs with 
abundant-SCN, -NH2 on their surface. Obviously, the 
volume ratio of water to DMF can affect the extents of 
decomposition and carbonization in the reaction process 

Fig. 5  UV/Vis and PL emission spectra of b-CDs (a), g-CDs (b) and r-CDs (c). d PL decay curves of b-CDs, g-CDs and r-CDs
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[29]. It can be speculated that the decomposition of pre-
cursors and carbonization of solvents gradually increase 
with the higher volume ratio of DMF to water, resulting 
in red-shifted absorption and emission bands, which 
is well consistent with their increased particle sizes and 
functional groups of CDs. In addition, the PL decay 
curves (Fig. 5d) of b-CDs, g-CDs and r-CDs are fitted by 
the dual-exponential curves. The results show that the 
lifetimes of b-CDs, g-CDs and r-CDs are 2.75 ns, 4.67 ns 
and 4.88 ns, respectively.

Effects of Reaction Conditions and Solvents on PL 
Properties
Furthermore, we investigated the effects of reaction con-
ditions (reaction time and temperature) on the prepara-
tion of multicolor CDs, taking g-CDs as an example. As 
shown in Fig. 6a, b, the maximum emission wavelengths 
have dramatically red-shifted with the reaction time 
prolonged from 2 to 8  h, and the reaction temperature 
increased from 140 to 180℃. When the heating time 
increases from 2 to 8 h at 160 ℃, the maximum emission 

peaks increase from blue (460 nm) to red (605 nm). Simi-
larly, when the reaction temperature from 140 to 180 ℃ 
at 4 h, the maximum emission peaks increase from blue 
(450  nm) to red (610  nm). This phenomenon indicates 
that the increase of reaction time and reaction tempera-
ture leads to the PL red-shift of CDs, which is ascribed 
to the carbonization in the materials [9]. It has been 
reported that longer thermal time and higher tempera-
ture will promote the carbonization of precursors [9]. 
Based on these results, we can speculate that the emissive 
wavelength of CDs strongly depends on the carboniza-
tion degree of precursors, which is in line with the parti-
cle size and functional groups on CDs.

To explore the effects of solvents on CDs, we have 
performed additional experiments of g-CDs dispersed 
in six different solvents, namely, water, DMF, ethanol, 
acetic acid, acetone, and tetrahydrofuran (THF), which 
are in the sequence of polarity from strong to weak. In 
stronger polar solvents, the PL emission wavelength of 
g-CDs is related to the excitation wavelength (see Addi-
tional file  1: Figure S3(a–d)). On the contrary, the PL 

Fig. 6  Normalized PL emission spectra of g-CDs with a different heating times, b different heating temperature. c Normalized PL spectra 
(λex = 420 nm) and d UV–vis absorption spectra of g-CDs dispersed in six solvents
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emission wavelength is independent on the excitation 
wavelength in weaker polar solvents (see Additional 
file  1: Fig. S3(e–f)). Figure  6c demonstrates that the PL 
emission wavelength of g-CDs red shifts in weaker polar 
solvents compared with in stronger polar solvents. This 
is because weak polar solvents will affect the electronic 
structure and then reduce the energy gap of g-CDs [33]. 
UV–vis absorption spectra (Fig. 6d) show that absorption 
wavelength red shifts of g-CDs in weak polar solvents, 
which further confirms that weak polar solvents play an 
important role in affecting n–π* transition, leading to the 
emission spectra red-shift [34, 35].

Conclusions
In summary, we have developed a facile and feasible way 
to synthesis multicolor CDs, which fluorescence covers 
a majority of the visible spectrum. Through adjusting 
the volume ratio of water to DMF, the obtained CDs are 
color tunable, with the emission wavelength from blue to 
red. We find that solvent (DMF) plays an important role 
in preparing multicolor CDs, because DMF is decom-
posed in the carbonization process. With the increasing 
ratio of DMF to water, the particle sizes of CDs become 
larger gradually, and more functional groups are formed 
on the surface of CDs, which lead to the PL red-shift of 
CDs. Our method can enlarge the visible spectrum of 
CDs and the prepared multicolor CDs may have applica-
tion prospects in the optical and biological fields of light-
emitting devices and bioimaging systems.
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