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Abstract

N-doped ZnO/g-C3N4 composites have been successfully prepared via a facile and cost-effective sol-gel method.
The nanocomposites were systematically characterized by XRD, FE-SEM, HRTEM, FT-IR, XPS, and UV-vis DRS. The
results indicated that compared with the pure N-doped ZnO, the absorption edge of binary N-doped ZnO/g-C3N4

shifted to a lower energy with increasing the visible-light absorption and improving the charge separation
efficiency, which would enhance its photocatalytic activity. Compared with the pure g-C3N4, ZnO, N-doped ZnO
and the composite ZnO/g-C3N4, the as-prepared N-doped ZnO/g-C3N4 exhibits a greatly enhanced photocatalytic
degradation of methylene blue and phenol under visible-light irradiation. Meanwhile, N-doped ZnO/g-C3N4

possesses a high stability. Finally, a proposed mechanism for N-doped ZnO/g-C3N4 is also discussed. The improved
photocatalysis can be attributed to the synergistic effect between N-doped ZnO and g-C3N4, including the energy
band structure and enhanced charge separation efficiency.
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Background
Photocatalytic degradation of the organic compounds
using solar energy as the energy source has attracted
considerable interest for the environmental protection
[1–3]. As is known, ZnO is one kind of the important
semiconductor photocatalysts because of its unique ad-
vantages, such as its low price, high photocatalytic activ-
ity, and nontoxicity [4, 5]. However, the disadvantages
such as low charge separation efficiency, susceptibility to
photocorrosion, and poor visible light absorbance lim-
ited its widely commercial applications [6, 7]. Doping
with the metal and/or nonmetal ions, coupling with
other semiconductors, and surface sensitization with
metal complexes could be considered as the feasible ap-
proaches to improve its utilization of solar energy and
charge separation efficiency [7, 8]. It is reported that the
nonmetal element N doping effectively improved the
light absorption of ZnO in the visible range [9]. The

nitrogen atom is closest in the atomic size and
electronegativity to oxygen atom [10], so N doping could
result in the minimum strain in ZnO. Regrettably, that
N-doped ZnO does not exhibit excellent photocatalytic
efficiency unlike N-doped TiO2 [11].
Graphitic carbon nitride (g-C3N4) is a relatively novel,

versatile, and promising metal-free polymeric semicon-
ductor photocatalyst [12–14], due to its special semicon-
ducting properties and low cost. It has been widely
investigated for its great potential in degrading environ-
mental pollutants [12], catalyzing water splitting for H2

evolution [13], and reducing carbon dioxide [14] under
irradiation. However, the easy recombination of its
photogenerated charges restricts its photocatalytic per-
formance and greatly limits its wide practical application
[15]. Constructing a suitable heterojunctional composite
is one of the most general methods to improve the
photogenerated charge separation [16–18]. Coupling g-
C3N4 with ZnO could yield an excellent heterostructure,
since these two semiconductors have well-matched,
overlapping band structures [6]. Under visible light ir-
radiation, the initial electron excited from the valence
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band (VB) can transfer to the conduction band (CB)
of the g-C3N4, then further transfer to the CB of
ZnO [6, 8, 19], resulting in an improved photocatalytic ac-
tivity of ZnO/g-C3N4. Recently, Shanker et al. [10] re-
ported that N-doped ZnO/g-C3N4 hybrid core–shell
shows a greatly enhanced visible-light photocatalysis for
the degradation of rhodamine B. However, to the best of
our knowledge, there are no works reported about N-
doped ZnO/g-C3N4 for the visible-light degradation of the
volatile organic pollutants such as phenol and methylene
blue (MB) until now.
In this work, the N-doped ZnO/g-C3N4 composite

photocatalysts were synthesized via the sol-gel method.
The as-prepared composite exhibited significantly en-
hanced photocatalytic degradation of MB and phenol
under visible-light irradiation. Finally, the possible
mechanism about the photocatalytic degradation of MB
and phenol was also investigated.

Methods
Preparation of N-Doped ZnO/g-C3N4 Nanocomposites
g-C3N4 powder was prepared by heating melamine [20].
In brief, 5 g of melamine was placed in an alumina cru-
cible with a cover that was firstly heated to 80 °C,
followed by calcining at 550 °C for 4 h in a muffle fur-
nace. After natural cooling to room temperature, the ob-
tained sample was milled into powder. Then, g-C3N4

powder was ultrasonicated in water and centrifuged to
remove the unexfoliated g-C3N4.
In order to prepare the sol of N-doped ZnO, the equal

mole of zinc acetate and urea were dissolved in ethanol
[10, 21]. An appropriate amount of g-C3N4 was added to
the above solution with continuous stirring. The solution
was then kept at 80 °C water bath for 5 h. After that, the
resultant mixture was dried and heated at 400 °C for 1 h
to obtain N-doped ZnO/g-C3N4 loaded with 50 mol%
N-doped ZnO, which is marked as N-ZnO/g-C3N4.
The sol for synthesizing ZnO was prepared by using

above method without adding any urea. Then, the ZnO/
g-C3N4 nanocomposites loaded with 50 mol% ZnO were
prepared under the same experimental conditions, ex-
cept for calcining in air.

Characterization
X-ray diffraction (XRD) patterns were carried out on a
Rigaku D/max 2000 diffractometer employing Cu Kα ra-
diation. The morphology and microstructure of the sam-
ples were examined by a field-emission scanning
electron microscopy (FE-SEM; Ultra 55, Zeiss) and high-
resolution transmission electron microscopy (HRTEM;
Tecnai G2 F20 S-Twin, FEI). Fourier transform infrared
(FT-IR) spectra were recorded on a Nicolet Nexus-870
infrared spectroscopy (Thermo Nicolet) in the range of
400–4000 cm−1 using KBr pellets. Chemical

compositions of the particle samples were analyzed by
an X-ray photoelectron spectroscopy (XPS; Thermo
Fisher K-Alpha) with Al Kα radiation, and all the spectra
were calibrated by assigning the peak at 284.6 eV. The
Brunauer–Emmett–Teller (BET) surface area was esti-
mated by a surface area apparatus (TriStar-3000, Micro-
meritics). UV-vis diffuse reflectance spectra (UV-vis
DRS) were recorded by a UV-vis spectrophotometer
(UV-3600, Shimadzu) equipped with an integrating
sphere in the range of 200–800 nm, and BaSO4 was used
as a reference.

Photocatalytic Activity
The photocatalytic activity of the as-prepared photoca-
talysts was evaluated via the degradation of MB and
phenol in aqueous solution. A solar simulator (300 W
Xe lamp) with a 420 nm cutoff filter provides the
visible-light irradiation with the light intensity of
120 mW/cm2. The catalyst (0.5 g/L for MB and 5 g/L
for phenol) and 100 ml of aqueous solution containing
10 mg/L MB (or 5 mg/L phenol) were placed in a glass
reactor with continuous stirring at 250 rpm. Prior to ir-
radiation, the pollutant solutions suspended with
photocatalysts were stirred in the absence of light for
30 min to attain the equilibrium adsorption/desorption
between photocatalyst powders and MB/phenol. During
the reaction, the temperature was maintained at
25 ± 1 °C. For each given irradiation time, about 3 mL
of the reacted solution was withdrawn and centrifuged
at 12,000 rpm for 30 min to remove the photocatalyst.
Then, the concentration of the centrifuged solution was
determined by a UV-vis-NIR spectrophotometer (UV-
3600, Shimadzu) with the maximum absorption of MB
and phenol at 664 m and 270 nm, respectively). After
visible-light irradiation, the photocatalysts were col-
lected, washed, and dried at 100 °C for 12 h. The stabil-
ity of the photocatalysts was checked by running four
separate cycles. The total organic carbon (TOC) was
determined using a Shimadzu TOC-2000 analyzer. For
exploring the active species during the photocatalytic
reaction, the effect of various scavengers on the degrad-
ation of dye was investigated. The method was similar
to the former photocatalytic activity test under visible-
light irradiation.

Results and Discussion
Figure 1 shows XRD patterns of g-C3N4, ZnO, N-ZnO
ZnO/g-C3N4, and N-ZnO/g-C3N4 composites. The
main characteristic peaks can be indexed as the hex-
agonal ZnO with wurtzite structure (JPCDS 36-1451).
A strong peak at 27.5°, corresponding to the character-
istic diffraction peak (002) of g-C3N4 [10, 22], can be
also observed. Hence, we can conclude that the intro-
duction of nitrogen does not change the crystal
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structure of ZnO. Moreover, as presented in Fig. 1b, the
diffraction peaks for N-ZnO in N-ZnO/g-C3N4 have a
slight red shift, as compared with those for ZnO in
ZnO/g-C3N4, indicating an overall contraction of the
lattice parameters [10]. The crystallite size of N-ZnO
(38.6 nm) derived from the Scherer formula is smaller
than that of ZnO (45.8 nm). This may be ascribed to
the N doping which can inhibit the growth of ZnO
[21]. After doping with N, the diffraction peak is obvi-
ously broader than that of ZnO (Fig. 1b), due to its low
crystallinity that resulted from the introduction of N
into the crystal lattice of ZnO. The values of specific
surface area are 15.3 and 18.5 m2/g for ZnO/g-C3N4

and N-ZnO/g-C3N4, respectively. By comparison of the
pure ZnO and N-ZnO, the BET surface areas of the
composites are greatly increased. The increase of BET
surface area indicates that the separation and migration
efficiency of the photogenerated carriers would be im-
proved, which could be in favor to the photocatalytic
activity of composite.

The morphology and microstructure of as-prepared
photocatalysts were analyzed by TEM and SEM. As
shown in Fig. 2a, pure g-C3N4 exhibits the sheet-like
morphology with the fluffy structure. Figure 2b, c
shows the SEM images of ZnO and N-doped ZnO
samples, respectively. As compared with pure ZnO,
the N-doped ZnO shows smaller crystallite size with a
relatively uniform diameter, which is in agreement with
the results calculated using the Scherrer formula based
on the XRD data. Moreover, the morphologies of ZnO/
g-C3N4 and N-ZnO/g-C3N4 composite photocatalysts
are evidently different from those of g-C3N4.
Obviously, the ZnO and N-ZnO nanoparticles in ZnO/
g-C3N4 and N-ZnO/g-C3N4 are dispersed over the
composite surface, respectively (Fig. 2d, e). The uni-
form distribution of nanoparticles on g-C3N4 could
minimize the aggregation of ZnO and N-ZnO, and
maximize the reactive sites, which could be in favor of
the photocatalytic reactions [7]. Unlike ZnO/g-C3N4, it
can be found that the surface of N-ZnO/g-C3N4 is
obviously rough, and it can be attributed to the N-ZnO
particles which have been assembled uniformly on the
surface of N-ZnO/g-C3N4 during the heating treatment.
The corresponding TEM images in Fig. 3 likewise indi-

cate that the properly heterostructured composite exists,
where N-ZnO nanospheres on the surface of N-ZnO/g-
C3N4 are well attached to the g-C3N4. Figure 3b, c shows
the HRTEM images of N-ZnO/g-C3N4. The measured
lattice-fringes spacing of 3.25 and 2.43 Å are in well agree-
ment with the crystal planes (002) and (101) of g-C3N4

and N-ZnO, respectively.
Fourier transform infrared (FT-IR) spectra of the g-

C3N4, ZnO, N-ZnO, and the composite materials are
shown in Fig. 4. For ZnO and N-doped ZnO, the peaks
in the region from 400 to 560 cm−1 is corresponding to
the bending vibrations of Zn–O bands [6, 10], which
were observed in all of the samples except for g-C3N4.
In the spectrum of g-C3N4, the peaks at 1243 and
1637 cm−1 correspond to the stretching vibrations of C
−N and C=N, respectively [10]. The peaks at 810 cm−1

originate from the breathing mode of the s-triazine ring
units [23, 24]. The broad absorption band at a high
wave number around 3100–3400 cm−1 is attributed to
the stretching vibration of N−H bonds in the −NH2

and/or =N−H amines, as well as the hydroxyl groups of
the chemisorbed and/or physisorbed H2O molecules
[10, 23]. It can be clearly seen that the main character-
istic IR peaks of g-C3N4 exist in the ZnO/g-C3N4 and
N-ZnO/g-C3N4 composites, suggesting that the struc-
tural features of g-C3N4 are maintained after the
hybridization process, in good agreement with the XRD
results. Additionally, the main characteristic peaks of g-
C3N4 in the composites slightly shift to a high wave
number. This red shift could be attributed to the fact

Fig. 1 XRD patterns (a) of g-C3N4, ZnO/g-C3N4 and N-ZnO/g-C3N4

and the Bragg angle shift (b) of ZnO and N-ZnO in
corresponding composites
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that the extendedly conjugated system appears in the
heterostructured composites [10, 25].
Figure 5 shows XPS spectra of N-ZnO/g-C3N4. Two

peaks at 1021.8 and 1044.9 eV in Fig. 5a are attrib-
uted to Zn 2p3/2 and 2p1/2, respectively. The O 1s
peak is fitted with the non-linear least square fit pro-
gram using Gauss–Lorentzian peak shapes. After de-
convolution, there are two fitted peaks located at
530.4 and 532.0 eV. The peak at 530.4 eV can be

assigned to the O2− ions in ZnO [26]. The other peak
of 532.0 eV can be attributed to the chemically ab-
sorptive oxygen and/or hydroxyl group [26] on the
surface of the composite photocatalyst. The C1s
spectrum (Fig. 5c) of N-ZnO/g-C3N4 can also be fit-
ted into three peaks, corresponding to three basic
kinds of C states. The binding energy of 284.6 eV is
attributed to the adventitious carbon (C−C) on the
surface of N-doped ZnO/g-C3N4 [3, 6]. The C1s

Fig. 2 SEM images of a pure g-C3N4, b ZnO, c N-ZnO, d ZnO/g-C3N4, and e N-ZnO/g-C3N4

Fig. 3 TEM images of N-ZnO/g-C3N4
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peaks at 286.5 and 287.8 eV are assigned to the sp3- and
sp2-bonded carbon in N−C=N of the composite, respect-
ively. With regard to the N1s spectrum of g-C3N4, there
are three peaks after deconvolution, indicating three dif-
ferent kinds of N states [27, 28], the pyridinic N (C−N−C)
at 398.5 eV, pyrrolic N (N−[C]3) at 399.8 eV, and graphitic
N (C−NH) at 401.0 eV. Above the three kinds of N states
are the basic units of g-C3N4. In the N1s spectrum
(Fig. 5d), the peaks at binding energies of 397.5 and

398.6 eV can be assigned to the anionic N in O−Zn−N
linkage [29] and sp2-hybridized N [28]. Here, we can con-
clude that the framework of g-C3N4 is not changed even if
it has been combined with N-ZnO particles. Additionally,
the results of XRD, FT-IR, and XPS confirm that there are
both N-doped ZnO and g-C3N4 species in the heterojunc-
tion structure.
The UV-visible diffuse reflectance spectra of the pre-

pared powder samples were also measured with a
pressed BaSO4 as a reference. The resulting data is plot-
ted as the remission function shown in Eq. 1.

F Rð Þ ¼
1−Rð Þ2

2R
ð1Þ

where R is the diffuse reflectance based on the Kubelka–
Monk theory. The band gap energies (Eg) of the direct
bandgap semiconductor were estimated from the Eq. 2
by extrapolating the linear part.

F Rð Þ⋅hvð Þ2 ¼ A hv−Eg
� � ð2Þ

where A is the absorption constants decided by the
direct bandgap semiconductor of pure g-C3N4, ZnO, N-
ZnO, the nanocomposite ZnO/g-C3N4, and N-ZnO/g-
C3N4. Figure 6 shows the UV-vis absorption spectra of
the as-prepared samples. It can be obviously seen that
the absorption edge of the pure g-C3N4 is around
470 nm [6], corresponding to a band gap of 2.63 eV. As

Fig. 4 FT-IR spectra of g-C3N4, ZnO, N-ZnO, ZnO/g-C3N4,
and N-ZnO/g-C3N4

Fig. 5 XPS spectra of N 1s for N-ZnO/g-C3N4: a Zn 2p, b O 1s, c C 1s, and d N 1s
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shown in Fig. 6, ZnO has a clear absorption edge around
390 nm in the UV range. Compared with the pure ZnO,
an obvious red shift of the absorption edge towards
higher a wavelength is detected in the N-ZnO sample,
due to the contribution of nitrogen to the top of the
valence band (VB) of ZnO which can drive the absorp-
tion of N-doped ZnO close to the visible region [10].
Thus, the band gap of ZnO is reduced from 3.21 to

3.10 eV after nitrogen doping. Another significant
change is the enhanced absorption in the visible-light re-
gion ranged from 400 to 600 nm for the ZnO/g-C3N4

and N-ZnO/g-C3N4, compared with the pure ZnO and
N-ZnO. It can be attributed to the effective surface
hybridization [6, 30] between g-C3N4 and ZnO (N-
doped ZnO) on its surface. Further, N-ZnO/g-C3N4

(2.73 eV) show the broader absorption edge in the vis-
ible region, as compared with ZnO/g-C3N4 (2.85 eV),
which is in favor of the photodegradation of dyes under
visible-light irradiation.
The conduction band (CB) and valence band (VB)

edges of g-C3N4 and ZnO locate approximately at −
1.3 eV/+ 1.4 eV and − 0.5 eV/+ 2.7 eV vs. NHE [6, 8, 31],
respectively. For N-ZnO, the edge potentials of VB
and CB can be determined by using the following
equation [32].

EVB ¼ X−Ee þ 0:5Eg ð3Þ

ECB ¼ EVB−Eg ð4Þ

where EVB, X, and Ee are the edge potential of the
valence band, the absolute electronegativity of the semi-
conductor which is determined by the geometric mean of
the electronegativity of the constituent atoms, and the en-
ergy of the free electron on the hydrogen scale (~ 4.5 eV),

Fig. 6 UV-visible absorption spectra of g-C3N4, ZnO, N-ZnO, ZnO/g-
C3N4, and N-ZnO/g-C3N4

Fig. 7 a Photocatalytic degradation of MB by using ZnO, N-ZnO, g-C3N4, ZnO/g-C3N4, and N-ZnO/g-C3N4 catalysts under visible-light irradiation,
b the corresponding ln (C/C0) vs. time curves, c the rate constants of MB photodegradation, and d five cycles of MB degradation
for N-ZnO/g-C3N4
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respectively [10, 24]. The EVB and ECB of N-doped ZnO
are calculated to be 2.65 and − 0.45 eV, respectively.
Figure 7 shows the photocatalytic degradation of

MB by using the prepared photocatalysts under the
visible-light irradiation. Each sample performs a low
adsorption capacity of MB. Almost no degradation of
MB is observed in the absence of visible light or cata-
lyst, demonstrating that MB is stable under the above
conditions. As shown in Fig. 7a, after N doping, the
photocatalytic stability of N-ZnO is improved, indicating
that the introduction of N doping can suppress the
recombination of photogenerated charge carriers.
Meanwhile, the photocatalytic activities of ZnO/g-C3N4

and N-ZnO/g-C3N4 composite catalysts are obviously
higher than those of the pure reference samples. The
improved photocatalytic activity is attributed to the
heterostructure of composites, which can promote the
photogenerated electron transfer and suppress the recom-
bination of the electron–hole pairs [7, 33]. Moreover, the
N-ZnO/g-C3N4 catalyst exhibit higher photocatalytic ac-
tivity than ZnO/g-C3N4, in spite of ZnO/g-C3N4 hetero-
structure. It can be owed to its improved absorption in
the visible region to produce the electron–hole pairs and
narrower band gap energy. The experimental results were
fitted to the pseudo-first-order kinetics. At low initial
pollutant concentration, the constant rate k was given by
Eq. 5.

lnC C0 ¼ −kt= ð5Þ

Here, k and t represent the first-order rate constant
(h−1) and the irradiation time (h), respectively. C0 is the
initial concentration of MB, and C is the concentration
at a reaction time of t. The corresponding plots of ln
(C0/C) vs. the irradiation time for photodegradation of
MB are shown in Fig. 7b. A linear relation between ln
(C0/C) and the irradiation time has verified that the
photodegradation of MB follows the first-order kinetics.
The calculated first-order rate constants (k) are pre-
sented in Fig. 7c. The kinetic constant of N-ZnO/g-
C3N4 is 1.794 h−1, which is 5.68, 3.85, and 1.91 times
higher than those of N-ZnO (0.316 h−1), g-C3N4

(0.466 h−1), and ZnO/g-C3N4 (0.937 h−1). Apparently,
N-ZnO/g-C3N4 exhibits the highest degradation effi-
ciency of MB among all of the catalysts. In order to
evaluate the stability of photocatalyst, the recyclic ex-
periments about the photodegradated MB are per-
formed with the N-ZnO/g-C3N4 catalyst. As shown in
Fig. 7d, the photocatalytic activity of N-ZnO/g-C3N4

exhibits an extremely limited decline. The degradation
efficiency of MB solution is nearly 90% after 100 min
even at the fifth recycling experiment.
Phenol was also adopted as a representative recalci-

trant pollutant to evaluate the photocatalytic

Fig. 8 a Photocatalytic degradation of phenol by using g-C3N4, ZnO/g-C3N4 and N-ZnO/g-C3N4 catalysts under visible-light irradiation,
b the corresponding first-order kinetic plots and c the rate constants of phenol degradation, and d degradation efficiency after 8 h for five
repeated processes by the N-ZnO/g-C3N4 photocatalyst
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performance of catalysts under visible-light irradiation,
and the results are showed in Fig. 8. The photocatalytic
degradation rates are expressed by Eq. 5, where C is the
temporal concentration of phenol after irradiation, and
C0 is the concentration after adsorption process. Among
all of the catalysts, N-ZnO/g-C3N4 presents the highest
photodegradation efficiency of phenol. Based on the cor-
responding plots (Fig. 8b) of ln (C0/C) vs. the irradiation
time, the kinetic constants of g-C3N4, ZnO/g-C3N4, and
N-ZnO/g-C3N4 are 0.013, 0.026, and 0.034 h−1, respect-
ively. More importantly, N-ZnO/g-C3N4 exhibits excel-
lent cycling stability (Fig. 8d) for phenol removal. The
above results further confirm that the N-ZnO/g-C3N4

catalyst performs excellent photodegradation ability of
both MB and phenol, because of its smaller band gap
and broader absorption edge in the visible region
compared with that of ZnO/g-C3N4.
By measuring the total organic carbon (TOC), the

photocatalytic mineralization of the N-ZnO/g-C3N4 was
carried out by degradation of MB and phenol in an
aqueous solution under visible light irradiation. Figure 9

shows the TOC removal efficiency of MB and phenol as
a function of reaction time. As shown in Fig. 9a, MB
was degraded completely after 120 min, and the TOC re-
moval rate reaches 93%. During the photodegradation
process, MB was degraded to several intermediates,
which may be the cleavage of one or more methyl
groups substituent on the amine groups [34], and finally
completely degraded to CO2 and H2O. By comparison,
the mineralization of phenol only reached 18%. The
main intermediates include hydroquinone (HQ), p-
benzoquinone (p-BQ), 1, 3-dihydroxybenzene (DB), ma-
leic anhydride (MA), and other low fatty acids (LFAs)
[35, 36]. HQ and p-BQ can be easily oxidized into other
intermediates or inorganic carbon. MA and LFA in the
reaction system are difficult to be further oxidated and
mineralized.
In the photocatalytic degradation of organic pollutants,

there are series of photogenerated reactive species such
as hole (h+), hydroxyl radicals (•OH), and superoxide an-
ions (O2

•−). In order to understand how the different re-
active species play a role in the photodegradation
process, the different scavengers were used to detect the
active species during the photocatalytic degradation
process. Here, EDTA, isopropyl alcohol (IPA), and
benzoquinone (BQ) were adopted as hole (h+), hydroxyl
radical (•OH), and superoxide anion (O2

•−) scavengers at
a concentration of 1.0 mM, respectively. Through the
photocatalytic experiments, the N-ZnO/g-C3N4 compos-
ite exhibited the best degradation for the MB solution.
So, the MB solution was chosen for the scavenging ex-
periments. As shown in Fig. 10, an obvious decrease in
the photocatalytic activity was also observed by the
addition of EDTA and BQ, respectively, suggesting that
both h+ and O2

•− play an important role in the photo-
catalytic reaction. Meanwhile, the photocatalytic degrad-
ation of MB was greatly suppressed by the addition of

Fig. 9 TOC removal of aMB and b phenol degradation by N-ZnO/g-C3N4

photocatalyst
Fig. 10 Effect of various scavengers on the degradation of MB over
the N-ZnO/g-C3N4 catalyst

Kong et al. Nanoscale Research Letters  (2017) 12:526 Page 8 of 10



IPA, indicating that the hydroxyl radicals (•OH) are the
main active species and play a dominant role in the
photocatalytic reaction.
The schematic illustration of the charge transfer and

photocatalytic mechanism for the N-ZnO/g-C3N4 com-
posite photocatalyst is shown in Fig. 11. Under the
visible-light irradiation, the electron–hole pairs in the g-
C3N4 and N-ZnO forms. And then, the excited-state
electrons transport from the VB to the CB. Thus, the
conduction-band electron and the valence-band hole
separate on the surface of the catalyst. The photogener-
ated electrons transfer from the CB of g-C3N4 to the CB
of N-ZnO due to the CB potential of g-C3N4 that is
more negative than the CB edge of N-ZnO, so the separ-
ation efficiency of the electron–hole pair is enhanced
[10]. The CB potential of N-doped ZnO (−0.45 eV vs.
NHE) is below the standard redox potential E0(O2/O2

−)
(−0.33 eV vs. NHE). So the photogenerated electrons in
the CB of N-doped ZnO would subsequently react with
the dissolved O2 to form the high oxidative hydroxyl
radicals, which could oxidize the pollutants [5]. In
addition, the photo-induced electrons have more nega-
tive potential to reduce the molecular oxygen to yield
superoxide anion (O2

•−), which then induces the degrad-
ation of organic pollutants. According to the previous
reports [6, 30], the photo-excited holes on the VB of N-
ZnO could transfer to the VB of g-C3N4. However, the
photo-induced holes of g-C3N4 cannot oxidize the
adsorbed H2O molecules to yield the hydroxyl radicals
because the VB potential of g-C3N4 (+1.4 eV vs. NHE) is
smaller than the standard redox potential E0(H2O/OH·)
(+2.4 eV vs. NHE) [7, 10]. Based on the above discus-
sion, the majority holes at the VB of N-ZnO do not
transfer to the VB of g-C3N4. These photo-excited holes
can directly oxidate the organic dye to obtain the

reactive intermediates [5] and/or react with the H2O to
form the hydroxyl radicals [2], which are the main react-
ive species in the photocatalytic reaction. Therefore, we
propose that the N-ZnO/g-C3N4 heterojunction struc-
ture can enhance the separation of electron–hole pairs
and reduce the recombination of charge carriers, leading
to the increase of the photodegradation process.

Conclusions
In summary, N-ZnO/g-C3N4 composite photocatalyst
was successfully prepared via a facile sol-gel method.
The addition of g-C3N4 enhances the light absorption in
the visible region, generates more charge carriers, and
simultaneously promotes the electron and hole segrega-
tion and migration. As compared with ZnO/g-C3N4, the
N-ZnO/g-C3N4 shows higher photocatalytic activity on
the degradation of MB and phenol, due to its improved
absorption in the visible region and narrower band gap
energy. The mechanism of the photocatalysis is analyzed,
and the stability is also evaluated by recycling photocata-
lytic ability.
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