
NANO EXPRESS Open Access

Effect of Doping on Hydrogen Evolution
Reaction of Vanadium Disulfide Monolayer
Yuanju Qu1,2,3, Hui Pan1*, Chi Tat Kwok2,1 and Zisheng Wang3,1

Abstract

As cheap and abundant materials, transitional metal dichalcogenide monolayers have attracted increasing interests
for their application as catalysts in hydrogen production. In this work, the hydrogen evolution reduction of doped
vanadium disulfide monolayers is investigated based on first-principles calculations. We find that the doping
elements and concentration affect strongly the catalytic ability of the monolayer. We show that Ti-doping can
efficiently reduce the Gibbs free energy of hydrogen adsorption in a wide range of hydrogen coverage. The
catalytic ability of the monolayer at high hydrogen coverage can be improved by low Ti-density doping, while that
at low hydrogen coverage is enhanced by moderate Ti-density doping. We further show that it is much easier to
substitute the Ti atom to the V atom in the vanadium disulfide (VS2) monolayer than other transitional metal atoms
considered here due to its lowest and negative formation energy. It is expected that the Ti-doped VS2 monolayer
may be applicable in water electrolysis with improved efficiency.
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Background
Two-dimensional (2D) transitional metal dichalcogenide
monolayers have received increasing attention because
of their amazing physical, chemical, electronic, and mag-
netic properties [1–8]. The transition-metal dichalcogen-
ides have the formula of MX2 (M is a transition metal
element from groups IV to VI, and X is a chalcogen elem-
ent), where one M-atom layer is sandwiched between two
X-atom layers [1]. These 2D monolayers have been exten-
sively investigated for possible applications in many areas
of science and technology, from nanodevices, photoelec-
tronics, catalysts, to the bioscience [9–17]. Their applica-
tion as catalysts for hydrogen production in water
electrolysis is particularly interesting because of their fea-
tures, such as low cost, easy large-scale fabrication, and
rich abundance on Earth [8, 11, 18–31]. Numerous studies
have shown that the catalytic performance of 2D MX2

nanostructures is closely related to their conductivity and
active sites at edges [18–33]. For example, the metallic
edges of MoS2, such as the zigzag edge, are active for

hydrogen evolution reaction (HER) in water electrolysis
[28–32]. Metallic MX2 showed better catalytic activity
than its semiconducting counterpart [21, 26]. To enhance
the performance, the MoS2/graphene composite had been
studied for HER because graphene may improve the
conductivity and modify their morphologies [24, 27]. Re-
cently, Pan reported that vanadium disulfide (VS2) mono-
layer shows the best HER performance in the considered
systems and its catalytic activity depends on the hydrogen
coverage during HER, which is reduced at high coverage
due to the change of conductivity [19]. Kong et al. re-
ported that doping is one of possible methods to improve
their activity [28]. In this work, we investigate the effect of
doping on the catalytic activity of the VS2 monolayer to
improve the HER performance on the basis of first-
principles calculation. A series of elements, including Ti,
Nb, W, Ta, Mo, Pt, Fe, Co, and Ni, are systematically stud-
ied. We find that Ti is the best element to easily substitute
V in the VS2 monolayer and improve the HER ability. We
also show that the doping effect on HER strongly depends
on the concentration of dopants.
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Methods
The design of catalysts for water electrolysis is based on
the first-principles calculation. The hydrogen evolution
reduction of the VS2 monolayer with the dopant is in-
vestigated to improve its catalytic ability. The Vienna Ab
initio Simulation Package (VASP) [34] incorporated with
the projector augmented wave (PAW) scheme [35, 36],
which is based on the density functional theory (DFT)
[37] and the Perdew-Burke-Ernzerhof generalized gradient
approximation (PBE-GGA) [38], is used in our calcula-
tions. Supercells with lattices larger than 10 Å are used to
investigate the doping effect and hydrogen-density-
dependent HER ability. A 3 × 3 × 1 grid for k-point sam-
pling, based on the Monkhorst and Pack scheme [39], for
geometry optimization of supercells, and an energy cutoff
of 450 eV are consistently used in our calculations. Dens-
ities of states (DOSs) are calculated based on a k-point
sampling of 5 × 5 × 1. To avoid image-image interaction
between two monolayers in neighboring supercells in the
vertical direction, a vacuum region of at least 20 Å is used
for separation. Good convergence is obtained with these
parameters, and the total energy was converged to
2.0 × 10−5 eV/atom. Both of spin-unpolarized and spin-
polarized calculations are carried out.

Results and Discussion
In our calculations, a supercell with a hexagonal struc-
ture is set up on the basis of a unit cell of the VS2 mono-
layer with one surface fully covered by hydrogen atoms
(a = 3.27 Å) [19] (Fig. 1 and Additional file 1: Figure S1),
where the S–H bond length is about 1.37 Å. Two super-
cells with 3 × 3 × 1 and 4 × 4 × 1 unit cells (331 and 441
supercells, respectively) are used to investigate the effect
of the doping concentration. Nine transition metal (TM)
elements, including Ti, Nb, W, Ta, Mo, Pt, Fe, Co, and
Ni, are considered as dopants in our calculations. To
realize the doping, one or two V atoms in the supercells
are substituted by TM atoms (Fig. 1c). The doped systems

are fully relaxed to study the doping possibility and their
HER performance.
Basically, the HER performance of the catalyst can be

characterized by free energy of adsorption of reactive in-
termediates on its surface based on the Sabatier principle
[40]. To qualify the catalytic ability, the reaction free en-
ergy of hydrogen adsorption (ΔGH) [19, 40–43] is calcu-
lated as the following equation:

ΔGH ¼ ΔEH þ ΔEZPE−TΔSH ð1Þ
where ΔEH is the hydrogen chemisorption energy de-
fined as:

ΔEH ¼ E VS2 þ nHð Þ−E VS2 þ n−1ð ÞHð Þ− 1
2
E H2ð Þ

ð2Þ
where n is the number of H atoms adsorbed on a MX2

monolayer and changed from 1 to 9 (for full hydrogen
coverage on the 331 supercell) (Fig. 1a, b) or 1 to 16 (for
full hydrogen coverage on the 441 supercell) to investi-
gate the effect of hydrogen coverage on catalytic activity.
The hydrogen coverage refers to n

9 (in the 331 supercell)
or n

16 (in the 441 supercell). Full coverage refers to each
S atom on one side of the VS2 monolayer that is at-
tached with one H atom. Therefore, ΔGH as a function
of the hydrogen coverage can be obtained. E(VS2 + nH),
E(VS2), and E(H2) in Eq. (2) are the energies of the
monolayer with hydrogen atoms (n), pure VS2 mono-
layer, and hydrogen molecule, respectively. ΔSH is the
difference in entropy. The entropy of adsorption of 1/2
H2 is ΔSH≅−1=2S0H2

, where S0H2
is the entropy of H2 in

the gas phase at standard conditions. ΔEZPE is the differ-
ence in zero point energy between the adsorbed and the
gas phase, related to the reaction 1/2H2(g)→H *, where
H* denotes a hydrogen atom adsorbed on the surface.
ΔEZPE −TΔSH is about 0.24 eV [19, 40–43]. So, Eq. (1) is
simplified to ΔGH = ΔEH + 0.24.

Fig. 1 The representative structures of a fully H-covered VS2 331 supercell: a top view, b side view, and c doped VS2 in the 331 supercell. The
indication in (a) shows the way to take away the hydrogen atom one by one
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To realize the partial hydrogen coverages, we start
from the full hydrogen coverage on the supercell and
take hydrogen atoms away one by one, as indicated in
Fig. 1a. All of the systems with different hydrogen cover-
ages are relaxed to calculate ΔGH. The relaxed struc-
tures show that their geometry are stable and hydrogen
atoms keep on the tops of S atoms with the S–H bond
of 1.37 Å (Additional file 1: Figure S2). We first study
the 331 supercell with one V atom replaced by one TM
atom, which is corresponding to a doping concentration
of 1

9. The calculated Gibbs free energies for hydrogen ad-
sorption on the 331 supercell show that the catalytic ac-
tivities of doped VS2 monolayers are still dependent on
the hydrogen coverage, which decrease with the incre-
ment of hydrogen density (Fig. 2). Compared with a pure
VS2 monolayer, we see that doping can partially improve
its catalytic activity at a certain range of hydrogen dens-
ity as indicated by the reduced ΔGH (Fig. 2). For ex-
ample, the Ni-doped VS2 monolayer shows better HER
performance than a pure one in ranges of hydrogen
density from 3

9 to 4
9 and from 6

9 to 8
9 (Fig. 2a). Pt-doping

and Ti-doping improve the performance in hydrogen
density ranging from 6

9 to 8
9 (Fig. 2b) and from 1

9 to 5
9

(Fig. 2c). Interestingly, we see that ΔGH for W-doped
VS2 at the full hydrogen coverage is almost close to zero
(0.09 eV) (Fig. 2c). In all of the considered doping ele-
ments, we see that Ni- and Ti-doping can improve the
HER performance of the VS2 monolayer in a wide
hydrogen coverage and W-doping can dramatically en-
hance its catalytic activity at a high hydrogen coverage.
For comparison, we put the calculated ΔGH of Ni-, Ti-,
and W-doped VS2 monolayers as a function of hydrogen
density together (Fig. 3a). Clearly, Ti-doping is better
than Ni-doping on the HER performance in a range of 1

9

to 5
9, while Ni-doping is better than Ti-doping in a range

of 6
9 to 8

9 (Fig. 3a). W-doping is the best at the full hydro-
gen coverage. The relaxed structure of the W-doped VS2
monolayer with full hydrogen coverage shows that one
of the H atoms moves away from the surface around the

Fig. 2 Calculated overpotentials as a function of H-coverage for
TM-doped VS2 monolayers in 331 supercells with TM equal to: a Fe,
Co, and Ni; b Ta, Mo, and Pt; and c Ti, Nb, and W. For comparison,
the overpotentials of the pure VS2 331 supercell are added

Fig. 3 Calculated overpotentials as a function of H-coverage for the TM-doped VS2 (TM = Ti, W, Ni) monolayers in a 331 supercell and b 441 supercell
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W-doping site and bonds to other H atoms nearby (inset
in Fig. 3a), where the S–H and H–H bond lengths are
1.662 and 0.983 Å, respectively. We also investigate the
effect of spin-polarization on the HER performance of
the Ti-doped system. We find that spin-polarization may
affect slightly the calculated Gibbs free energy at a lower
hydrogen coverage but is negligible as the hydrogen
coverage increases (Fig. 4). Therefore, spin-polarization
is not considered below.
To investigate the effect of the doping concentration

on the HER performance, the increment and reduction
of the doping density are achieved by replacing more V
atoms in the same supercell and enlarging the size of the
supercell, respectively. For example, we replace two V
atoms using two TM (Ti, Ni, or W) atoms in the 331
supercell, which is equivalent to a doping density of
22.22 % 2

9

� �
. The calculated Gibbs free energies show that

increasing the doping density makes the HER perform-
ance worse, indicating that a high doping concentration
is not good in application (Additional file 1: Figure S3).
Then, we use a 441 VS2 supercell with one V substituted
by one TM atom (TM = Ti, Ni, and W), which equals to
a doping density of about 6.25 % 1

16

� �
. Clearly, the TM-

doping can improve the HER performance of the VS2
monolayer under high-H coverage in a range of 8

16 to
16
16

(Fig. 3b). The catalytic abilities of Ti- and Ni-doped sys-
tems are enhanced by 50 % in the hydrogen coverage
from 8

16 to
11
16 (Fig. 3b). However, Ni-doping reduces its

performance in hydrogen coverages less than 8
16. The cata-

lytic ability of the Ti-doped VS2 monolayer at low hydro-
gen coverages is comparable with or slightly worse
than that of the pure VS2 monolayer. Similarly, W-
doping in the 441 supercell can only improve the
HER performance at certain hydrogen densities, such
as 9

16 and
16
16 (Fig. 3b). The relaxed structure of W-

doped VS2 with the full hydrogen coverage shows
that hydrogen atoms around the doping site move to-
gether to form a triangle with a H–H bond length of
1.00 Å and an extended S–H length of 1.90 Å (inset

in Fig. 3b). From the calculated Gibbs free energies, we
see that Ti is the best candidate as a dopant to improve
the HER performance of the VS2 monolayer. Comparing
with other MX2 monolayers, we see that the basal plane
of the Ti-doped VS2 monolayer has better catalytic per-
formance under the same condition (ΔGH = −0.19 eV at
6.25 % coverage) than that of pure 1T-WS2 (ΔGH =
0.28 eV) [21]. It is also worth noting that after doping Ti,

Fig. 4 a Calculated overpotentials of Ti-doped VS2 in the 331 supercell with and without spin polarization. b Calculated energy difference between
VS2-Ti with and without spin polarization, at various hydrogen coverages

Fig. 5 Calculated partial density of states of the Ti-doped VS2 monolayer
in the 331 supercell with a hydrogen coverage at: a 1/9, b 3/9, c 8/9,
and d 9/9
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Ni, and W atoms individually into the VS2 monolayer, the
catalytic ability of the basal plane on the doped VS2
monolayer has improved dramatically at certain hydrogen
coverages, which are equivalent to or even better than that
of the active edges sites of MoS2, MoSe2, WS2, and WSe2
under the same hydrogen coverages [20]. For example, the
catalytic activity of the Ti-doped VS2 monolayer (its ΔGH

equals −0.05 eV under a hydrogen coverage of 2
9 (22.2 %))

is comparable to or better than that at the edges of MoS2,
MoSe2, WS2, and WSe2 (the optimal ΔGH is from −0.06
to 0.06 eV under a hydrogen coverage of 25 %).
To reveal the mechanism of the doping effect on HER

performance, the partial density of states is calculated
and shows the shift of the Fermi level as the hydrogen
coverage increases (Figs. 5 and 6; Additional file 1:
Figures S4–S7). We see that the densities of states of the
Ti-doped VS2 monolayer under various hydrogen cover-
ages near Fermi levels are mainly contributed to Ti-d
and V-d electrons (Figs. 5 and 6). In the 331 supercell,
localized defect states near the Fermi level are formed at
high hydrogen coverage (Fig. 5c, d), which may lead to
reduced carrier mobility and HER performance (Fig. 3a).
However, the doping states near the Fermi level in the
441 supercell are connected to the valence band (Fig. 6c, d),
resulting in better carrier mobility and improved catalytic
activity at high hydrogen coverages (Fig. 3b).
Although the calculated Gibbs free energies show that

Ti-doping may improve the HER performance of the
VS2 monolayer, another important issue, which is the
doping ability, needs to be stated. The possibility for the
dopant to substitute the V atom in the host can be inves-
tigated by calculating the formation energy as below:

Ef ¼ E VS2 þ nTMð Þ−E VS2ð Þ−nμTM þ nμVð Þ=n ð3Þ

where E(VS2 + nTM) and E(VS2) are the total energies of
VS2 monolayer supercells with and without dopants.
μTM and μV are the energies of TM and V atoms, re-
spectively. n is the number of dopants in each supercell
(n = 1). Our calculations show that the formation ener-
gies for Ti-, Mo-, Nb-, and Ta-doping are negative, indi-
cating the reactions are exothermic, while the doping of
W, Fe, Co, Ni, and Pt are endothermic because of their
positive formation energies (Fig. 7). Particularly, it is easy
to substitute the Ti atom to the V atom in the 331 super-
cell of the VS2 monolayer because of its lowest formation
energy (−0.83 eV) (Fig. 7a). W-doping may be achieved
under suitable conditions because its endothermic energy

Fig. 6 Calculated partial density of states of the Ti-doped VS2 monolayer
in 441 supercell with a hydrogen coverage at: a 2/16, b 5/16, c 14/16,
and d 16/16

Fig. 7 Calculated formation energies of the TM-doped VS2 monolayers (TM = Ti, Nb, Ta, Mo, W, Fe, Co, Ni, Pt) in a 331 supercell and b 441 supercell
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is as low as 0.06 eV. Compared with other elements, how-
ever, Ni-doping should be difficult because large energy is
required (Ef = 1.88 eV). We further see that their forma-
tion energies are reduced if the doping density decreases
(Fig. 7b). In this case, the energies of Ti- and W-
substitutions are reduced to −1.14 and 0.005 eV, res-
pectively, at a doping density of 6.25 % 1

16

� �
(Fig. 7b), indi-

cating that doping at a low concentration is easier than
that at a high concentration.

Conclusions
We present a first-principles study on the effect of dop-
ing on the hydrogen evolution reaction of the VS2
monolayer. We find that the catalytic activity of the
doped VS2 monolayer depends strongly on the choice of
dopant and the doping concentration. The catalytic abil-
ity of the VS2 monolayer under high hydrogen coverages
can be dramatically enhanced by TM-doping at a low
concentration, while that under low hydrogen coverages
can be improved by the doping at a moderate density.
High-density doping results in reduced HER activity. We
further show that Ti-doping should be the best to im-
prove the HER ability of VS2 monolayers in our consid-
ered doping elements because of the reduced Gibbs free
energy at a wide range of hydrogen coverages. By inves-
tigating the formation energy of TM substitution of the
V atom, we find that the reaction of Ti-substitution of V
in the VS2 monolayer is exothermic and easier than
other TM elements due to its lowest formation energy.
It is predicted that the Ti-doped VS2 monolayer may
show better HER performance and find applications as
catalysts in water electrolysis.
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