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Abstract

increased methylation was observed.

Background: The epigenomes of healthy and diseased human hearts were recently examined by genome-wide
DNA methylation profiling. Repetitive elements, heavily methylated in post-natal tissue, have variable methylation
profiles in cancer but methylation of repetitive elements in the heart has never been examined.

Results: We analyzed repetitive elements from all repeat families in human myocardial samples, and found that
satellite repeat elements were significantly hypomethylated in end-stage cardiomyopathic hearts relative to healthy
normal controls. Satellite repeat elements are almost always centromeric or juxtacentromeric, and their
overexpression correlates with disease aggressiveness in cancer. Similarly, we found that hypomethylation of
satellite repeat elements correlated with up to 27-fold upregulation of the corresponding transcripts in end-stage
cardiomyopathic hearts. No other repeat family exhibited differential methylation between healthy and
cardiomyopathic hearts, with the exception of the Alu element SINE1/7SL, for which a modestly consistent trend of

Conclusions: Satellite repeat element transcripts, a form of non-coding RNA, have putative functions in
maintaining genomic stability and chromosomal integrity. Further studies will be needed to establish the
functional significance of these non-coding RNAs in the context of heart failure.

Background

One of the greatest surprises of high-throughput transcrip-
tome analysis in recent years has been the discovery that
the mammalian genome is pervasively transcribed into
many different complex families of RNA [1]. Up to 40% of
the transcriptome has no protein coding capacity and dif-
ferent forms of non-coding RNA include piwi-interacting
RNA (piRNA), small nucleolar RNA (snoRNA), long non-
coding RNA and others [2]. Of these, microRNA is the
only non-coding RNA that is currently the most well-
studied in cardiovascular research. Repetitive elements and
retrotransposons make up at least 45% of the human gen-
ome and are expressed as non-coding transcripts in differ-
ent tissues [3,4] but their expression in the heart has never
been examined. In the adult brain, long interspersed
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nuclear element-1 (LINE-1) retrotransposons were unex-
pectedly discovered to undergo transcription, active mobi-
lization and large-scale insertion and copy-number
expansion [5]. LINE-1 expansion was ascribed to neuro-
progenitor cells in adult brains and LINE-1 retrotransposi-
tion may explain genetic diversity and differential neuronal
properties between the brains of different individuals,
and also the different types of neurons in the brain of an
individual [5].

The term ‘repetitive element’ refers to DNA sequences
that are present in multiple copies in the genomes in
which they reside. Repetitive elements are subdivided into
(i) interspersed sequences (LINEs and SINEs) derived
from non-autonomous or autonomous transposable ele-
ments, and (ii) tandem array repeats of simple or complex
sequences (satellite elements). Interspersed LINEs and
SINEs are found throughout the genome, whereas satellite
(SAT) elements are largely confined to centromeres or
centromere-adjacent (juxtacentromeric) heterochromatin.
Satellite-o. (SATa) repeats are composed of 170 bp DNA
sequences and represent the main DNA component of
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every human centromere [6]. Satellite 2 (Sat2) repeats are
found in juxtacentromeric heterochromatin and are most
abundant in the long juxtacentromeric region of chromo-
some 1. A collective feature of repetitive elements gen-
ome-wide is that of DNA methylation. DNA methylation
refers to the epigenetic modification in which the cytosine
nucleotide is modified by a methyl-group in the carbon-5
position. DNA sequences of repetitive elements are highly
methylated in postnatal tissues but can be variably methy-
lated in cancer [7]. Methylation of repetitive elements con-
tributes to the heterochromatic structure of their genomic
loci and explains why they are transcriptionally silent. In a
genome-wide DNA methylation screen of nerve sheath
tumors, Beck and colleagues [8] found that SAT repeats,
but not other repetitive elements, are hypomethylated and
aberrant methylation of these was associated with the
transition from healthy cells to malignant disease.

Little is known about DNA repetitive elements in the
cardiac genome. In 1990 Gaubatz and Cutler [9] reported
that SAT repeats are actively transcribed in hearts of old
mice (aged 12 to 32 months) compared to young (2 to 6
months). This was in contrast to the absence of any differ-
ence in transcripts of SINEs and LINEs. Repetitive ele-
ments from diseased hearts were, however, not examined.

Our group recently reported the first genome-wide differ-
ential DNA methylation study in end-stage cardiomyo-
pathic (EsCM) human hearts and gave a glimpse of the
distinct patterns of DNA methylation profiles in ESCM
compared to healthy age-matched controls (CTRL) [10].
We found significant differential methylation in the tandem
repeat array at the subtelomeric DUX4 locus that associated
with differential DUX4 expression. This prompted us to
extend our analysis to the genome-wide methylation profile
of all other repetitive elements in the cardiac genome.

Results

DNA methylation mapping of human repeat sequences
To systematically evaluate differential methylation of repe-
titive elements in the cardiac genome, we took a two-step
approach depicted in Additional file 1. First, the methy-
lated DNA immunoprecipitation (MeDIP)-seq dataset
from four EsCM hearts and four normal left ventricular
(LV) tissue samples (CTRL) (Additional file 2) published
previously was re-examined specifically for DNA repetitive
element methylation. Corresponding to the hypothesis
that there is a convergent ‘unifying pathway’ of gene
expression that characterizes end-stage failing hearts
regardless of the original inciting cause, and that this
reflects other ‘unifying pathway’ processes such as fibrosis,
angiogenesis and cell death in end-stage heart failure [11],
DNA methylation profiles in our previous analyses did
not differ between ischemic and idiopathic cardiomyo-
pathic hearts [10,12]. We therefore used all ischemic and
idiopathic cardiomyopathic samples as collectively
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representative of EsSCM [10,12]. High-throughput sequen-
cing from MeDIP had generated a total of approximately
127 million reads [10]. Reads were mapped to the human
reference genome assembly Hgl8 and to repeat sequences
in Repbase [13,14]. Uniquely mapped reads were normal-
ized and subsequently compared between CTRL and
EsCM for all repetitive elements of the genome (Figure 1a,
b; Additional files 2, 3 and 4). Since the sample size was
small, we opted for one to one comparison between the
two groups using Fisher’s exact test. This resulted in 16
pairwise comparisons between CTRL and EsCM samples
(Additional files 5 and 6). In order to identify differentially
methylated repetitive elements (DMReps), we used a
simple guide to keep those repetitive elements whereby
Fisher’s exact test statistic was significant (P < 0.05) for at
least 14 out of the total 16 pairwise comparisons. For the
purpose of our comparison, we observed that SINE-1
(SINE1/7SL), LINE-1 (L1), Satellite (SAT) and endogenous
retrovirus 1 (ERV1) families were highly representative,
having 32, 13, 8 and 8 repeat sequences, respectively. The
three families SINE1/7SL, L1, and ERV1 featured a mixed
trend of hypo- and hypermethylation between EsCM and
CTRL (Additional files 5 and 6). Therefore, it was not pos-
sible to derive any conclusions with these three families
from our dataset. In marked contrast, the identified
DMReps were significantly enriched for SAT repeats (P =
4.12 x 10°%, hypergeometric test; P = 4.10 x 107, permuta-
tion analysis) (Figure 1c-j). Moreover, the SAT family
demonstrated a consistent trend of hypomethylation in
EsCM across our comparisons (green only in Additional
files 5 and 6). As a complementary approach, the two
groups were also compared using unpaired Welch’s ¢-test,
identifying five DMReps (P-adjusted <0.05; Figure 1d,e,gh;
Additional file 7). Unsurprisingly, the results were similar
to the pairwise comparison as four out of five of these
DMReps were also significantly enriched for SAT repeats
(ALR, ALR , ALRb and ALRI; P = 7.51 x 107, hypergeo-
metric test; P = 5.0 x 10°°, permutation analysis).
To assess the classification of identified DMReps in more
detail, we grouped repeat sequences into respective
families (Additional file 8) and classes (Additional file 9)
using Repbase annotations. As expected, the overall land-
scape of repeat families was a cumulative representative of
its member repeats. The Fisher’s exact test statistic was
highly significant (P < 0.01) across all 16 SAT family com-
parisons between EsCM and CTRL samples. SAT hypo-
methylation in EsCM samples was also found when the
comparisons were made between repeat classes (Fisher’s
P < 0.01). Family-wise and class-wise comparisons did not
demonstrate the same consistency of either hypo- or
hypermethylation for any other group of repeat sequences.
We therefore chose to limit our subsequent analysis to
the four SAT repeats identified by both methods as
described above. However, analysis for ALRI had to be
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Figure 1 Summary of count data and candidate SAT repeat elements. (a) Heatmap of log2 normalized read counts for CTRL and EsCM
patients across repeat elements. The rows were scaled such that every row has y = 0 and ¢ = 1. The color bar on the vertical axis represents
families of repeat elements. A fully annotated large-scale heatmap is available in Additional file 3. (b) A bar chart representing the number of
repeat sequences per family. (c-j) The groupwise log2 normalized read counts. The two groups were compared using unpaired Welch's t-test
followed by adjustment for multiple comparisons. ALR_ methylation was significantly different between the CTRL and EsCM group (* P < 0.05)
while ALR, ALR1, and ALRb methylation levels were highly significantly different between the two groups (** P < 0.01).

excluded because, technically, we found that we could
not design any primer pairs that were specific only for
ALRI. Our analysis therefore focused on ALR, ALR_and
ALRD. Global coordinates for each of these remaining
three SAT repeats were carefully annotated (Additional
file 10). We proceeded to validate our finding of SAT
hypomethylation in EsCM patients by analyzing the
methylation density averaged for each of the three global
sets of coordinates, including their flanking genomic
locations, using the previously established BATMAN
algorithm [10]. All three SAT repeats showed a reduc-
tion in methylation density in EsCM samples (Addi-
tional file 11), consistent with the analysis in Figure 1
and Additional files 5 and 6.

The lack of SAT element enrichment detected in EsCM
by MeDIP may be explained by an artifact of copy-

number contraction of SAT elements within the genome
of EsCM compared to CTRL, and not necessarily an
enrichment because of relative hypomethylation. We
therefore quantified SAT copy-number by quantitative
PCR (qPCR) of genomic DNA from all our LV samples.
Contrary to copy-number contraction in EsCM, a trend
for more SAT elements was found in ESCM (Additional
file 12). This confirmed that differential enrichment of
SAT elements by MeDIP reflected differential methyla-
tion and not differential genomic SAT copy number.

Hypomethylation of SAT repetitive elements correlated
with increased SAT transcription

We have previously demonstrated that hypomethylation
of DNA regulatory elements and loci in the cardiac gen-
ome associated with differential gene expression at the
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corresponding locus [10,12]. Moreover others have
reported increased transcription from major SAT
repeats in aged murine hearts in relation to the progres-
sive loss of silencing of heterochromatin around centro-
meres [9]. We therefore tested the RNA abundance of
ALR, ALR_ and ALRb repeats in CTRL and EsCM
(Additional file 13, CTRL A to H and EsCM 1 to 16) by
RT-qPCR. Transcripts of all three SAT repeat elements
were significantly upregulated in EsCM compared to
CTRL by up to 27-fold (Figure 2a-c). We further ascer-
tained that only a single product was amplified from
each PCR (Figure 2d) and PCR products were TOPO-
cloned and sequence validated (not shown).

The chromatin mark of H3K36me3 (tri-methylated his-
tone H3 at lysine 36) demarcates actively transcribed
genomic loci [15]. We therefore used our previously pub-
lished dataset of H3K36me3 chromatin immunoprecipita-
tion (ChIP)-seq [10] and validated that the read density for
this histone mark was enriched in the global coordinates
for each of ALR, ALR_and ALRb in EsCM compared to
CTRL (Additional file 14). This was again consistent with
the finding of increased transcription activity at the loci of
these three SAT family members.

Proximal genes to SAT repetitive elements

In order to propose a functional role linking hypomethyla-
tion of SAT elements to protein coding genes, the geno-
mic loci of these elements were scanned for genes in
proximity. We extended our search to 5,000 bp up- and
downstream of SAT repeats that overlapped any known
genes. Remarkably, almost all SAT repetitive elements
were centromeric or juxtacentromeric and therefore did
not have any genes associated with them, except for
ANKRD30BL and TRIM48. These had ALRb and ALR_
repetitive elements overlapping within 5,000 bp upstream
(Additional file 15). TRIM48 is a protein-coding gene and
ANKRD30BL is a putative non-coding RNA. RT-qPCR for
transcript abundance of TRIM48 and ANKRD30BL did
not show any differential expression between healthy
CTRL and EsCM hearts (not shown).

Hypermethylation of SINE1/7SL repeat elements across
EsCM patients

The other family with methylation differences suggested
by our analyses was SINE1/7SL. This SINE1 sequence
comprises Alu retrotransposons and is believed to have
arisen from the gene that encodes 7SL RNA [16,17]. Alu
repeats are linked with various cancer types featuring
hypomethylation of oncogenes and hypermethylation of
tumor supressors [18-20]. We noticed that 32 SINE1/7SL
repeat elements possessing sufficient coverage demon-
strated a modestly consistent trend of hypermethylation
across EsCM. Although the trend was not conclusive for
the CTRL 1 sample, the rest of the comparisons between
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EsCM and CTRL samples indicated hypermethylation in
EsCM (Additional files 5 and 6). The merged results of
the count data of these repeat elements within SINE1/
7SL also demonstrated a similar trend (Additional files 8
and 9). Altogether, these pointed to a trend toward
increased Alu methylation in EsCM.

Discussion

High-throughput sequencing of RNA provides an unpre-
cedented opportunity to examine the pervasive transcrip-
tion of the mammalian genome [1]. While RNA-seq
studies performed in the context of heart failure have
demonstrated a wide variety of protein and non-protein
coding transcripts that are up- and down-regulated in the
diseased myocardium [21,22], transcripts arising from
DNA repetitive elements in the cardiac genome have yet
to be highlighted. Historically, repetitive DNA sequences
have been refractory to many experimental approaches,
particularly array-based ones that are dependent on hybri-
dization. This problem is circumvented by MeDIP-seq
because high-throughput sequencing provides excellent
coverage for all major repeats [8]. High-throughput
sequencing may have other intrinsic disadvantages, such
as GC-dependent differential amplification of sequences,
but our work involving the comparison between healthy
and diseased tissue means that such shortcomings apply
equally to both sets of tissue. Hence, this emphasizes the
significance of our finding of DMReps in SAT elements in
EsCM heart. Our analysis also hints at Alu element hyper-
methylation in EsCM heart but the more compelling
results with SAT DMReps convinced us to focus our
study on SAT repetitive elements.

SAT repetitive elements are mainly centromeric or jux-
tacentromeric. Centromeres are marked by a distinct set
of histone variants and organized into blocks of nucleo-
somes. Clear evidence shows that the specification and
propagation of centromeres are not defined by the under-
lying DNA sequence but rather by epigenetic mechanisms
such as the histone variants and, possibly, DNA methyla-
tion[23,24]. Methylation changes or changes in histone
modifications at these repetitive elements may hence pre-
dispose to increased transcription of the underlying SAT
elements. Our findings of increased SAT transcript
expression correlating with SAT hypomethylation in
EsCM heart indeed correspond to our previous report of
hypermethylation of the DUX4 subtelomeric tandem
repeat and downregulation of the DUX4 transcript [10].

Overexpression of centromeric SAT transcripts in dis-
eased hearts is reminiscent of centromeric-derived tran-
script upregulation in the conditional gene-targeted
knockout of Dicer in embryonic stem cells [25]. There,
Dicer deficiency also generates defects in methylation of
centromeric DNA and overexpression of SAT repeats.
SAT repeats are transcribed into non-coding RNAs that
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PCR reactions were TOPO-cloned and sequenced (not shown).

Figure 2 Quantitative RT-PCR for the transcript abundance of SAT family repeat sequences (ALR, ALR_ and ALRDb). (a-c) Quantification of
transcript abundance for ALR (a), ALR_ (b) and ALRb (c) repeat elements was performed on a panel of EsCM and CTRL LV samples (EsCM A to H
and CTRL 1 to 16, according to Additional file 13), and normalized by geNORM obtained from housekeeping transcripts RPLPO and TBP. The two
groups were compared using unpaired Wilcoxon rank-sum test. All three repeat elements were found to be significantly different from their
respective CTRL group. Values shown are mean + sem. * P < 0.05. (d) Products from the qPCR reaction were run in a 2% agarose gel as shown.

are implicated in fundamental processes, including gene
silencing and maintenance of chromosomal integrity
[26]. Like other non-coding RNA, the role of SAT tran-
scripts seems likely to depend upon RNA-protein com-
plexes. SAT transcripts assemble nucleoproteins at the
centromere by directly binding to core centromeric

proteins [27]. A direct interaction between splicing fac-
tors and SAT transcripts also recruits splicing factors to
nuclear stress bodies during conditions of cellular stress
[28]. Up to 100-fold upregulation of juxtacentromeric
SAT transcripts has been reported in cancer, and
whether SAT deregulation actively drives genomic
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instability in cancer or is merely a consequence of it
remains to be shown [26]. In our study, the use of human
tissue also limits us from concluding whether SAT tran-
scripts contribute to progression of heart failure. It is also
unclear at this time whether only a specific cell type of
the heart is responsible for repeat element expression.
Similarly, other confounding factors that are characteris-
tic of studies like ours also exist, including medications
that patients were on, the presence of other disease co-
morbidities or other disease risk factors. Despite all these
limitations, it is very striking to find that SAT transcripts
alone, and not other repeat elements, are very highly
upregulated in diseased hearts. Whatever their origin,
their possible role in disease progression now warrants
urgent investigation. As in cancer, SAT expression may
highlight a potential link between genomic damage and
heart failure disease progression. In end-stage diseased
hearts, we have certainly observed significant and wide-
spread DNA damage [29] that is out of proportion to the
diminishingly low levels of myocyte cell death usually
detected in end-stage failing hearts [30]. Furthermore,
juxtacentromeric hypomethylation and SAT transcript
abundance may indeed be related to the observation of
polyploidy in diseased human myocytes [31].

Conclusions

Our genome-wide analysis of repetitive element methyla-
tion in the cardiac genome has revealed a differential
methylation profile in SAT repetitive elements, and possi-
bly SINE1/7SL, but not other repeat families. SAT element
hypomethylation was associated with significant upregula-
tion of juxtacentromeric SAT transcripts in diseased
hearts compared to healthy controls. The functional effect
of these findings in cardiomyopathy remains to be demon-
strated but the fundamental role of SAT non-coding tran-
scripts in other contexts implies that this now merits
further investigation.

Materials and methods

Human myocardial samples

Human LV myocardial tissue was collected under a proto-
col approved by the Papworth Hospital Tissue Bank
Review Board and the Cambridgeshire South Research
Ethics Committee, UK. Written and informed consent was
obtained from patients undergoing cardiac transplantation
for end-stage heart failure, including both ischemic and
idiopathic cardiomyopathy (male Caucasians, aged 42 to
68 years). In our previous assessment of genome-wide
DNA methylation using similar end-stage cardiomyo-
pathic human hearts, methylation profiles and gene
expression did not differ between ischemic and idiopathic
cardiomyopathic hearts [10,12]. Others have similarly
described the convergent pattern of gene expression in
end-stage ischemic and dilated cardiomypathic human
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hearts [11,32]. We therefore used all ischemic and idio-
pathic cardiomyopathic samples collectively as representa-
tive of end-stage cardiomyopathy (EsCM). Normal LV
tissues (CTRL) were from healthy male individuals (UK
Human Tissue Bank, de Montfort University, UK). These
were individuals with no prior clinical history of cardiovas-
cular disease, diabetes mellitus or other forms of metabolic
disease, and were not known to be on any long-term med-
ications. CTRL LV tissue came from individuals who died
from road traffic accidents except for one sample that
came from an individual who suffered from hypoxic brain
injury secondary to drowning. All CTRL LV samples were
inspected at the time of post-mortem and any significant
degree of coronary artery disease or myocardial disease
was excluded. At the time of transplantation or cardiac
harvest, whole hearts were removed after preservation and
transported as previously described [29,33]. After analysis
by a cardiovascular pathologist (MG), LV segments were
cut and immediately stored in RNAlater (Ambion, Applied
Biosystems, Warrington, UK). Individual LV sample details
are listed in Additional file 13.

Genomic DNA isolation

Genomic DNA (gDNA) was isolated from LV tissue as
previously described [12]: 200 mg tissue was homoge-
nized in G2 lysis buffer containing 80 mg/ml of RNase
A with a handheld homogenizer (Polytron, VWR, Leics,
UK), and proteinase K was added to a final concentra-
tion of 1 mg/ml and incubated at 50°C for at least 2
hours while rotating until all the tissue was fully
digested. gDNA was purified with x2 phenol:chloroform
isolation and chloroform wash and precipitated with
sodium chloride. After another wash with 70% ethanol,
samples were quantified on a Qubit (Invitrogen, Paisley,
UK).

RNA isolation and cDNA synthesis

RNA was extracted from LV tissue by homogenizing at
least 30 mg of frozen tissue in 0.5 ml of TRIreagent
(Sigma-Aldrich, St Louis, MO, USA) with a handheld
homogenizer (Polytron). Homogenates were centrifuged
at 3,000 rpm for 3 minutes; supernatant was transferred
to a clean Eppendorf; and RNA extraction was performed
according to the manufacturer’s protocol with the follow-
ing modification. After chloroform extraction, ethanol
was added to samples to a final concentration of 35%,
and samples were loaded onto PureLink RNA columns
(Invitrogen, 12183-018A). On-column DNase treatment
was carried out with elution of the RNA. Integrity of all
RNA samples was checked with the 2100 Bioanalyser
(Agilent Technologies, Berks, UK). cDNA (20 ul) was
synthesized from 1 mg total RNA using a mixture of
both oligo-dT and random hexamers and the Super-
script-1II first-strand cDNA synthesis kit (Invitrogen).
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MeDIP-seq and H3K36me3 ChIP-seq datasets

Datasets for MeDIP followed by high-throughput
sequencing (MeDIP-seq) and H3K36me3 ChIP-seq are
as previously published [10].

Quantitative PCR

To examine RNA transcript abundance of selected repeti-
tive elements, real-time qPCR for myocardial cDNA was
performed with 3 ml of 1:20 prediluted cDNA in a 12 pl
reaction using SYBER greenER universal (Invitrogen,
11762100). To detect possible expansion of repetitive ele-
ments in the cardiac genome, real-time qPCR for myocar-
dial gDNA samples was performed with 50 pg of gDNA in
12 pl reaction using SYBER greenER universal (Invitrogen,
11762100). The three candidate repeat sequences (ALR,
ALR_, ALRD) were used for qPCR to validate possible dif-
ference between normal and diseased hearts. The primer
sequences for each of the three sequences are shown in
Additional file 16. qPCR for cDNA was normalized by a
normalization factor generated for each sample with geN-
orm [34] based on expression relative to the housekeeping
genes RPLPO and TBP. qPCR for gDNA was normalized to
the abundance of control genomic loci (OXT and GAPDH
promoters) where duplication or copy-number variation of
these genomic loci is unlikely. PCR reactions were per-
formed at least in triplicate and on the same diluted gDNA
and cDNA samples. Reaction conditions were: 10 minutes
at 95°C, 1 cycle; 15 s at 95°C, 60 s at 60°C, 41 cycles. Melt
curves of the amplified products were used to verify that a
single amplicon was generated with each PCR reaction.

DNA repeat data preprocessing

The DNA repeat sequences were download from
Repbase update version 16.7 [13]. The 1,166 repeats
annotated as human were extracted and a pseudo-
human repetitive sequence database was created.

Short read alignments

The 36 bp single-end short read sequences of four normal
and four diseased hearts were aligned against human refer-
ence genome assembly version hgl8 (with repetitive
regions masked out) [35,36] using Bowtie short read align-
ment software version 0.12.7 [37]. These short read sam-
ples were also aligned against the pseudo-human repeats
database. Of both the datasets, only unique alignments
were kept. The alignments with more than two mis-
matches were discarded. Repeat sequences having mean
read coverage of <10 reads across both normal samples
and diseased samples were eliminated due to lack of cov-
erage, leaving 412 repeat sequences for further analyses.

Differentially methylated repeats and repeat families
The number of reads aligned against the repeat
sequences and human reference genome assembly were
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scaled to 15,000,000 to normalize the effect of the
unequal number of reads generated by the MeDIP-seq
experiment. The total number of reads generated by the
experiment is shown in Additional file 2. To compare a
pair of normal and diseased samples, we computed odds
ratio using Fisher’s exact test. The approach is described
in the context of MeDIP-seq data analysis by Bock et al.
[38]. The normal versus diseased pair of samples were
compared for each repeat sequence. Furthermore, all
repeats belonging to the same family were merged,
resulting in the total number of aligned reads in a repeat
family. The number of reads per family between normal
and diseased samples was subsequently compared using
the Fisher’s exact test (Additional file 4). The same
grouping was applied to repeat classes followed by class-
wise Fisher’s exact test. The repeats, repeat families and
repeat classes in which more than two pairs (CTRL ver-
sus EsCM) had an insignificant Fisher’s P-value (P >
0.05) were removed from further analyses. The two
groups were also compared using unpaired Welch’s ¢-
test for each of the 412 repeat elements. The P-values
were adjusted for multiple comparisons using the Benja-
mini and Hochberg method (Additional file 7).

Additional material

Additional file 1: Figure S1 - schematic view of the analysis
workflow. (a) Methylated DNA immunoprecipitation (MeDIP) was
conducted to isolate methylated DNA fragments across four end-stage
cardiomyopathic (EsCM 1 to 4) and four normal healthy control (CTRL A
to D) hearts as listed in Additional file 2 and as published [10]. (b) MeDIP
samples were sequenced using an lllumina genome analyzer (GlIx). (a)
Short single-end reads from high-throughput sequencing were aligned
against the human reference genome assembly (Hg18) and repeats
database (Repbase). (d) Number of unique reads was normalized with
reference to the respective total number of reads generated for each
sample, and used as a proxy for the level of methylation for all repeat
sequences. (e) Differential methylation between each of EsCM and CTRL
samples was compared using Fisher's exact test statistic as well as
unpaired Welch's t-test. (f) Differentially methylated repeat elements
(DMReps) were selected for downstream analysis.

Additional file 2: Table S1 - number of sequencing reads from LV
samples.

Additional file 3: Figure S2 - fully annotated large-scale version of
Figure 1.

Additional file 4: List of all annotated repeat elements in the
human genome.

Additional file 5: Figure S3. (a) All ESCM LV samples (EsCM 1 to 4)
were compared against each of the CTRL samples (CTRL 1 to 4) using
Fisher's exact test (P < 0.05 in at least 14 comparisons). Green color
indicates hypomethylation in ESCM compared to the corresponding CTRL
and red color indicates the converse, hypermethylation in EsSCM. The
color bar on the vertical axis represents families of repeat elements. A
consistent pattern of hypomethylation was found only in satellite (SAT)
family repeats in ESCM (arrow labels). (b) A bar chart representing the
number of repeat sequences per family, following the elimination of
repeats that were not differentially methylated between the two groups
of samples.

Additional file 6: Figure S4 - fully annotated version of Additional
file 5.
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Additional file 7: CTRL versus EsCM comparison of each repeat
element’s methylation using unpaired Welch’s t-test.

Additional file 8: Figure S5 - count data of repeat sequences
merged into respective families. All ESCM LV samples (EsCM 1 to 4)
were compared against each of the CTRL samples (CTRL 1 to 4) using
Fisher's exact test (P < 0.05 in at least 14 comparisons). Green color
indicates hypomethylation in EsCM compared to the corresponding CTRL
and red color indicates the converse, hypermethylation in EsSCM. The
color bar on the vertical axis represents families of repeat elements. A
consistent pattern of hypomethylation was found only in satellite (SAT)
family repeats in EsCM.

Additional file 9: Figure S6 - the count data of repeat sequences
merged into respective classes. All EsCM LV samples (EsCM 1 to 4)
were compared against each of the CTRL samples (CTRL 1 to 4) using
Fisher's exact test (P < 0.05 in at least 14 comparisons). Green color
indicates hypomethylation in EsCM compared to the corresponding CTRL
and red color indicates the converse, hypermethylation in EsSCM. The
color bar on the vertical axis represents families of repeat elements. A
consistent pattern of hypomethylation was found only in satellite (SAT)
family repeats in EsSCM.

Additional file 10: List of all ALR, ALR_ and ALRb elements and
coordinates in the human genome according to Hg18.

Additional file 11: Figure S7. (a-c) Average density plot for the
methylation of ALR (a), ALR_ (b) and ALRb (c) comparing between EsCM
(red) and CTRL (blue). Methylation density was consistently reduced in
EsCM within the global coordinates of each repeat element (represented
collectively here as 0.0 to 1.0 on the X-axis) as well as extending to the
flanks (+3.0 and -3.0 kb) of the repeat elements. Light blue- and cream-
colored error bars represent Bayesian credible intervals for CTRL and
EsCM, respectively. See Movassagh et al. and Down et al. for detailed
methods of methylation density analysis [10,39].

Additional file 12: Figure S8 - quantitative PCR using genomic DNA
for the copy number abundance of SAT family repeat sequences
(ALR, ALR_ and ALRDb). (a-c) Quantification of copy number abundance
for ALR (a), ALR_ (b) and ALRb (c) repeat elements was performed for
EsCM and CTRL LV samples (EsCM A to H and CTRL 1 to 16), and
normalized to the copy number for a control genomic locus (promoter
region of OXT). A similar result was obtained when normalized to a
second control genome locus (promoter region of GAPDH). The
significance of difference between the two groups was computed using
unpaired Wilcoxon rank-sum test, and a significance of P < 0.05 was
detected only for ALRb.

Additional file 13: Table S2 - list of LV sample details.

Additional file 14: Figure S9. (a-c) Average density plot for the
H3K36me3 ChiIP-seq enrichment of ALR (a), ALR_ (b) and ALRb (c)
comparing between EsCM (red) and CTRL (blue), similar to Additional file
11. H3K36me3 demarcates genomic regions that are actively transcribed.
An enrichment of H3K36me3 mark in all three repeat elements in EsCM
is consistent with increased transcriptional activity at these sites in EsSCM.

Additional file 15: Table S3 - genes related to SAT elements.

Additional file 16: Table S4 - primers used for quantification PCR
for SAT repeat elements.

Abbreviations

ChIP: chromatin immunoprecipitation; CTRL: control; DMRep: differentially
methylated repetitive element; EsSCM: end-stage cardiomyopathic; gDNA:
genomic DNA; H3K36me3: tri-methylated histone H3 at lysine 36; LINE: long
interspersed nuclear element; LV: left ventricular; meDIP: methylated DNA
immunoprecipitation; gPCR: quantitative PCR; SAT: satellite; SINE: short
interspersed nuclear element.
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