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Yeast genetic interaction networks<p>Genetic interaction networks were derived from quantitative phenotype data by analyzing agar-invasion phenotypes of mutant yeast strains, which showed specific modes of genetic interaction with specific biological processes.</p>

Abstract

We have generalized the derivation of genetic-interaction networks from quantitative phenotype
data. Familiar and unfamiliar modes of genetic interaction were identified and defined. A network
was derived from agar-invasion phenotypes of mutant yeast. Mutations showed specific modes of
genetic interaction with specific biological processes. Mutations formed cliques of significant mutual
information in their large-scale patterns of genetic interaction. These local and global interaction
patterns reflect the effects of gene perturbations on biological processes and pathways.

Background
Phenotypes are determined by complex interactions among
gene variants and environmental factors. In biomedicine,
these interacting elements take various forms: inherited and
somatic human gene variants and polymorphisms, epigenetic
effects on gene activity, environmental agents, and drug ther-
apies including drug combinations. The success of predictive,
preventive, and personalized medicine will require not only
the ability to determine the genotypes of patients and to clas-
sify patients on the basis of molecular fingerprints of tissues.
It will require an understanding of how genetic perturbations
interact to affect clinical outcome. Recent advances afford the
capability to perturb genes and collect phenotype data on a
genomic scale [1-7]. To extract the biological information in
these datasets, parallel advances must be made in concepts
and computational methods to derive and analyze genetic-

interaction networks. We report the development and appli-
cation of such concepts and methods.

Results and discussion
Phenotype data and genetic interaction
A genetic interaction is the interaction of two genetic pertur-
bations in the determination of a phenotype. Genetic interac-
tion is observed in the relation among the phenotypes of four
genotypes: a reference genotype, the 'wild type'; a perturbed
genotype, A, with a single genetic perturbation; a perturbed
genotype, B, with a perturbation of a different gene; and a
doubly perturbed genotype, AB. Gene perturbations may be
of any form (such as null, loss-of-function, gain-of-function,
and dominant-negative). Also, two perturbations can interact
in different ways for different phenotypes or under different
environmental conditions.
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Geneticists recognize biologically informative modes of
genetic interaction, for example, epistasis and synthesis.
These two modes can illustrate the general properties of
genetic interactions. An epistatic interaction occurs when two
single mutants have different deviant (different from wild-
type) phenotypes, and the double mutant shows the pheno-
type of one of the single mutants. Analysis of epistatic inter-
actions can reveal direction of information flow in molecular
pathways [8]. If we represent a phenotype of a given geno-
type, X, as ΦX, then we can write a phenotype inequality rep-
resenting a specific example of epistatic genetic interaction,
for example, ΦA < ΦWT < ΦB = ΦAB. Likewise, a synthetic inter-
action occurs when two single mutants have a wild-type phe-
notype and the double mutant shows a deviant phenotype, for
example, ΦWT = ΦA = ΦB < ΦAB. Synthetic interactions reveal
mechanisms of genetic 'buffering' [1,9].

Some modes of genetic interaction are symmetric; other
modes are asymmetric. This symmetry or asymmetry is evi-
dent in phenotype inequalities, and is biologically informa-
tive. Epistasis illustrates genetic-interaction asymmetry. If
mutation A is epistatic to B, then B is hypostatic to A. The
asymmetry of epistasis, and the form of the mutant alleles
(gain or loss of function), indicates the direction of biological
information flow [8]. Conversely, synthetic interactions are
symmetric. If mutation A is synthetic with B, then B is syn-
thetic with A. The symmetry of genetic synthesis reflects the
mutual requirement for phenotype buffering [1,9].

The representation of genetic interactions as phenotype ine-
qualities accommodates all possibilities without assumptions
about how genetic perturbations interact. In addition, it
demands quantitative (or at least ordered) phenotypes. In
principle, all phenotypes are measurable; complex pheno-
types (for example, different cell-type identities) are amalga-
mations of multiple underlying phenotypes. There is a total of
75 possible phenotype inequalities for WT, A, B, and AB.
Using a hybrid approach combining the mathematical prop-
erties of phenotype inequalities and familiar genetic-interac-
tion concepts and nomenclature, the 75 phenotype
inequalities were grouped into nine exclusive modes of
genetic interaction, some of which are genetically asymmetric
(Additional data file 1). This approach can be extended to the
interactions of more than two perturbations as well. The nine
interaction modes include familiar ones: noninteractive, epi-
static, synthetic, conditional, suppressive, and additive; and
modes that certainly occur but, to our knowledge, have not
been previously defined: asynthetic, single-nonmonotonic,
and double-nonmonotonic. All interaction modes are defined
in the Materials and methods; brief descriptions follow for the
unfamiliar (previously undefined) modes. In asynthetic inter-
action, A, B, and AB all have the same deviant phenotype. In
single-nonmonotonic interaction, a mutant gene shows oppo-
site effects in the WT background and the other mutant back-
ground (for example, ΦWT < ΦA and ΦAB < ΦB). In double-

nonmonotonic interaction, both mutant genes show opposite
effects.

Genetic-interaction networks
Implementation of the foregoing principles renders genetic-
interaction-network derivation fully computable from data
on any measured cell property with any interacting perturba-
tions. We developed an open-source cross-platform software
implementation called PhenotypeGenetics, available at [10],
a plug-in for the Cytoscape general-purpose network visuali-
zation and analysis platform [11]. PhenotypeGenetics sup-
ports an XML specification for loading any dataset, allows
user-defined genetic-interaction modes, and supports all of
the analyses described in this paper. It was used to derive and
analyze a genetic-interaction network from yeast invasion
phenotype data.

In response to growth on low-ammonium agar, Saccharomy-
ces cerevisiae MATa/α diploid yeast cells differentiate from
the familiar ovoid single-cell growth form to a filamentous
form able to invade the agar substrate [12]. Invasive filamen-
tous-form growth is regulated by a mitogen-activated protein
kinase (MAPK) kinase cascade, the Ras/cAMP pathway, and
multiple other pathways [13,14]. We investigated genetic
interaction among genes in these pathways and processes.
Quadruplicate sets of homozygous diploid single-mutant and
double-mutant yeast strains were constructed (Materials and
methods). Two purposes guided the selection of genes and
mutant combinations to study: to represent key pathways and
processes regulating invasion; and to ensure a diversity of
invasion phenotypes (non-invasive, hypo-invasive, wild type,
and hyper-invasive) to permit the detection of diverse genetic
interactions. A set of 19 mutant alleles of genes in key path-
ways controlling invasive growth, including 13 plasmid-borne
dominant or multicopy wild-type alleles and 6 gene deletions,
was crossed against a panel of 119 gene deletions. All mutant
alleles used in this study are listed in Additional data file 2.

We developed a quantitative invasion-phenotype assay. Yeast
agar-substrate invasion can be assessed by growing colonies
on low-ammonium agar, removing cells on the agar surface
by washing, and observing the remaining growth of cells
inside the agar. Replicate quantitative invasion-phenotype
data with error ranges were extracted from images of pre-
wash and post-wash colonies. Each tested interaction was
recorded as an inequality, and assigned a genetic-interaction
mode. This process is detailed in the Materials and methods
and illustrated in Figures 1a and 1b, using the example of the
epistasis of a deletion of the FLO11 gene, a major determinant
of invasiveness, to a deletion of the SFL1 gene, encoding a
repressor of FLO11. Note that the error-bounded intervals
(black bars) for the genotypes in Figure 1b are representative
of the entire dataset. These errors are: flo11, 0.02; flo11 sfl1,
0.01; WT, 0.05; sfl1, 0.06. Additional data file 3 shows a plot
of error values for all genotypes sorted by error magnitude.
The median error is 0.04.
Genome Biology 2005, 6:R38
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Graphical visualization of the genetic interactions revealed a
dense complex network. For clarity, a small part of this net-
work (interactions among transcription factors) is shown in
Figure 1c, illustrating the diversity of the observed genetic
interactions. Perturbed genes are nodes in the network. Each
tested allele combination generates an edge representing a
genetic interaction. Edge colors and arrow heads (where
appropriate) indicate interaction mode and asymmetry as
indicated in Figure 1d. The entire network of 127 nodes and
1,808 edges is shown in Additional data file 4. All of the
underlying data, including tested interactions, genotypes,
and quantitative phenotype data with error values, are listed
in Additional data file 5. All nine genetic-interaction modes
were observed among the 1808 interactions. Other than the
noninteractive mode (with 443 occurrences), the most fre-

quent modes were additive (347), epistatic (271), conditional
(245), and suppressive (202) interaction. Lower frequencies
of asynthetic (111), single-nonmonotonic (74), synthetic (62),
and double-nonmonotonic (52) interaction were observed.
Note that though the asynthetic, single-nonmonotonic, and
double-nonmonotonic modes are not recognized by common
genetic nomenclature, they occurred at substantial
frequencies.

Genetic perturbations interacting with a specific 
biological process
Because genetic interactions reflect functional interactions, a
genetic perturbation may interact in a specific mode with
more than one gene in a specific biological process. This con-
jecture is supported by the finding of 'monochromatic'

Application of the method to yeast agar invasion data to derive a genetic-interaction networkFigure 1
Application of the method to yeast agar invasion data to derive a genetic-interaction network. (a) Pre-wash and post-wash images of example genotypes 
in a yeast agar-invasion assay. (b) The invasion data shown on a phenotype axis with replicate-measurement error ranges, as a phenotype inequality, as a 
genetic-interaction mode, and as a graphical visualization. (c) Part of the network (only transcription factor genes) is shown. Nodes represent perturbed 
genes; edges represent genetic interactions. A key to the interactions is given in (d). (d) Graphical visualizations of genetic interaction modes and 
asymmetries, and example phenotype inequalities.
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Table 1

Genetic interactions of mutant genes with biological processes

Gene Form* Interaction Biological process -log10P

PBS2 null Additive Signal transduction 2.99

PBS2 null Additive Small gtpase mediated signal transduction 2.96

STE12 gf Single-nonmonotonic to Protein targeting 2.87

STE11 da Noninteractive Cell cycle 2.73

PHD1 gf Hypostatic to Invasive growth 2.68

PDE2 null Noninteractive Protein amino acid phosphorylation 2.56

HSL1 null Suppressed by Cell wall organization and biogenesis 2.52

STE20 gf Single-nonmonotonic to Protein targeting 2.31

EGT2 null Conditioned by Invasive growth 2.30

ISW1 null Suppresses Small gtpase mediated signal transduction 2.30

CLB1 null Noninteractive Protein metabolism 2.30

STE11 da Suppresses Cell surface receptor linked signal transduction 2.28

BEM1 gf Conditioned by Nucleobase, nucleoside, nucleotide and nucleic acid metabolism 2.25

PBS2 null Additive Ras protein signal transduction 2.24

PBS2 null Additive Sporulation 2.24

TEC1 gf Synthetic Intracellular signaling cascade 2.19

IPK1 null Additive M phase 1.95

TEC1 null Epistatic to Metabolism 1.94

TEC1 gf Conditioned by Carbohydrate metabolism 1.94

TEC1 gf Conditioned by Ras protein signal transduction 1.94

BUD4 null Noninteractive Establishment of cell polarity 1.94

HMS1 null Noninteractive Protein amino acid phosphorylation 1.83

YGR045C null Noninteractive Protein amino acid phosphorylation 1.83

*gf, gain-of-function; da, dominant-active.

Gene perturbations show specific modes of genetic interaction with biological processesFigure 2
Gene perturbations show specific modes of genetic interaction with biological processes. (a) PBS2 deletion interacts additively with mutations of small-
GTPase-mediated signal transduction genes. (b) PHD1 overexpression is hypostatic to deletions of invasive-growth genes. (c) ISW1 deletion suppresses 
the effects of perturbations of small-GTPase-mediated signal transduction genes. Key to interactions as in Figure 1d
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interaction among biological-process modules [15]. Table 1
lists 23 interactions in a specific mode between a mutant
allele and a biological process. The statistical validation of
these interactions is detailed in the Materials and methods.
Figure 2 shows three examples. In Figure 2a, a PBS2 gene
deletion is additive with mutations of small-GTPase-medi-
ated signal transduction genes (P = 0.001). These include
genes in the Rho signal transduction/cell polarity pathway
(BNI1, CLA4, BUD6) and the Ras/cAMP signaling pathway
(RAS2, BMH1, TPK1). These signaling pathways contribute to
invasive growth phenotype in concert with the stress
response regulated by the Pbs2 MAPK kinase [16]. In Figure
2b, deletions of invasive-growth genes DFG16, RIM8, and
DIA2 are epistatic to overexpression of the invasion-activat-
ing Phd1 transcription factor (P = 0.002). The combination of
this epistasis with the forms of the interacting alleles (PHD1
overexpression is a gain of function, whereas the others are
null alleles) leads to the suggestion that DFG16, RIM8, and
DIA2 may be regulated by Phd1. In Figure 2c, a deletion of the
ISW1 gene suppresses the effects of perturbations of small-
GTPase-mediated signal transduction genes CDC42, RAS2,
and IRA2 (P = 0.005). ISW1 encodes an ATP-dependent
chromatin-remodeling factor [17]. Halme et al. [18] have
shown that invasiveness of yeast cells is controlled epigeneti-
cally. High-frequency spontaneous mutations of IRA1 and
IRA2 relieve epigenetic silencing of invasion genes. The sup-
pression of an IRA2 mutation by ISW1 mutation suggests the
possibility that ISW1-dependent chromatin remodeling
mediates effects of IRA2 mutation. Table 1 and Figure 2 illus-
trate local interaction patterns among mutant genes and bio-
logical processes.

Mutually informative patterns of genetic interaction
The phenotypic consequences of combinatorial genetic per-
turbations are complex, in a strict sense; knowing the pheno-
types of two single perturbations, there are no simple rules to
know the combinatorial phenotype. Counteracting this com-
plexity, large sets of genetic-interaction data may contain
large-scale patterns. We examined the possibility that there
are pairs of perturbations with mutually informative patterns
of genetic interaction with their common interaction part-
ners. In other words, knowing the interactions of one pertur-
bation may allow one to know, to some quantifiable extent,
the interactions of another perturbation, and vice versa.
Mutual information, and significance thereof, was calculated
for all pairs of perturbations sharing tested interactions with
other genes. For all 171 pairs of the 19 mutant alleles of genes
in key pathways, mutual information was based on their
interactions with the panel of 119 gene deletions. Similarly,
among all 7,021 pairs of the 119 gene deletions, mutual infor-
mation was based on their interactions with the 19 mutant
alleles of genes in key pathways. Among all possible pairs, 23
showed significant (P < 0.001) mutual information (Materi-
als and methods and Additional data file 6).

The results suggest that the most mutually informative
genetic-interaction patterns occur among gene perturbations
with similar effects on biological processes. For example,
three of the six mutant gene pairs with the most significant
mutual information are overexpressers of STE12-STE20,
STE12-CDC42, and STE20-CDC42 (Additional data file 6).
These three genes encode central components of the MAPK
signaling pathway promoting invasive filamentous-form
growth [14], and they show similar patterns of genetic inter-
action, as exemplified by STE12 and STE20 in Figure 3. The
dominant pattern is one of uniform interaction (A and B
interact in the same mode with C), suggesting similar effects
of the gene perturbations on the underlying molecular net-
work. In addition, there are frequent occurrences of repeated
mixed-mode interaction (A interacts in some mode with C,
and B interacts in a different mode with C), suggesting that
the molecular effects of gene perturbations may differ yet
show consistent differences. Both uniform interaction and
consistent mixed-mode interaction contribute to mutual
information.

Genetic interactions are ultimately a property of a network of
biological information flows. The mutual information among
pathway co-member genes like STE12 and STE20 supports
this. Figure 4 shows a mutual-information network of
perturbed genes. Each edge indicates significant mutual
information (Additional data file 6). Some of these edges con-
nect genes in different cellular processes. For example, an
edge connects the GLN3 gene, encoding a transcriptional reg-
ulator of nitrogen metabolism, and the CDC42 gene, encod-
ing a GTPase involved in cell polarity. Such cases of mutual
information suggest that in the underlying molecular net-
work, there are important information flows between the dif-
ferent pathways and processes.

In addition to pairwise mutual information, there is the pos-
sibility that multiple genes may exhibit significant mutual
information. The network in Figure 4 contains multiple n-
cliques, subnetworks of n completely connected nodes. There
is a 3-clique, including two main components (PBS2 and
HOG1) of the HOG MAP-kinase pathway, and three overlap-
ping 4-cliques (with many subcliques) containing filamenta-
tion MAPK pathway components. The STE12-STE20-CDC42
3-clique is in this cluster of cliques. The cliques and clusters
suggest ternary and higher orders of mutual information,
reflecting similarities in the global effects of perturbations on
molecular information flows.

Conclusion
The analysis of genetic interactions determining yeast inva-
sion phenotype suggests some prospects for system-level
genetics. The gene-process interactions in Table 1 and Figure
2 suggest that (as noted for epistasis and synthesis) there are
characteristic network mechanisms to be found underlying
familiar and unfamiliar modes of genetic interaction. Investi-
Genome Biology 2005, 6:R38
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gation of these mechanisms should provide insight on specific
processes and general properties of biological networks.
There are several areas for further development of the quan-
titative analysis of genetic interaction: first, advances in
quantitative phenotype measurement and ontologies; sec-
ond, reinforcement or revision of genetic-interaction mode
definitions based on relevance to network mechanisms; third,
extension of all genetic-interaction modes beyond phenotype
ordering to incorporate parameters derived from phenotype
magnitudes; and fourth, comparative genetic-interaction
analyses of multiple alleles (with different effects on function)
of individual genes to learn how different levels of gene activ-
ity impact the network.

The global genetic-interaction patterns illustrated in Figures
3 and 4 are readouts of the state of the underlying molecular
network. Data relating genotype and phenotype are essential
for understanding metabolic and information-flow paths.
Genetic data, integrated with gene-activity data and molecu-
lar-interaction data, reveal direction of information flow,
activations, repressions, and combinatorial controls. The

genome-scale integration of molecular-wiring maps, gene-
expression data, and genetic-interaction networks will enable
the development of biological-network models that explicitly
predict the phenotypic consequences of genetic perturbations
[19].

Materials and methods
Strain constructions
A total of 127 genes involved in the regulation of invasion
were selected for study from searches of the YPD database
[20] and gene-expression profiling experiments [21,22]. 138
mutant alleles of these 127 genes, including 125 deletions and
13 plasmid-borne alleles, were assembled (Additional data
file 2). Single-mutant homozygous diploid strains were con-
structed in the invasion-competent Σ1278b budding-yeast
strain background. In quadruplicate constructions, a 19
mutant-allele subset, including the 13 plasmid-borne alleles
and six of the gene deletions, was crossed against the other
119 deletions. Homozygous diploid double mutants were gen-
erated as follows.

Mutually informative genes show large-scale patterns of genetic interactionFigure 3
Mutually informative genes show large-scale patterns of genetic interaction. Genetic interactions of STE12 and STE20 overexpressers. Key to interactions 
as in Figure 1d.
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Single-gene deletions in the invasion-competent Σ1278b
yeast background were constructed. 'Barcode' gene deletion-
insertion alleles [5] were PCR amplified with several hundred
base pairs of flanking sequences from their noninvasive strain
background. Using the G418 drug-resistance cassette of these
alleles, strain G85 (MATa/α ura3∆0/ura3∆0 his3∆0::hisG/
his3∆0::hisG) was transformed with the PCR products. Gene
disruption and the presence of the KanMX4 insertion were
verified by PCR. The heterozygous diploids were sporulated
and the resulting tetrads were dissected and screened to
select G418-resistant MATa and MATα haploids. These were
crossed to obtain homozygous diploid gene-deletion strains.

Some of the double mutants were generated by transforming
the homozygous deletion strains with either low-copy plas-
mids bearing dominant alleles or multicopy (2 µm-based)
plasmids bearing wild-type alleles. All plasmids utilized
native gene promoters. Plasmid transformations were per-
formed using an adapted version of a multiwell transforma-
tion protocol [5,23]. Four independent transformants were
stocked and assayed for each transformation. Strains were
also transformed with empty vector plasmids.

The high-throughput construction of diploid homozygous
double-deletion strains required the use of three drug-resist-
ance markers to be able to select for the desired diploids and
intermediate strains. For each deletion, the KanMX4 drug-
resistance marker was converted to two other drug-resistance

markers, HygMX4 (hygromycin resistance) and NatMX4
(nourseothricin resistance). MATα gene-deletion strains
were transformed with the NatMX4 cassette amplified from
pAG25 [24]; NatR G418S transformants were stocked. MATa
gene-deletion strains were transformed with the HygMX4
cassette amplified from pAG32 [24]; HygR G418S transform-
ants were stocked.

The high-throughput construction of diploid homozygous
double-deletion strains required the ability to select haploids
of each mating type separately. To accomplish this, we uti-
lized the recessive resistance to canavanine caused by the dis-
ruption of the CAN1 gene, encoding a transporter, in
combination with fusions of the HIS3 ORF to the promoters
of genes expressed in a specific mating type. A deletion of the
CAN1 gene was constructed without introducing any marker
genes or sequences. A double-stranded 60mer oligonucle-
otide containing 30 bases from the upstream region fused
directly to 30 bases from the downstream region of the CAN1
open reading frame (5'-
GTAAAAACAAAAAAAAAAAAAGGCATAGCAATAT-
GACGTTTTATTACCTTTGATCACATT-3') was amplified with
60mer primers containing additional CAN1 flanking
sequences (forward primer 5'-CGAAAGTTTATTTCAGAGT-
TCTTCA
GACTTCTTAACTCCTGTAAAAACAAAAAAAAAAAA-3',
reverse primer 5'-
GTGTATGACTTATGAGGGTGAGAATGCGAAATGGCGT-
GGAAATGTGATCAAAGGTAATAA-3'). The resulting PCR
product was used to transform two strains to canavanine
resistance. Full deletion of the CAN1 gene was confirmed by
PCR. This generated strains G264 (MATa his3∆::hisG can1∆)
and G266 (MATα his3∆::hisG can1∆). To construct fusions of
the HIS3 ORF to mating-type specific genes, the S. kluyveri
HIS3 gene was amplified from pFA6-His3MX6 [25] with
primers containing ORF-flanking sequences for the MFA1
locus (forward primer 5'-GTTTCTCGGATA
AAACCAAAATAAGTACAAAGCCATCGAATAGAAATGGCAG
AACCAGCCCAAAA-3', reverse primer 5'-AAGGAAGA-
TAAAGGAGGGAGAACAACGTTTTTGTA CGCAGAAATCA-
CATCAAAACACCTTTGTT-3') and with primers containing
flanking sequences for the MFα 1 locus (forward primer 5'-
GATTACAAACTATCAAT TTCATACACAATATAAACGAT-
TAAAAGAATGGCAGAACCAGCCCAAAA-3', reverse primer
5'-ACAAAGTCGACTTTGTTACATCTACACTGTTGTTA
TCAGTCGGGCTCACATCAAAACACCTTTGGT-3'). The
resulting PCR products were used to transform G264 and
G266, respectively, to create strains G544 (MATa
his3∆::hisG can1∆mfa1::HIS3) and G546 (MATα
his3∆::hisG can1∆mfα1::HIS3).

Crosses and sporulations were carried out to introduce the
canavanine-resistance marker and the mating-type-specific-
His+ markers. MATα NatR deletion strains were crossed with
G544. NatR Ura+ diploids were selected; all were CanS and
His-. These diploids were sporulated; from random spore

Networks of mutual information in patterns of genetic interaction show cliquesFigure 4
Networks of mutual information in patterns of genetic interaction show 
cliques. Nodes represent perturbed genes (see Additional data file 2). gf 
indicates a gain-of-function allele; lf indicates a loss-of-function allele. Edges 
connect gene pairs with significant mutual information in their patterns of 
genetic interaction (see Additional data file 6).
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YJL142C(lf)

YAP1(lf) ISW1(lf)

FKH2(lf)
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preparations NatR CanR His+ Ura- MATa haploids were iden-
tified. MATa HygR deletion strains were crossed with G546.
These diploids were sporulated; from random spore prepara-
tions HygR CanR His+ Ura- MATα haploids were identified.

To make the diploid homozygous double-deletion strains, a
series of high-throughput crosses and sporulations, in which
all the desired intermediate cell types and deletion genotypes
could be selected, was carried out [1]. At all stages, multiple
strains were individually verified. NatR MATa single-deletion
strains were crossed to an array of MATα G418R single-dele-
tion strains. HygR MATα single-deletion strains were crossed
to an array of MATa G418R single-deletion strains. From
these crosses NatR G418R diploids and HygR G418R diploids
were selected, respectively. Diploids from each cross were
sporulated. Haploid double-deletion strains were selected:
His+ CanR (MATa haploid) G418R NatR double-deletion segre-
gants, and His+ CanR (MATα haploid) G418R HygR double-
deletion segregants, respectively. The resulting arrays of
MATa and MATα haploid double-deletion strains were
mated and subjected to selection for G418R, NatR, and HygR

to generate diploid homozygous double-deletion strains.

Assay of yeast invasiveness
Strains were inoculated from frozen stocks into liquid media
in 96-well plates and incubated 18 hours at 30°C. Each plate
included at least eight wells containing wild-type controls.
Cells were transferred with a 96-Floating-Pin Replicator and
colony copier (V & P Scientific) onto SLAD agar [12] in an
omnitray. Each 96-well plate was pinned in quadruplicate,
resulting in a total of 384 colonies per SLAD-agar plate. Note
that each genotype was constructed in quadruplicate and
assayed on separate plates. Therefore, each genotype was
assayed with a total of 16 replicates. Plates were incubated for
4 days at 30°C. After incubation, cell material was removed
from the agar surface while rinsing the plate under running
water. A 300 d.p.i. grayscale image of each plate was gener-
ated before and after the wash by placing the plate face down
on a flatbed scanner and scanning with transmitted light.
Images were inverted using Adobe Photoshop 6 and saved as
TIFF files for quantitative image analysis.

Processing of invasion-assay data
Colony growth and invasion were quantified using Dapple
[26], software originally designed for the analysis of DNA
microarray images. Each post-wash image was analyzed
simultaneously with the corresponding pre-wash image to
enable reliable definition of colony boundaries and direct
comparison of cell material. Subtraction of local background
intensity yielded un-normalized values for growth (G) and
invasion (U) and invasiveness ratio (R = U/G). A normaliza-
tion factor for each plate, Np, was obtained from multiple
wild-type controls on each plate. For each replicate q on plate
p, we obtained the wild-type invasiveness ratio Rwt

q,p =
Uwt

q,p/Gwt
q,p and defined the plate normalization factor Np as

Np = medianq(Rwt
q,p)/medianp(medianq(Rwt

q,p)). For a given

genotype g, the normalized invasiveness ratio is given by Rg
q,p

= (Ug
q,p/Gg

q,p)/Np = Rg
i where in the final equality we renum-

bered into a single ordinal index the N replicates i = 1,2,..,N
(N ≤ 16). We excluded any genotype g for which N < 5 due, for
example, to deficient growth. From normalized data, we
derived phenotype values and measurement errors. We
obtained the median ratio Rg = mediani(Rg

i), and the median
absolute deviation MADg = MAD(Rg

i) = mediani(|Rg
i-Rg|). As

a lower bound in error estimates we used MADQ = 0.1, the tenth
percentile of all MADg. Thus, the phenotype values are
reported as Rg, with error Eg = max(MADg, MADQ = 0.1). The
frequencies of genetic-interaction modes were insensitive to
increases of the error lower bound to the 50th percentile.
Directed checks of individual components of the automated
processing were made throughout. These included: visual
inspection of each individual image, check of colony morphol-
ogy, spot checking of well-characterized individual strains
from start to finish in the analysis pipeline, screening for sys-
tematic errors in assay intensities. We confirmed that the
plate-wise normalization did not lead to error amplification
due to division by small numbers.

Derivation of phenotype inequalities
The following steps were carried out using PhenotypeGenet-
ics software. Phenotypes and errors of genotypes WT, A, B,
and AB [(Rwt,Ewt), (RA,EA), (RB,EB), and (RAB, EAB)] were
assigned a phenotype inequality relation. This was done by
first defining the error-bounded interval Ig = [Rg-Eg, Rg+Eg]
for each genotype. All pairs of genotypes were assigned an
equality, Φg1 = Φg2 if interval Ig1 overlapped with Ig2. Transi-
tivity of equalities (if a = b and b = c, then a = c) was applied
to yield disjoint groups of phenotype equalities. Inequalities,
greater than (>) or less than (<) were assigned for the rela-
tions between equality groups. The resulting inequalities
were assigned to genetic-interaction modes and asymmetries
as described below. The results of all tests of genetic
interaction were rendered as a graph as illustrated in Figure
1d. The entire resulting network is shown in Additional data
file 4. One can obtain PhenotypeGenetics software or use it to
analyze the invasion network at [10].

Modes of genetic-interaction
The 75 possible phenotype inequalities were assigned to
modes of genetic interaction based on computable criteria.
For each mode, we list the criterion for the inclusion of a phe-
notype inequality. In these criteria, 'background' refers to a
genotype with its complement of wild-type and mutant genes,
into which other genetic perturbations are added, and 'effect'
refers to a change in a phenotype, either an increase or a
decrease, upon a single genetic perturbation of a background.
In the examples below, additional cases may be generated by
operations such as exchanging A and B, or reversing the effect
of both alleles (for example reversing the effect of the A
mutant gene with ΦWT< ΦA gives ΦA < ΦWT). Additional data
file 1 lists each of the 75 phenotype inequalities and their
assigned genetic-interaction mode and asymmetries. Figure
Genome Biology 2005, 6:R38
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1d shows graph visualizations for all nine genetic-interaction
modes.

Noninteractive interaction
A has no effect in the WT and B backgrounds (for example,
ΦWT = ΦA < ΦB = ΦAB), or B has no effect in the A and WT
backgrounds, or both hold true (5 inequalities).

Epistatic interaction
A and B have different effects (in terms of direction or magni-
tude) on the wild-type background and the double mutant has
the same phenotype as either A or B (for example, ΦA < ΦWT <
ΦB = ΦAB) (12 inequalities).

Conditional interaction
A has an effect only in the B background, or the B mutant has
an effect only in the A background (12 inequalities).

Suppressive interaction
A has an effect on WT, but that effect is abolished by adding
the suppressor B, which itself shows no single-mutant effect
(for example, ΦWT = ΦB = ΦAB <ΦA); or, the corresponding
holds under exchange of A and B (4 inequalities).

Additive interaction
Single-mutant effects combine to give a double-mutant effect
as per ΦWT <ΦA= ΦB<ΦAB, ΦB < ΦWT = ΦAB < ΦA, ΦWT < ΦA <
ΦB < ΦAB, ΦB < ΦWT < ΦAB < ΦA, and all additional inequalities
obtained by interchanging A and B, or reversing the effect of
both A and B (12 inequalities).

Synthetic interaction
A and B have no effect on the WT background, but the AB
combination has an effect (2 inequalities).

Asynthetic interaction
A, B, and the AB combination all have the same effect on the
WT background (2 inequalities).

Single-nonmonotonic interaction
B shows opposing effects in the WT and A backgrounds (for
example, ΦB > ΦWT and ΦAB< ΦA); or, A shows opposing
effects in the WT and B backgrounds, but not both (8
inequalities).

Double-nonmonotonic interaction
Both A and B show opposing effects in the WT background
and the background with the other mutant gene (18
inequalities).

Genetic interaction with biological processes
To identify statistically significant correlations between a
given allele's interaction modes and biological processes, the
neighbors of every allele in the network were queried for
interaction class and Gene Ontology (GO) Consortium data-
base annotations [27]. Each interaction class is defined by the

interaction mode and direction, if any. For example, 'A sup-
presses B' and 'A is suppressed by B' are placed in different
interaction classes. There are 13 interaction classes and 9
interaction modes (described above). Likelihood values were
computed to find over-represented class-annotation pairings
within each set of nearest neighbors, and P-values were
assigned relative to a cumulative hypergeometric distribu-
tion. The result was a computer-generated list of biological
statements relating genes, interaction classes, and target
annotations, with entries such as 'A loss-of-function mutation
of HSL1 is suppressed by mutations of cell wall organization
and biogenesis genes (-log10P = 2.52).' These are listed in tab-
ular form in Table 1.

To calibrate the significance of the results, a parallel calcula-
tion was performed for every test in the network in which the
fractional probabilities of each possible outcome were added
to an overall distribution of P-values for the entire network.
For example, if a given mutation interacts with N others, NC

of the interactions being of class C and NA of those neighbors
carrying annotation A, there is a finite set of outcomes for
NCA, the number of neighbor mutations with annotation A
connected via interaction C. The possible values of NCA follow
a discrete hypergeometric distribution, and summing these
distributions over all tests in the network yields a formally
randomized distribution of P-values which has been con-
strained by the topology of the actual network. The distribu-
tions, real and theoretical, of -log10P values were then
compared by performing a chi-square test between compara-
ble histograms. These tests showed a strong excess for -log10P
> 1.8.

Mutual information of genetic interaction patterns
We calculated the mutual information [28] of pairs of genetic
perturbations. Each perturbation, X, has an observed discrete
probability distribution of interaction classes (defined by
mode and direction) with its tested interaction partners, P(x),
where x ∈ X, the set of interaction classes of perturbation X,
and:

Mutual information, I, of a pair of perturbations, A and B, is
the relative entropy of their joint probability distribution rel-
ative to their product probability distribution. Thus:

Significance of mutual information was tested independently
for each allele pair by computing the likelihood of obtaining
the observed score in randomly permuted data. To remove
bias due to our selection of mutant alleles, randomized data
were constrained by keeping the wild type and two single-
mutant phenotypes fixed and replacing interaction classes

P x
x X

( ) .
∈
∑ = 1

I A B P a b
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I A B I
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only with classes that are consistent with the observed single-
mutant phenotypes. The choice among possible replacement
classes was weighted by observed frequency in the entire net-
work. Empirical tests showed randomized mutual informa-
tion scores to be normally distributed, and multiple
randomizations were carried out to determine a mean and
standard deviation to characterize the distribution for each
tested allele pair. P-values were then calculated as the
probability of finding a mutual information score at or above
the observed score. Allele pairs with probabilities below the
cutoff of P < 0.001 are listed in Additional data file 6, and
shown as a graph in Figure 4.

Additional data files
The following data are available with the online version of this
paper. Additional data file 1 is a table showing 75 genetic-
interaction inequalities in nine modes of genetic interaction.
Additional data file 2 lists the gene perturbations used in this
study. Additional data file 3 is a figure plotting phenotype
error values in the entire dataset. Additional data file 4 shows
the entire genetic interaction network derived from yeast
invasion-phenotype data. Additional data file 5 lists pheno-
type data for all tested interactions. Additional data file 6 lists
mutual information in genetic-interaction patterns.
Additional File 1A table showing 75 genetic-interaction inequalities in nine modes of genetic interaction. As described in Materials and methods, all 75 possible phenotype inequalities were classified into nine modes of genetic interaction. The results are listed here.Click here for fileAdditional File 2Gene perturbations used in this study. This file lists all genes, mutant alleles, and allele forms (for example, null, gain-of-func-tion, etc.)Click here for fileAdditional File 3Phenotype error values in the entire dataset. This plot shows the phenotype error values (Materials and methods) plotted against percentile of all genotypes ordered by error magnitude.Click here for fileAdditional File 4Entire genetic interaction network derived from yeast invasion-phenotype data. Figure 1c shows a small part of the genetic-inter-action network. This file contains an image including all tested interactions.Click here for fileAdditional File 5Phenotype data for all tested interactions. This file lists all tested genetic interactions as well as the phenotype and error values for all genotypes, WT, A, B, and AB.Click here for fileAdditional File 6Mutual information in genetic-interaction patterns. This file lists the mutual information, and significance, among pairs of genes connected by edges in Figure 4.Click here for file
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