
Introduction
�e study of inherited immunoglobulin class-switch re-
com bination deficiencies (Ig-CSR-Ds) has contributed 
greatly to our understanding of normal antibody matura-
tion processes. �ese syndromes all involve a defect in 
Ig-CSR, as demonstrated by normal or elevated serum 
IgM levels and null or strongly reduced levels of the other 
Ig isotypes. Somatic hypermutation (SHM) leads to the 
production of antibodies with a high affinity for antigen. 
�is event usually takes place in the secondary lymphoid 

organs (the spleen, lymph nodes, and tonsils) in an 
antigen- and T lymphocyte-dependent manner. When 
mature but naïve IgM+IgD+ B cells emigrating from the 
bone marrow (or fetal liver) encounter an antigen that is 
specifically recognized by their B-cell receptor (BCR), 
they proliferate vigorously and give rise to a unique 
lymphoid formation: the germinal center. Here, B cells 
undergo the two major maturation events required for an 
efficient humoral response: CSR and SHM (Figure 1a).

CSR involves DNA recombination between two differ-
ent switch (S) regions located upstream of the constant 
regions, whereas the intervening DNA is deleted by 
formation of an excision circle [1-5]. Replacement of the 
constant μ region by a downstream constant x region 
from another class of Ig results in the production of 
antibodies of different isotypes (IgG, IgA, and IgE) with 
the same variable (V) region and thus the same antigen 
specificity and affinity (Figure  1b). �e different Ig 
isotypes vary in terms of their properties (their half-life, 
affinity for Fc receptors, ability to activate the comple-
ment system, and so on) and tissue location (IgA is 
secreted by mucosal membranes, for example).

SHM introduces missense mutations and (less 
frequently) deletions or insertions into the V regions of 
Igs. �is process is triggered by activation of the BCR and 
CD40 [6,7]. �e mutations occur at a high frequency 
within the V regions and their proximal flanking regions 
(approximately one mutation per 1 × 103 bases). SHM is 
required as a basis for the selection and proliferation of B 
cells expressing a BCR with a high affinity for antigen, 
following interaction with follicular dendritic cells [8,9].

Although CSR and SHM occur simultaneously in B 
cells in germinal centers after CD40 activation, neither is 
a prerequisite for the other: in some cases, IgM is 
mutated when IgG or IgA is not mutated [10,11]. �e 
mechanisms underlying these two antibody maturation 
processes have been elucidated (at least in part). �e first 
step is transcription of target DNA in the S and V 
regions. Cytokines induce sterile transcription of the S 
regions [5,12]. �is transcription step enables activation-
induced cytidine deaminase (AID) to gain access to the 
DNA [13-17]. �is B-cell molecule controls antibody 
maturation [18,19] by selectively changing cytosine (C) 
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residues into uracil (U) residues in the transcribed S and 
V regions [20]. Uracil-N-glycosylase 2 (UNG2) removes 
the uracil residues created by AID [21] and thus produces 
an abasic site. In the mouse, abasic sites have been shown 
to be cleaved eventually by apurinic/apyrimidinic endo
nucleases (APEs) [22]. This ultimately leads to the forma
tion of single-stranded DNA breaks that, if present on 
both strands of the DNA, result in the formation of the 
double-stranded breaks (DSBs) required for CSR. Indeed, 
it has been shown that AID can deaminate the non-
template and template strands in transcription bubbles 
[17]. Recently, the RNA exosome was reported to be 
involved in AID targeting on both DNA strands [23]. The 
DNA lesions in the S and V regions are repaired by 
different mechanisms. In S regions, most of the Ig-CSR-
induced DSBs are repaired through the conventional 
non-homologous end joining (c-NHEJ) pathway [24,25]. 
However, a recently described alternative end joining 
(AEJ) pathway can also perform microhomology-
mediated repair [26]. The error-prone repair of SHM-
induced DNA lesions does not require NHEJ [27] but 
does involve the MSH2/MSH6 complex – a component 
of the mismatch repair (MMR) machinery  – and error-
prone DNA polymerases [28].

Defects in CSR lead to a humoral immunodeficiency 
that is characterized by normal or elevated production of 
IgM and the partial or full absence of other isotypes (IgG, 
IgA, and IgE), resulting in high susceptibility to bacterial 
infections. Although IgG antibodies against infectious 
agents or vaccines are not produced, levels of isohemag
glutinins and anti-polysaccharide IgM antibodies are 
normal. Switched IgG+ or IgA+ B cells are absent from the 
peripheral circulation, and CD27+ B-cell counts are either 
normal or strongly depressed (Table  1). Depending on 
the molecular defect, the CSR-D may be combined with 
an SHM deficiency ([29] and Table 1).

I. CSR-Ds caused by a defect in T cell-B cell 
cooperation
A. X-linked CSR-D due to CD40L deficiency
X-linked CSR-D due to CD40L deficiency is the most 
frequent CSR-D and is caused by mutations in the gene 
encoding CD40L [30,31] (Online Mendelian Inheritance 
in Man (OMIM) #308230). Patients display little or no 
CD40L at the surface of in vitro activated CD4+ T cells, 
making diagnosis of this syndrome straightforward. 
However, owing to immaturity of the immune system, 
neonatal diagnosis cannot be made through CD40L 

Figure 1. Schematic representation of class-switch recombination in germinal center. (a) T cell-B cell cooperation in immunoglobulin 
class-switch recombination (Ig-CSR). Impaired function of CD40 and CD40L (CD40 ligand) and, to a lesser extent, inducible co-stimulator (ICOS) 
and nuclear factor-kappa-B (NF-κB) essential modulator (NEMO) results in class-switch recombination deficiency (CSR-D). B, B cell; IL-R, interleukin 
receptor; TFH, T follicular helper. (b) Schematic representation of Ig-CSR. Only part of the IgH locus with I (I exon), S (switch region), and C (constant 
region) is depicted. The intermediate steps of CSR are shown on the left. Impaired function of activation-induced cytidine deaminase (AID), uracil-
N-glycosylase (UNG), mismatch repair (MMR), ataxia telangiectasia mutated (ATM), Nijmegen breakage syndrome (NBS1), and conventional non-
homologous end joining (cNHEJ) results in variable CSR-D. AEJ, alternative end joining; APE, AP endonuclease; DSB, double-stranded DNA break; U, 
uracil.
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expression analysis. A CD40 trans-activation defect 
means that the B cells of the patient cannot form 
germinal centers in secondary lymphoid organs in vivo 
and results in impaired CSR and SHM. However, B cells 
can undergo CSR in vitro following activation with 
CD40L and appropriate cytokines [32]. Most (but not all) 
affected patients present low memory CD27+ B-cell 
counts and a low frequency of SHM [33]. However, the 
detection of serum IgA and SHM in some patients 
suggests that alternative diversification pathways can 
occur: (a)  IgA production following activation of B cells 
in the gut lamina propria by CpG or the proliferation-
inducing ligand (APRIL) [34] and (b) SHM, possibly as an 
innate defense mechanism in the spleen marginal zone 
[35].

Impaired CD40L expression leads to defective T-cell 
interactions with monocytes and dendritic cells. This 
results in an abnormal cellular immune response and 
thus severe susceptibility to opportunistic infections with 
Pneumocystis jiroveci or Cryptosporidium. The latter 
cannot be controlled by Ig replacement therapy and is 
associated with a worse prognosis. Liver disease is very 
common. Sclerosing cholangitis (often associated with 
Cryptosporidium infection) is particularly severe and 
may lead to terminal liver damage.

Intermittent or chronic neutropenia is also a common 
feature of X-linked CD40L deficiency and may result from 

defective ‘stress’-induced CD40-dependent granulopoiesis 
since myeloid progenitors express CD40 molecules [36]. 
Complications such as auto-immune manifestations or 
cancer have been reported but are not frequent.

Although mutations affect the entire CD40L gene, they 
are not distributed evenly; the majority are found within 
exon 5, which comprises most of the tumor necrosis 
factor homology domain [37]. A strict relationship 
between genotype and phenotype has not been estab
lished. Since the CD40L gene is located on the X 
chromosome, female patients are not affected, except in 
the case of a skewed pattern of X inactivation [38] or 
chromosomal translocation [39].

B. Autosomal recessive CSR-D due to CD40 deficiency
In a very few patients, the CD40 defect has been reported 
as part of an inherited autosomal recessive disease 
(OMIM #606843) and was diagnosed on the basis of a 
lack of CD40 expression at the surface of B lymphocytes 
and monocytes [40]. However, we recently observed 
three patients (from two different families) with normal 
CD40 expression but a defective response to CD40 
activation and homozygous mutations in the CD40 gene: 
an amino acid substitution (E144K) and a stop codon 
disruption that resulted in an extra 30 amino acids (A 
Durandy, unpublished results). The clinical and immuno
logical profile of CD40-deficient patients is identical to 

Table 1. Main characteristics of immunoglobulin class-switch recombination deficiencies

		  Relative				     
		  frequency, 			   Somatic	  
Defect	 percentage	 Transmission	 CD27+ B cells	 hypermutation	 Complications

Defect in T cell-B cell cooperation

	 CD40L	 47	 X-L	 Decreased	 Decreased	 Opportunistic infections,  
						      liver damage

	 CD40	 3	 AR	 Decreased	 Decreased	 Opportunistic infections,  
						      liver damage

	 NEMOa	 1	 X-L	 N or decreased	 N or decreased	 Opportunistic infections

	 TFH defect?	 10	 ?	 N	 N	 Auto-immunity

Intrinsic B-cell defect

	 AID	 10	 AR	 N	 Absent	 Lymphadenopathies,  
						      auto-immunity

	 AID co-factor?	 12	 ?	 N	 N	 Lymphadenopathies,  
						      auto-immunity

DNA repair defect

	 Uracil-N-glycosylase	 1	 AR	 N	 N (skewed pattern)	 Auto-immunity,  
						      B lymphomas

	 Part of a known repair defect: PMS2a 	 2	 AR	 Decreased	 N	 Cancers

	 Ataxia telangiectasiaa	 2	 AR	 N	 N	 Lymphomas, neurological 
						      deterioration

	 DNA repair?	 11	 AR	 Decreased	 Decreased	 Auto-immunity,  
						      B lymphomas, leukemias
aFrequency could be underestimated because it was sequenced only in patients with obvious symptoms. AID, activation-induced cytidine deaminase; N, normal; 
NEMO, nuclear factor-kappa-B essential modulator; PMS2, post-meiotic segregation 2; TFH, T follicular helper.
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that reported in CD40L-deficient patients, except that B 
cells are unable to undergo in vitro CSR following 
activation with CD40L and appropriate cytokines.

Despite efficient Ig replacement therapy and antibiotic 
prophylaxis, the long-term prognosis in both CD40L and 
CD40 deficiencies is poor; death can occur early in life 
(due to infections) or later on (due to severe liver 
damage). Thus, hematopoietic stem cell transplantation 
(HSCT) should be advocated if an HLA-identical sibling 
or matched unrelated donor is available [41]. Never
theless, for patients already infected with Crypto­
sporidium, the risk of complications (sepsis and death) is 
extremely high.

C. X-linked CSR-D due to defective NF-κB activation
Cross-linking of CD40 activates the NF-κB signaling 
pathway. The latter is critical in CSR, as shown by the 
description of patients with ectodermal dysplasia asso
ciated with immunodeficiency (EDA-ID) [42,43] (OMIM 
#300291). Although this syndrome is heterogeneous, it is 
often characterized by normal to elevated IgM levels, low 
serum IgG and IgA levels, and impaired antibody res
ponses (particularly to polysaccharide antigens). Suscep
tibility to Mycobacteria infections is elevated. The EDA-
ID is inherited as an X-linked trait. The deficiency is 
caused by hypomorphic mutations in the zinc-finger 
domain of the NF-κB essential modulator (NEMO, also 
known as IκB kinase gamma, or IKKγ), a scaffold protein 
that binds to IKKα and IKKβ kinases (both of which are 
required for NF-κB nuclear activation and translocation). 
In vitro CSR and SHM may be normal or defective – 
probably as a result of genetic heterogeneity [44,45] (A 
Durandy, unpublished results). However, the deficiency is 
not restricted to CD40-B cell activation, since NF-κB 
nuclear translocation is required for many signaling 
pathways (including the T- and B-cell receptor pathways). 
The hallmark EDA-ID dysplasia also results from the 
NEMO deficiency since the ectodysplasin receptor 
expressed on ectoderm-derived tissues activates NF-κB 
via the IKKα/β NEMO complex [43]. Depending on the 
clinical phenotype, HLA-matched HSCT can be advocated.

D. Autosomal recessive CSR-D due to ICOS molecule deficiency
Although firstly described as common variable immuno
deficiency, inducible co-stimulator (ICOS) molecule 
deficiency generally leads to a CSR-D, as shown by the 
increased or normal IgM levels observed in patients [46] 
(OMIM #607594). The ICOS molecule is involved in the 
generation and function (cytokine production) of 
follicular T helper cells in germinal centers [47]. Residual 
levels of IgG and IgA are not uncommon. The SHM 
process is impaired in CD27+ B cells (the number of 
which is very low). A T-cell defect has been reported in 
some (but not all) patients [48].

E. Uncharacterized Ig-CSR-D with normal in vitro CSR
The involvement of CD40-L and ICOS molecule can be 
ruled out by the observation of normal protein expression 
or gene sequences (or both) in several CSR-deficient 
patients whose B cells display in vitro CSR following 
activation with CD40L and appropriate cytokines. Hence, 
there is no B-cell defect in this pathway. In fact, the 
phenotype of these patients is quite different from that of 
CD40L-deficient patients, since there is no susceptibility 
to opportunistic infections. In contrast, there is suscep
tibility to bacterial infections but the latter are well con
trolled by Ig replacement therapy. Moreover, lymph
adenopathies with enlarged germinal centers are ob
served and SHM is normal in terms of the frequency and 
pattern. Several possible causes have been ruled out, such 
as congenital rubella (in which defective T-cell activation 
leads to low CD40L expression on CD4+ T cells [49]) and 
major histocompatibility complex class II deficiency (in 
which diminished expression of CD40L by activated 
CD4+ T cells can also be responsible for an in vivo CSR-D 
[50]). A defect in the generation of T follicular helper 
cells or in their activation or interaction with follicular B 
cells can be suspected in this CSR-D.

II. CSR-Ds caused by an intrinsic B-cell defect
Other CSR-Ds are caused by an intrinsic B-cell defect, 
resulting in increased susceptibility to bacterial infections 
(but not opportunistic infections) that can be easily 
controlled by regular Ig replacement therapy. SHM may 
be normal or defective, depending on the molecular 
defect in question.

A. Autosomal recessive activation-induced cytidine 
deaminase deficiency
Activation-induced cytidine deaminase deficiency is the 
most frequent autosomal recessive CSR-D (OMIM 
#605258) and is caused by mutations in the AICDA gene. 
In fact, AID plays a crucial role in B-cell terminal 
differentiation by inducing DNA lesions in both the S and 
V regions. A lack of AID leads to the complete absence of 
CSR and SHM, even though the proportion of CD27+ B 
cells remains normal in affected individuals [19].

In addition to bacterial infections of the respiratory and 
digestive tracts, lymphoid hyperplasia is a prominent 
feature of this disease and is caused by massive enlarge
ment of germinal centers – probably as a consequence of 
microbial infection [51]. Auto-immunity (hemolytic 
anemia, thrombocytopenia, hepatitis, and systemic lupus 
erythematosus) affects about 20% of the patients, and 
IgM auto-antibodies are present [52].

Mutations in AICDA are scattered throughout the gene 
(with no peculiar hotspots) and lead to a defect in both 
CSR and SHM [53]. However, mutations located in the 
C-terminal part of the AICDA gene result in a complete 
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lack of CSR but do not affect SHM [54]. The C-terminal 
mutated enzyme has been found to retain normal 
cytidine deaminase activity in vitro or in Escherichia coli. 
This suggests that, in CSR, AID has an activity in addition 
to its cytidine deaminase activity – probably as a docking 
protein for CSR-specific co-factor(s). Although AID is 
normally detected only in the cytoplasm, these mutant 
proteins that lack a functional nuclear export signal 
(NES) are localized in the nucleus [54,55]. These obser
vations suggest that wild-type AID could be retained in 
the cytoplasm by a CSR-specific co-factor [56,57]. Some 
data also suggest that this co-factor could be important 
for AID stability since AID is rapidly degraded by the 
proteasome in the nucleus [58].

Another unexpected finding [59] is that heterozygous 
nonsense mutations in the C-terminal domain – resulting 
in the loss of the last 11 (V186X) or nine (R190X) amino 
acids of NES (AIDΔNES) – lead to a variable, autosomal 
dominant CSR-D. Serum IgG levels are low and IgA is 
absent. No other heterozygous mutation located outside 
the C-terminal domain led to any haploinsufficiency 
(although weak effects on Ig levels have been reported in 
mice [60]).

B. Uncharacterized Ig-CSR-D caused by an intrinsic B-cell 
deficiency
Half of Ig-CSR-Ds due to an intrinsic B-cell deficiency 
may be related to a lack of cytoplasmic co-factor of AID 
rather than to AID deficiency itself. Although most of the 
observed cases are sporadic, the mode of inheritance 
observed in a few multiplex or consanguineous families is 
compatible with an autosomal recessive pattern. The 
clinical phenotype is similar to that of AID deficiency and 
includes increased susceptibility to bacterial infections of 
the respiratory and gastrointestinal tracts. Lymphoid 
hyperplasia is milder and less frequent (50%) and consists 
of moderate follicular hyperplasia but without the giant 
germinal centers that are typical of AID deficiency. Auto-
immune manifestations have been reported [61]. The 
CSR-D appears to be milder than in AID deficiency since 
low serum levels of IgG can be detected in some patients. 
The sequence and expression of AID protein are normal. 
The deficiency is restricted to CSR since SHM in the 
CD27+ B-cell subset is normal in terms of both frequency 
and pattern and CD27+ B-cell counts are normal. Hence, 
the phenotype is similar to that of patients carrying 
mutations in the C-terminal part of AID and strongly 
suggests the involvement of a co-factor in the patho
genesis of this CSR-D.

III. Ig-CSR-Ds caused by a DNA repair deficiency
A. Autosomal recessive uracil-N-glycosylase deficiency
Introduction of lesions into DNA by AID activates the 
repair process. The first step consists of the recognition 

and removal of the uracil residues present in the DNA by 
the nuclear UNG2. An UNG2 deficiency results in an 
autosomal recessive CSR-D (OMIM #608106) that 
appears to be very rare: to the best of our knowledge, 
only three cases have been reported to date [62]. UNG is 
capable of deglycosylating uracil residues that are 
misintegrated into DNA by AID. Following removal of 
uracil residues by UNG, abasic sites that eventually can 
be attacked by APEs are created, leading to single-
stranded DNA breaks. The processing and repair of the 
DNA lesions complete both CSR and SHM [21]. The 
absence of UNG results in abnormal CSR-D and SHM 
(confirmed in all three patients) [62]. SHM is biased 
toward transitions on G:C residues that probably arise 
from the replication of unprocessed U:G lesions in the 
absence of U removal. MMR enzymes may also recognize 
and repair these mismatches, introducing mutations on 
neighboring nucleotides that result in both transitions 
and transversions on A:T residues [20,21,62].

Patients are well controlled by Ig replacement therapy. 
However, UNG is part of the DNA base excision repair 
involved in the repair of spontaneously occurring base 
lesions and therefore constitutes a tool in the cells’ anti-
mutagenic defenses. UNG-deficient mice develop B-cell 
lymphomas as they age [63] and so UNG deficiency may 
predispose patients to tumorigenesis in adulthood.

B. Ig-CSR-D as part of a known DNA repair deficiency
Some CSR-D can occur in patients with a defined DNA 
repair deficiency. Given that CSR and SHM use different 
repair pathways, these CSR-Ds are associated with 
normal SHM. Although the occurrence of cancers is the 
main symptom of the disease, the CSR-D may be the 
main phenotypic feature for several years in some 
patients. Hence, DNA repair deficiencies should be 
investigated when a CSR-D lacks a molecular definition.

1. Autosomal recessive post-meiotic segregation 2 deficiency
Mono-allelic mutations in genes encoding MMR 
enzymes lead to a hereditary predisposition to non-poly
posis colon carcinoma (also known as Lynch syndrome) 
(OMIM #120435 [64]). Bi-allelic mutations in one of 
these enzymes lead to the early occurrence of a variety of 
cancers during childhood [65]. Recently, we showed that 
a lack of the MMR enzyme post-meiotic segregation 2 
(PMS2) can also result in a CSR-D. Indeed, the CSR-D 
may be the main symptom for several years [66]. The 
conditions of four of the nine PMS2-deficient patients we 
observed were diagnosed as primary humoral immuno
deficiency because of the recurrence of bacterial infec
tions, and Ig replacement therapy was prescribed in three 
individuals. Serum IgM levels are normal or elevated. 
Low levels of serum IgG2 and IgG4 were observed in all 
nine patients, and reduced total IgG or IgA levels or both 
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were found in the four symptomatic patients. IgG and 
IgA levels rose with age – probably because of the 
accumulation of long-lived plasma cells. In vitro, B cells 
are unable to undergo CSR following activation with 
CD40L and appropriate cytokines. SHM has a normal 
nucleotide substitution pattern in all patients, but the 
peripheral blood CD27+ B-cell count is low.

The PMS2 protein is part of the MMR pathway that 
recognizes and repairs mismatched nucleotides on DNA 
(provided that a nick on the same DNA strand is already 
present) [67]. Thus, one can hypothesize that the MMR 
acts downstream from UNG-APE activity and repairs the 
remaining U:G mismatches (that is, those not processed 
by UNG). In the absence of a nick close to the mismatch 
site, PMS2 is able to create one through its endonuclease 
activity [68]. Hence, the MMR enzymes in general and 
PMS2 in particular may play a specific role in the CSR-
induced generation of DNA breaks in S regions [69].

The main symptom of PMS2 deficiency is the 
occurrence of cancers during childhood. Nevertheless, 
the CSR-D (which appears to be present in all of the 
patients studied to date – at least in vitro) might lead to 
even greater susceptibility to infections during cancer 
chemotherapy. The CSR-D may well be the most 
prominent feature for several years and this diagnosis 
should be considered in patients with a CSR-D that lacks 
a molecular definition. A non-specific but suggestive 
symptom is the presence of café-au-lait skin spots.

2. Autosomal recessive ataxia telangiectasia
Ataxia telangiectasia (AT), caused by bi-allelic mutations 
in the ATM gene, is a severe disease that combines 
progressive neurodegeneration (ataxia), cutaneous abnor
malities (telangiectasia), a predisposition to malignancy 
(lymphoma), and an immunodeficiency (OMIM #120435 
[70]). Patients with AT present frequently with a 
progressive T-cell defect predisposing them to viral and 
opportunistic infections. Some patients with AT could 
also present with a typical CSR-D, elevated IgM 
(sometimes at very high levels), and a contrastingly 
strong decrease in IgG and IgA levels, requiring Ig 
replacement therapy [71-73]. This CSR-D may be the 
main symptom during early childhood (diagnosis in the 
oldest patient was made at 7 years; A Durandy, personal 
communication). B cells are generally (but not always) 
unable to undergo CSR in vitro. Analysis of the 
recombined switch junctions in Ig gene loci indicates the 
failure of DNA repair during CSR and suggests a role for 
the product of the ATM gene in CSR-induced DSB repair 
in S regions [74]. DNA repair during CSR is a complex 
process that leads to the recombination of two S regions 
(Sμ and Sx) that may be very far away from each other. 
CSR activation has been shown to change the 
conformation of the Ig locus and bring the Sμ-Sx regions 

together within a synapsis [75]. The maintenance of this 
synapsis requires a multimolecular complex, including 
molecules phosphorylated by ATM (such as the histone 
H2AX, 53BP1, and MDC1) [76]. This synapsis is essential 
for S region repair via the NHEJ pathway. In the absence 
of ATM activity, the synapsis is not maintained and the 
repair fails, leading to CSR-D. In contrast, normal SHM 
generation and pattern (in a normal CD27+ B-cell sub
population) confirm that ATM is not essential for DNA 
repair in V regions.

The Ig-CSR-D observed in AT is very similar to that 
caused by the defect in the putative AID co-factor, and 
AT should be screened for (with a fetoprotein assay) in 
molecularly undefined CSR-Ds with a normal CD27+ cell 
count and normal SHM. As with ATM, the MRE11/
RAD50/NBS1 complex is also involved in the intra-
switch region synapsis, a CSR-D is not unexpected in 
MRE11 and NBS1 deficiencies (AT-like disease and 
Nijmegen breakage syndrome, respectively).

C. Ig-CSR-Ds associated with an unknown DNA repair 
deficiency
We have described another subset of patients who very 
probably have an autosomal recessive CSR-D, as 
suggested by the gender ratio and the pedigree trees. 
Apart from having a susceptibility to bacterial infections, 
lymphadenopathies, and auto-immune manifestations, 
these patients present a greater incidence of tumors; in 
our series of 45 patients, five developed a non-Epstein-
Barr virus (EBV)-induced B-cell lymphoma, one developed 
acute lymphoid leukemia, and another developed acute 
myeloid leukemia, strongly suggesting that they have a 
DNA repair deficiency. The CSR-D in vivo is often partial 
with residual IgG or IgA levels, contrasting with a strong 
reduction of in vitro CSR activity [77]. Moreover, the 
observation of a strong decrease in the CD27+ B-cell 
count, abnormal switch junction repair (with preferential 
use of microhomology), and particularly elevated radio
sensitivity in fibroblasts and EBV B-cell lines argues 
strongly in favor of a DNA repair deficiency [78]. The 
SHM level and pattern (on decreased CD27+ B cells) are 
normal, again emphasizing the fact that S and V regions 
use different repair pathways.

For CSR-induced DSBs in S regions, DNA repair is 
achieved in the Sμ-Sx synapsis by the NHEJ pathway. The 
process is initiated by DNA-PKcs and the Ku70/Ku80 
[24,25,79] complex and then completed by molecules 
such as Artemis, ligase IV, and Cernunnos [80,81]. None 
of these molecules was found to be involved in our 
patients. Recently, an AEJ pathway was found to perform 
DNA repair in S regions [26]. However, its involvement 
in the CSR-D observed in the patients is doubtful since 
AEJ leads to repair through microhomology usage. 
Hence, one or more presently unidentified components 
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of CSR-induced DNA repair of S regions are likely to be 
deficient in these patients. Although this condition has 
not yet been defined in molecular terms, it should be 
screened for, so that affected patients can receive appro
priate follow-up (in view of the risk of tumorigenesis).

V. Concluding remarks
The precise description of the various Ig-CSR-Ds is 
essential from a medical point of view since the patients’ 
prognosis and follow-up vary from one deficiency to 
another. Some Ig-CSR-Ds are associated with impaired 
cellular immune responses (for example, CD40L, CD40, 
and NEMO deficiencies). The only curative treatment for 
these severe conditions is HLA-identical HSCT, when 
possible. CSR-Ds caused by an intrinsic B-cell defect lead 
to a specific humoral deficiency that is easily controlled 
by Ig replacement therapy. However, the auto-immune 
complications (some of which are clearly related to IgM 
auto-antibodies) can be life-threatening. Auto-immunity 
is probably not simply related to high IgM serum levels, 
because auto-immune manifestations are significantly 
less frequent in CD40L deficiency in which IgM levels are 
equally elevated. Likewise, auto-immunity does not 
appear to be related to SHM since the latter occurs with 
the same frequency in both AID deficiency (with a lack of 
SHM) and other Ig-CSR-Ds with normal SHM genera
tion. Occurrence of cancer is another special concern in 
Ig-CSR-Ds that are related to a DNA repair deficiency. 
Indeed, phenotypic data in mice suggest that B-cell 
lymphomas might occur in UNG-deficient patients. We 
have also observed a CSR-D that is very probably 
associated with a DNA repair factor deficiency and that 
leads to the occurrence of lymphomas and leukemia. 
Although the molecular basis of this condition has not 
yet been defined, it is essential to diagnose the problem 
and then provide patients with appropriate follow-up. 
Lastly, a CSR-D may be the first long-lasting symptom of 
well-known DNA repair deficiencies, such as MMR 
deficiency and AT. These two conditions must be 
screened for whenever the CSR-D lacks a defined 
molecular basis. Thus, the accurate diagnosis and 
characterization of the CSR-D aid the establishment of a 
prognosis and the initiation of appropriate treatment.

In addition to the clinical interest of understanding 
CSR-Ds, the ongoing description of inherited CSR-Ds is 
shedding new light on the complex molecular 
mechanisms involved in antibody maturation in humans. 
The genetic definition of the X-linked CD40L and NEMO 
deficiencies (which were determined before the genera
tion of the corresponding engineered mutant mice) 
provided clear evidence of the essential role of the CD40 
signaling pathway in antibody maturation. The pheno
types of AID-deficient patients and mice (described at 
the same time) have demonstrated the master role of this 

newly described B-cell molecule in both CSR and SHM 
antibody maturation events. The description of an Ig-
CSR-D caused by UNG deficiency provides strong in vivo 
evidence for a DNA-editing activity for AID first 
suggested by in vitro data. Additional data have shown 
that AID could act in antibody maturation not only 
through its cytidine deaminase activity but also as a 
potential docking protein for co-factors. The study of 
CSR-Ds associated with a DNA repair deficiency has 
revealed the role of the MMR pathway and the ATM 
protein in human CSR. Lastly, the study of non-
elucidated Ig-CSR-Ds could also help to resolve some of 
the issues that remain obscure in CSR: the nature of the 
CSR-specific AID co-factor(s) and the complex 
mechanism involved in inter-switch region repair. Thus, 
studies of primary immune deficiencies appear to be 
critical for improving our understanding of the immune 
response.
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