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Abstract
For some time synovial fibroblasts have been regarded simply as
innocent synovial cells, mainly responsible for synovial
homeostasis. During the past decade, however, a body of evidence
has accumulated illustrating that rheumatoid arthritis synovial fibro-
blasts (RASFs) are active drivers of joint destruction in rheumatoid
arthritis. Details regarding the intracellular signalling cascades that
result in long-term activation and synthesis of proinflammatory
molecules and matrix-degrading enzymes by RASFs have been
analyzed. Molecular, cellular and animal studies have identified
various interactions with other synovial and inflammatory cells. This
expanded knowledge of the distinct role played by RASFs in the
pathophysiology of rheumatoid arthritis has moved these
fascinating cells to the fore, and work to identify targeted therapies
to inhibit their joint destructive potential is underway.

Introduction
Rheumatoid arthritis synovial fibroblasts (RASFs; also termed
fibroblast-like synoviocytes or type B synoviocytes), together
with synovial macrophages, are the two leading cell types in
the terminal layer of the hyperplastic synovial tissue that
invades and degrades adjacent cartilage and bone. In this
destructive process, RASFs actively drive inflammation and
degradation of the joint by producing inflammatory cytokines
and matrix-degrading molecules (Fig. 1).

In nondiseased tissue, the physiological function of synovial
fibroblasts (SFs) is to provide the joint cavity and the adjacent
cartilage with nutritive plasma proteins and lubricating

molecules such as hyaluronic acid. SFs are also involved in
continuous matrix remodeling by producing matrix compo-
nents such as collagen and hyaluronan as well as a variety of
matrix-degrading enzymes. Even though SFs are not primarily
part of the immune system and do not express disease-
specific HLA-DR molecules, they can develop these
properties during the course of rheumatoid arthritis (RA), as
outlined here. The variability of SF characteristics is further
illustrated by the fact that no RA-specific or synovium-specific
fibroblast markers have yet been identified. Currently, the
best markers of SFs in flow cytometry and immunohisto-
chemistry and cytochemistry are vimentin, prolyl-5-hydroxy-
lase and Thy-1.

Since the first description of an altered RASF phenotype by
Fassbender in 1983 [1], data have been gathered that allow
us to understand the transition from an innocent mesen-
chymal cell to a destructive cell that plays a leading role in
established RA. Early studies in MRL-lpr/lpr mice that
spontaneously develop RA-like arthritis showed that synovial
cells proliferate, attach and invade joint structures even
before inflammatory cells migrate into the synovium [2]. This
inflammation-independent activation of RASFs was corro-
borated by studies conducted in the severe combined
immunodeficient (SCID) mouse model of cartilage destruc-
tion, in which implanted human RASFs degrade human co-
implanted cartilage in the absence of inflammatory cells [3].
Hence, the most fascinating areas of fibroblast biology and
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research (as outlined below) are not only the responsiveness
of RASFs to distinct extracellular stimuli but also the initial
events that result in significant phenotype change, most likely
occurring before overt inflammation takes place. This
hypothesis recently received further support from findings in
innate immunity [4].

RASFs in the pre-inflammatory phase of
rheumatoid arthritis
From a functional and therapeutic point of view, the
preclinical stage of RA is of great interest. One of the most
challenging goals in RASF research is to determine the
specific role that these cells play in the early phase of the
disease. As outlined below, it appears that, before clinical
signs of RA become evident, activation of the innate immune
system leads to a distinct upregulation of effector molecules

in RASFs. Potential triggers for this early activation are
infectious as well as noninfectious agents and their respec-
tive (degradation) products [4].

Microbial fragments can stimulate RASFs via highly
conserved basic innate immune receptor systems, such as
Toll-like receptors (TLRs). From the currently 10 known TLRs
in humans, TLR2, TLR3 and TLR4 have thus far been
identified as being expressed on RASFs. As functional effects
of TLR2 activation in RASFs, induction of vascular endothelial
growth factor (VEGF) and IL-8 production were demon-
strated after stimulation with bacterial peptidoglycan (a
known ligand of TLR2) [5]. Furthermore, TLR2 and TLR4
activation induced synthesis of IL-15 in RASFs via nuclear
factor-κB (NF-κB) [6]. In a proinflammatory cycle, cytokines
such as IL-1 and tumour necrosis factor (TNF)-α were shown

Figure 1

Network of interactions of RASFs with cells and matrix. RASFs are sensitive to stimulation and modulation by numerous growth factors, cytokines
and chemokines, as well as by direct interaction with immunologically active cells and matrix components within the rheumatoid synovium.
DMARDs such as methotrexate and leflunomide can inhibit the activity of RASFs to produce proinflammatory and matrix-degrading enzymes by
interfering with their intracellular metabolic pathways. Modified from Müller-Ladner [80]. AP, activator protein; DMARD, disease-modifying
antirheumatic drug; ERK, extracellular signal-regulated kinse; JNK, c-jun amino-terminal kinase; MAP kinase, mitogen-activated protein kinase; NF-
κB, nuclear factor-κB; RASF, rheumatoid arthritis synovial fibroblast; RNAi, RNA interference; TLR, Toll-like receptor. 
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to enhance further the expression of TLR2 in RASFs. A gene
expression study [7] revealed that RASFs synthesize various
chemokines after stimulation with a TLR2 ligand. Among
these chemokines, C-X-C motif ligand (CXCL)2 (gro-2) and
C-C motif ligand (CCL)8 (monocyte chemoattractant protein
[MCP]-2) probably contribute significantly to the accumu-
lation of inflammatory cells in the rheumatoid synovium. Also,
TLR3 appears to play a distinct pathophysiological role in RA
synovium, because RNA released from necrotic cells acts as
an endogenous TLR3 ligand for the stimulation of pro-
inflammatory gene expression in RASFs. Stimulation of
cultured RASFs with the TLR3 ligand poly(I-C) resulted in the
production of high levels of interferon-β, interferon-γ-inducible
protein 10 (CXCL10), CCL5, and IL-6 proteins [8]. Accor-
dingly, regulation of TLR function can be used to down-
regulate RASF activity. For example, vasoactive intestinal
peptide has exhibited therapeutic effects in arthritis by
inhibiting both innate and acquired immune responses. In
RASFs vasoactive intestinal peptide was able to down-
regulate the lipopolysaccharide-induced but not the constitu-
tive expression of TLR4, followed by a decrease in production
of CCL2 and CXCL8 chemokines [9].

Based on these data, it can be hypothesized that a ‘sentinel’
function of synovial fibroblasts [10] is operative even in the
preclinical phase of RA and leads to the initiation and early
perpetuation of the disease.

RASFs as effector cells in inflammation
Local and systemic inflammation is one of the hallmarks of
RA. Apart from genuine inflammatory cells such as neutro-
phils and lymphocytes, RASFs contribute significantly to the
various proinflammatory pathways within the rheumatoid
joint. The ‘sentinel’ function of RASFs can be extended to
(chemo)attraction of leucocytes, which is mandatory for the
accumulation of immunomodulatory cells in the rheumatoid
synovium. In addition to the above-mentioned chemokine
secretion upon stimulation with TLR ligands, the influx of
CD4+ T cells into the proliferating synovium is enhanced by
RASFs because of their production of CXCL16 [11], the
chemoattractive IL-16, and stromal cell derived factor-1
(one of the key factors for migration of T cells toward
fibroblasts [pseudoemperipolesis]). Entering a vicious cycle,
chemotactic molecules are further released from RASFs
after stimulation of the CD40 ligand/CD40 system, for
instance by cell-to-cell contact with T lymphocytes. Upon
such stimulation, RASFs produce a variety of chemo-
attractive molecules. Among them are macrophage
inflammatory protein (MIP), MCP, CCL5 (also known as
RANTES [regulated on activation, normal T-cell expressed
and secreted]) and IL-8. Interleukin-17, a CD4+ T-cell-
derived cytokine, further upregulates cytokine production in
RASFs and enhances this proinflammatory interaction
cascade. In addition, RASFs release MIP-3α after
stimulation with IL-1β, IL-18 and TNF-α, which leads to
perivascular chemoattraction of mononuclear cells. As

mentioned above, cell-to-cell contact enhances these
chemoattractive processes; for example, the interaction of
RASFs and leucocytes via β2 integrin/vascular cell adhesion
molecule (VCAM)-1 resulted in an upregulation of MIP-1α
synthesis in polymorphonuclear neutrophils and monocytes
from RA synovial fluid [12].

Apart from secretion of chemotactic proteins, RASFs produce
a wide range of proinflammatory cytokines and effector
molecules. Being the source of cyclo-oxygenase (COX)-2 in
the synovial lining, RASFs are linked to a currently intensively
discussed system that is involved in regulation of synovial
inflammatory pathways, namely the COX-1/COX-2 system. A
number of nonselective and selective COX inhibitors,
including ibuprofen, diclofenac, meloxicam and rofecoxib,
were found to be able to inhibit IL-1-triggered prostaglandin
E2 production in RASFs [13]. Interestingly, the selective
COX-2 inhibitor celecoxib but no other tested COX-2
inhibitor induced apoptosis in RASFs in vitro [14].

Taken together, because of the ability of RASFs to synthesize
a broad range of proinflammatory and chemoattractive
molecules, they can be regarded not only as cells that
actively drive inflammation in the pathogenesis of RA but also
as among the major targets for disease-modifying and anti-
inflammatory drugs.

RASFs and matrix degradation
Functional disability of the joints through progressive
degradation of cartilage and bone is a hallmark of RA. Known
effector molecules in the destruction of articular cartilage and
bone are matrix metalloproteinases (MMPs) and cathepsins.
RASFs at sites of invasion or within the synovial lining layer
are a major source of MMPs and cathepsins, and drive RA
joint destruction via these enzymes.

Proteinases
MMPs include collagenases, stromelysin, gelatinases, and
membrane-type (MT) MMPs. Of these, collagenase-1
(MMP-1) cleaves collagens I, II, VII and X. Inhibition of MMP-1
synthesis by retroviral over-expression of ribozymes that
target MMP-1 mRNA resulted in a significant reduction of the
invasiveness of RASFs in the SCID mouse model for RA [15],
without affecting the production of other MMPs. Also, the
recently discovered membrane-type MMPs are involved in RA
and RASF pathophysiology. MT1-MMP (MMP-14) and
MT3-MMP (MMP-16) cleave extracellular matrix components
and can activate other MMPs. MT1-MMP and MT3-MMP are
abundant in RA synovium, with MT3-MMP being expressed
by RASFs, and MT1-MMP by RASFs and CD68-positive
osteoclasts and macrophages. The proteolytic activity at sites
of synovial attachment to cartilage was found to be mediated
by a complex consisting of MT1-MMP, tissue inhibitor of
matrix metalloproteinase (TIMP)-2 and MMP-2, whereby
TIMP-2 promotes the binding of pro-MMP-2 to MT1-MMP, by
which it is subsequently activated [16]. The distinct role
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played by MT1-MMP and MT3-MMP in joint destruction is
further supported by their relative over-expression in RA
synovium as compared with MT2-MMP (MMP-15) and
MT4-MMP (MMP-17) [17].

Of note, recent data emphasized that activation and
destruction in RA uses similar pathways as observed in
malignant diseases [18]. The metastasis-associated protein
S100A4, which promotes the progression of cancer by
regulating remodelling of the extracellular matrix, upregulated
MMP-3 mRNA and protein in RASFs. Furthermore, expres-
sion of MMP-1, MMP-9 and MMP-13 mRNA was induced by
S100A4.

In addition to MMPs, RASF-produced cathepsins contribute
significantly to the degrading processes in the rheumatoid
joint. The production of cathepsin K appears to be the main
contribution of RASFs to bone degradation. However,
cathepsin L, which degrades collagen types I, II, IX and XI
and proteoglycans, was also found to be expressed in RASFs
[19]. Cathepsin L mediated cartilage destruction in the SCID
mouse model for RA could be reduced by specific ribozymes
inhibiting the translation of cathepsin L mRNA into active
protein [20].

Cartilage degradation by RASFs is reduced by the MMP-
antagonizing family the TIMPs. Gene transfer experiments
demonstrate that TIMP-1 specifically inhibits the synovial
fibroblast mediated destruction of cartilage in the SCID
mouse model. The same effect was shown for TIMP-3, which
in addition to MMPs inhibits TNF-α-converting enzyme (a
molecule that activates TNF-α synthesis in RA synovium)
[21]. Novel metalloproteinase inhibitors such as RECK
(reversion inducing cysteine-rich protein with Kazal motifs)
have been added to the family of these protective molecules
during recent years [22].

Facilitators of osteoclastogenesis
Analysis of the pathways that result in bone degradation has
been initiated by numerous research groups. Receptor
activator of NF-κB (RANK), a member of the TNF receptor
family, primarily initiates a bone-degrading pathway and
maturation of osteoclasts via its binding partner RANK ligand
(RANKL). In rheumatoid synovium, RANKL was found to be
strongly expressed at sites of bone erosion, and RASFs were
shown to be part of this RANK/RANKL interaction system by
actively producing RANKL [23]. Accordingly, RASFs expres-
sing higher levels of RANKL induced a higher number of
osteoclast-like cells than did RASFs expressing only low
levels of RANKL [24]. Various disease-modifying anti-
rheumatic drugs (DMARDs) used in the treatment of RA act
on these pathogenetic pathways. It was shown that
methotrexate, sulfasalazine and infliximab inhibit the expres-
sion of RANKL in RASFs in a dose-dependent manner, and
increase the synthesis of osteoprotegerin, a RANKL anta-
gonist, in RASF supernatants [25].

Proinflammatory cytokines, including TNF-α exert a distinct
role in bone remodeling via RASFs. Osteoclastogenesis is
stimulated by TNF-α and IL-1-dependent upregulation of
bone morphogenetic protein-2 and -6 in these cells [26].

In summary, because of the potency of RASFs in producing
cartilage-degrading and bone-degrading enzymes and their
stimulatory effect on osteoclasts, RASFs must be regarded
as the main effector cells for the activation and stimulation of
osteoclasts, which leads to the primary problem in RA: joint
destruction.

Induction of the activated phenotype of
RASFs
RASFs differ considerably from SFs from healthy joints. This
activated phenotype comprises morphological properties and
changes in long-term growth and apoptosis, as well as altered
response to various stimuli. Furthermore, RASFs attach to
cartilage and bone, and drive the pathophysiology of RA by
producing matrix-degrading enzymes and proinflammatory
cytokines. A main focus of RASF research is to characterize
further this RASF phenotype and to find the triggers that
initially induce the aggressive behaviour of RASFs.

Cytokines and growth factors
The primary extracellular stimulus for fibroblasts is fibroblast
growth factor (FGF). RASFs not only proliferate in response
to FGF but they are also part of an autocrine loop by
producing FGF themselves, triggering further fibroblast
growth. The effect of one of the FGF isoforms, namely FGF-2,
is not only restricted to the proliferation of RASFs but is also
involved in bone destruction by supporting the maturation of
osteoclasts [27]. Another common growth factor for
fibroblasts, transforming growth factor (TGF)-β, can be found
in RA synovial tissue. Its synthesis requires co-operation with
synovial macrophages. TGF-β stimulates collagen production
of RASFs when injected directly into the joint cavity, and
enhanced the growth of RASFs by modulating the activity of
phosphatidylinositol 3-kinase and Akt. In addition, TGF-β can
induce IL-6 and VEGF production in RASFs via activation of
the transcription factor NF-κB [28]. The stimulatory effect of
TGF-β appears to be partly dependent on RASF-matrix
interactions, because attachment of RASFs to laminin-111
facilitated TGF-β-induced activation of the p38-mitogen-
activated protein kinase (MAPK), extracellular signal-regu-
lated kinse and SMAD2 pathways, resulting in upregulation of
MMP-3 [29]. However, TGF-β is a pluripotent molecule. This
is illustrated by its ability to suppress articular inflammation by
downregulating the chemoattractive and proinflammatory
molecule RANTES in RASFs on one hand [30] and to
enhance destructive effects by stimulating the synthesis of
IL-1 and MMP-1 on the other.

The effects of growth factors on RASFs are further enhanced
by recently discovered ‘associated’ stimulatory molecules
such as TNF-like weak inducer of apoptosis (TWEAK), and by
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the crosstalk between different cytokine-dependent signalling
cascades. The importance of TWEAK on synovial patho-
physiology was illustrated by the inhibition of TWEAK, which
resulted in downregulation of numerous proinflammatory
effector molecules such as the chemokines MIP-1β (CCL-4),
lymphotactin (XCL-1), CXCL-10, MCP-1 (CCL-2) and
RANTES (CCL-5) in articular mesenchymal cells, including
fibroblasts [31].

Apart from growth factors, proinflammatory cytokines are the
major stimuli of changes in metabolism of RASFs. Release of
proinflammatory mediators by RASFs is induced not only by
the dominant and well known cytokines in RA patho-
physiology (such as TNF-α, IL-6 and IL-1) but also by more
recently discovered novel members of this family (IL-17,
IL-18, IL-20 and IL-1F8) [32]. Both IL-17 and IL-18 increased
the synthesis of the proangiogenic factor VEGF, and IL-20
promoted enhanced chemotaxis via MCP-1 and IL-8 [33-35].
In some cases, only the receptor but not the respective
cytokine could be detected in RA synovium. For example, the
receptor for IL-21 was found to be expressed on RASFs, but
mRNA for IL-21 was neither detectable in RA synovium nor
inducible by key proinflammatory cytokines and growth
factors such as IL-1, TNF, platelet-derived growth factor and
TGF. Accordingly, IL-21 protein was also undetectable in
synovial fluid from RA patients [36].

Platelet-derived growth factor, of which numerous isoforms
have been shown to be expressed in RA synovium, is a
strong stimulator of synovial growth, and is also one of the
few cytokines for which a direct proto-oncogene-triggered
activation of synovial cells could be demonstrated [37]. The
recently licensed platelet-derived growth factor receptor
tyrosine kinase inhibitor imatinib was able to downregulate
proliferation of RASFs [38,39].

Intracellular signalling
Numerous nuclear transcription factors are involved in the
activation of cells in the proliferating rheumatoid synovium.
Effector molecule synthesis via the NF-κB pathway is one of
the key elements. NF-κB is a dimeric transcription factor that
is classically formed by a p50 and a p65 subunit, but also
more rare combinations with other subunits (for instance
p52) occur. In general, activation of this transcription factor
requires upstream proinflammatory stimuli, such as TNF-α. A
molecule that blocks NF-κB activation in inactive cells is the
inhibitor of NF-κB (IκB). Upon cell stimulation, IκB becomes
degraded after phosphorylation by two kinases: IκB kinase-1
and IκB kinase-2. IκB as well as IκB kinase-1 and IκB
kinase-2 are present in RA synovium. IκB kinase-2 dominant
negative mutant cell populations were found to be resistant
to TNF-α-triggered nuclear translocation of NF-κB, and
accordingly the presence of IκB kinase-2 was required for
cytokine synthesis (IL-6 and IL-8) via NF-κB in RASFs [40].
In contrast, lack of IκB kinase-1 did not modulate this
pathway.

Further downstream, NF-κB-dependent processes in RASFs
include the transcription of a broad group of target genes,
comprising transcription factors such as Ets and ESE,
antiapoptotic genes such as BIRC-3, and the FLIP-like gene
GG2-1, as well as pro-inflammatory cytokines and effector
molecules such as COXs, which catalyze the formation of
prostaglandins. Interestingly, recent data showed that
prostaglandins such as prostaglandin-E2 can inhibit NF-κB by
stimulating IκB in RASFs [41]. Also, the transcription factor
peroxisome proliferation-activated receptor-γ induces a
negative regulation of NF-κB followed by a downregulation of
numerous cytokines, including TNF-α, IL-1, IL-6 and IL-8, and
of MMPs such as MMP-1 and MMP-3.

MAPKs are intracellular effector molecules that are embedded
in a signalling cascade that is highly active in RASFs. The
MAPK group comprises three members: c-jun amino-terminal
kinase, extracellular signal-regulated kinase and p38. Stimu-
lation of MAPK pathways result in the expression of Jun and
Fos proteins, which form homodimers and heterdimers to
build up the transcription factor activator protein-1. Activator
protein-1 DNA binding activity is high in RASFs and leads to
expression of a variety of proinflammatory cytokines and
MMPs [42,43]. A number of kinases upstream from the
MAPK and operative in RASFs have also been identified in
recent years. Among them are MAPK kinase-4, c-jun amino-
terminal kinase regulating MAPK kinase-7, as well as MAPK
kinase-3 and MAPK kinase-6 [44,45]. The majority of these
kinases are induced by IL-1 and TNF.

The therapeutic potential of downregulating MAPK pathways
was illustrated by the inhibition of IL-6, IL-8, MMP-1 and
MMP-3 production in RASFs after application of a specific
p38 MAPK inhibitor [46]. In particular, the α and γ isoforms of
the p38 MAPK [47,48] appear to modulate several
proinflammatory pathways in RASFs and have therefore
already been targeted in clinical trials. However, serious
adverse effects have prevented further development of
therapeutic p38 inhibitors thus far.

Because of increased interest in RASFs as targets of novel
therapeutic approaches, analysis of activating and inhibiting
mechanisms has entered the focus of numerous research
laboratories worldwide. The molecular mechanisms that are
the basis of the effects of DMARDs probably affect the
doubling time of the RASF population and disrupt pro-
inflammatory cytokine loops [49,50]. For instance, lefluno-
mide was found to act on RASFs by downregulating MAPK
signalling pathways, resulting in inhibition of the production of
MMP-1, MMP-3 and MMP-13, and in increased synthesis of
IL-1 receptor antagonist [51,52].

Hypoxia and angiogenetic factors
Every tissue or compartment within a given organism requires
an adequate supply with oxygen and nutrients, especially
when growing over an extended period of time. In the
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rheumatoid joint, one of the dominant features is the synovial
hyperplasia, which consists mainly of an increase in cell
numbers, especially in the synovial lining layer. To facilitate
this growth, angiogenesis is mandatory not only for synovial
activation but also for subsequent joint destruction [53]. One
of the triggering factors appears to be articular hypoxia,
which stimulates both synthesis of proangiogenic factors but
also the expression of chemotactic factors, MMPs such as
MMP-1 and MMP-3 (combined with a downregulation of
TIMP-1 in RASFs), and osteoclastogenic factors such as
inhibitor of differentiation [54].

Of the key proangiogenic factors, VEGF mRNA and protein
as well as its respective receptor flk-1 (KDR) are present in
rheumatoid synovium. Co-cultivation of RASFs with inflam-
matory cells resulted in enhanced VEGF synthesis and neo-
vascularization. Conversely, virus-mediated over-expression of
the soluble VEGF receptor sFlt-1 was able to suppress
disease activity in collagen-induced arthritis.

Proinflammatory cytokines can upregulate proangiogenic
factors in RASFs. This angiogenesis-inducing effect of cyto-
kines could be shown for angiopoietin-1, which is present in
RA synovium and is upregulated in RASFs by TNF-α at the
mRNA and protein levels. Expression of angiopoietin-1 and
angiopoietin-2 in RASFs is directly linked to their respective
endothelium-specific tyrosine kinase receptors Tie-1 and
Tie-2 [55]. Antiangiogenic molecules such as members of the
thrombospondin family (for example, thrombospondin-2) can
inhibit RASF-dependent vascularization, because thrombo-
spondin-2 transduced RASFs were able to inhibit local
vascularization and inflammation in the SCID mouse model [56].

Cellular interactions
Distinct cellular interactions are required to support further
the long-term growth of rheumatoid synovium. Some of them
are directly linked to hypoxic conditions, such as the hypoxia-
induced upregulation of intercellular adhesion molecule
(ICAM)-1 in RASFs, which resulted in adhesion of RASFs to
adjacent lymphocytes [57]. Inteferon-γ, IL-1, and TNF-α can
further upregulate the expression of ICAM-1, facilitating the
interaction of RASFs with T lymphocytes through ligation of
ICAM-1 to its binding partner leukocyte function associated
antigen-1. Subsequently, ICAM-1-positive RASFs in vivo are
surrounded by leukocyte function associated antigen-1-
positive T lymphocytes, which are associated with an up-
regulation of IL-1 expression by RASFs. Apart from ICAM-1,
numerous adhesion molecules and ligands are known to
mediate RASF-dependent pannus formation. An important
example of the effects of such cell-to-cell interaction is the bi-
directional interaction between the adhesion molecule
VCAM-1, its ligand very late activation antigen-4, and the
matrix component connective segment-1. VCAM-1 is found in
RASFs invading articular cartilage and in the synovial
microvasculature. Proinflammatory cytokines such as TNF-α,
IL-1β, and IL-18 can induce VCAM-1 expression on RASFs.

VCAM-1 binds to the membrane-bound lymphocyte surface
antigen, very late activation antigen-4, which also serves as
ligand for connective segment-1, an alternatively spliced form
of fibronectin. This interaction results in direct multidirectional
interaction between RASF, matrix, and lymphocytes.

The interaction of RASFs with matrix proteins can modulate
their adherence properties. For example, interactions of
RASFs with integral membrane proteins such as cadherin-11
in the lining layer contribute significantly to pannus formation
in rheumatoid synovium [58]. Cadherin-11 stimulates the
formation of tissue-like sheets and lining-like structures in
vitro, and is expressed in a tissue-restricted pattern.
Interrupting such an interaction can be used therapeutically;
for example, invasion of RASFs into bovine cartilage could be
inhibited by antibodies to α4 integrins. Of note, other matrix-
RASF interactions such as the interaction of very late
activation antigen-5 with fibronectin were able to protect
RASF from apoptosis [59].

Proto-oncogenes and tumour suppressors
In untreated RA, the granulation tissue that forms within the
synovium (pannus) consists, to a significant degree, of
RASFs and grows steadily. Based on the histological finding
that fewer than 3% of RASFs undergo apoptosis [60],
numerous researchers have addressed the dysbalance of
proapoptotic and antiapoptotic factors (for example, proto-
oncogenes versus apoptosis-inducing molecules and tumour-
suppressors) in these cells. This work has led to accumu-
lation of a body of evidence that the long-term growth and
reduced apoptosis of RASFs is based on the upregulation of
early response genes and proto-oncogenes, such as egr-1,
c-fos, myc and ras. The oncogene ras is predominantly
expressed in the synovial lining layer associated with
expression of the proteolytic enzyme cathepsin L at sites of
invasive growth. Conversely, gene transfer based inhibition
experiments of double-negative ras, raf and myc mutants
ameliorated inflammation and reduced bone destruction in
adjuvant arthritis as well as cartilage destruction and RASF
invasiveness in the SCID mouse model of RA [61].

Consistent with the over-expression of proto-oncogenes is
the lack or deficiency of tumour-suppressor genes such as
p53 and its proapoptotic effector molecule p53-upregulated
modulator of apoptosis (PUMA), maspin, and phosphatase
and tensin homolog (PTEN) [62].

In RA, lack of PTEN expression, but not mutations within the
gene encoding PTEN, participate in the long-term persis-
tence of activated RASFs in the synovial lining at sites of
destruction [63]. IκB/NF-κB interactions and negative regula-
tion of other nuclear factors such as Akt (protein kinase B)
are dependent on PTEN [64]. Furthermore, it can be specu-
lated that the lack of the tyrosine kinase PTEN in aggressive
RASFs contributes to the imbalance of tyrosine kinases and
phosphatases in this disease. Interestingly, PTEN has been
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demonstrated to be downregulated by TGF-β, which at least
partly could be responsible for the diminished levels of PTEN
in RA [63].

Resistance to apoptosis
A major factor contributing to synovial growth is the resis-
tance of RASF against apoptosis, which can be linked to
distinct anti-apoptotic molecules such as FLICE inhibitory
protein (FLIP) and sentrin (SUMO-1). FLIP exerts its anti-
apoptotic effect via inhibition of the apoptosis-triggering intra-
cellular enzyme caspase 8 [65]. Accordingly, antagonizing
FLIP by antisense oligonucleotides sensitizes RASFs to Fas-
mediated apoptosis [66]. Sentrin interferes with Fas-induced
as well as TNF-induced apoptosis, and was shown to be
highly expressed in RASFs at sites of synovial invasion [67].

Other potent inhibitors of apoptosis that have been found to
be upregulated in RASFs are members of the Bcl family, such
as Bcl-2 and Mcl-1. Bcl-2 inhibits one of the terminal steps of
apoptosis. Recent data indicate that the regulation of Bcl-2
expression is related to the autocrine activation of IL-15
receptors by SF-derived antiapoptotic IL-15 [68]. Mcl-1 has
been shown to counteract the effects of the proapoptotic
intracellular factors Bax, Bak and Bim [69]. The expression of
Mcl-1 could be induced by treatment with TNF-α or IL-1β in
RASFs and knockdown of Mcl-1 by small-interfering-RNA
induced apoptosis in RASFs as well as in synovial macro-
phages [70].

Targeting proapoptotic members of the TNF family, such as
TNF-related apoptosis-inducing ligand (TRAIL), revealed that
the sensitivity of RASFs to apoptosis might be a highly
selective, histone deacetylase-dependent process [71]. Only
agonistic antibodies against TRAIL-R2 (DR5), but not
TRAIL-R1 (DR4), were able to induce apoptosis in cultured
RASFs. Moreover, intra-articular over-expression of TRAIL by
viral gene transfer exerted a comparable effect in a rabbit
arthritis model. Similarly, nontoxic doses of the proteasome
inhibitor lactacystin can also induce RASF apoptosis and
might be a strategy for future RASF-targeted therapeutic
approaches. Lactastatin induced cytosolic accumulation of
p53 and enhanced apoptosis via TRAIL-R2 (DR5) [72]. Also,
the osteoprotective molecule osteoprotegerin influences the
apoptotic rate of RASFs because OPG reduced the rate of
apoptosis of RASFs after incubation with TRAIL, an effect
that could be antagonized by anti-osteoprotegerin mono-
clonal antibodies [73].

In summary, the activated phenotype of RASFs, which is the
basis for the long-term growth of the rheumatoid synovium, is
characterized by a substantial dysbalance of proapoptotic
versus antiapoptotic pathways in favour of the latter.

Cytokine independent pathways of activation
Even though all of the above-mentioned cytokines and growth
factors have been shown to play pivotal roles in the activation

of RASFs, attempts to induce an aggressive phenotype in
normal SFs by incubating them with these stimulating factors
have not been successful. Therefore, the search for triggering
factors was extended to cytokine independent pathways.
Experimental models provided evidence that oncogene-
derived or virus-derived gene sequences incorporated into
the DNA of RASFs could be such triggers. Retroviral L1
elements expressed in RASFs were found to induce
upregulation of intracellular kinases, including p38δ, which is
a specific isoform of the p38 MAPKs [74]. Since it was
shown that L1 is induced by DNA demethylation, a novel
search for epigenetic modifications in RASF has been
conducted. Epigenetic modifications are mediated by methy-
lation, deacetylation, ubiquitination, phosphorylation and
microRNA. Based on the observation that endogenous retro-
viral sequences such as L1 can induce specific signalling
molecules, including p38δ and galectin-3 binding protein
[75], the galectin-3 system has been explored. Galectin-3,
which has been shown to be elevated in tumours and
metastasis, induces angiogenesis and inhibits apoptosis [76].
Levels of galectin-3 are high in sera and synovial fluid of RA
patients and correlate with C-reactive protein levels. Also,
galectin-3 binding protein was found to be elevated in joints
of RA patients as compared with patient with osteoarthritis
and healthy control individuals. Interestingly, high levels of
galectin-3 binding protein were associated with high levels of
cartilage oligomeric matrix protein, which is a marker of
synovial cell activation and joint destruction [77].

These data point to a cytokine-independent pathway operat-
ing in the pathogenesis of RA, which could also explain why
the disease cannot yet be cured and disease activity recurs
after cessation of therapy, such as with anti-TNF blockade.

Conclusion
In addition to the examples outlined above illustrating that
targeting RASFs and RASF-dependent effector molecules
could yield new effective therapeutic options, it has been
demonstrated that the RASF can potentially be used as a
drug carrier. In a study conducted in the SCID mouse model
of RA, in which the implanted metabolically active cartilage-
invading RASFs had taken up methotrexate-albumin
conjugates intracellularly before implantation [78], metho-
trexate and methotrexate-albumin conjugates both inhibited
cartilage invasion and degradation with comparable efficiency
[79].

All the various studies conducted to address the specific
properties of RASFs underline the important role played by
these cells in the pathogenesis of RA (Fig. 1). The working
hypothesis of a cytokine-independent activation of destructive
and inflammatory pathways, which was recently also
connected to epigenetic modifications including demethy-
lation [74,75] and hyperacetylation [71], might explain the
relatively high number of nonresponders receiving treatment
with DMARDs and the failure of these agents to block joint
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destruction completely. Studies addressing the role played by
epigenetic modifications in these cells could shed light on the
development of the altered phenotype found in RASFs.

In the years to come, particular attention must be given to the
search for therapies specifically designed to inhibit the joint
destructive potential of RASFs. Gene transfer experiments
with the inhibitors of MMPs, TIMP-1 and TIMP-3 yielded
promising results. Over-expression of TIMPs led to a
diminution of the destructive potential of RASFs. Molecules
such as TIMP-3 that influence the end product of the complex
signalling cascades that lead to joint destruction might be
novel targets, which may allow us to block both cytokine-
dependent and cytokine-independent pathways of joint
destruction in RA.
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