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The anisotropy of local turbulence in the Earth’s core
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The anisotropy of local turbulence in the Earth’s core is examined. It is recognized that small-scale motions in the
core are strongly influenced by the Earth’s rotation and its magnetic field. A small region of the core is simulated (the
computational box), across which the prevailing large-scale (toroidal) magnetic field is supposed to be uniform and
in which the temperature or compositional gradient providing the buoyancy that powers the turbulence is parallel to
the (uniform) gravitational field. The simulations are used to estimate the turbulent fluxes of mean fields and their
dependence on the latitude at which the computational box is situated. It is found that the effect of local turbulence
on the diffusion of large-scale fields is significant, and that turbulent transport is anisotropic. It is believed that the
results of the present study will prove useful in determining geophysically realistic diffusivities for use in future

global geodynamo simulations.

1. Introduction

The molecular kinematic viscosity, and the thermal and
compositional diffusivities of the Earth’s core are very small.
It is therefore very likely that large-scale differences in mo-
mentum density, entropy density and chemical composition
are diffused much more effectively by small-scale turbulence
than by molecular processes (Braginsky, 1964). To be real-
istic, simulations of the magnetohydrodynamics of the core
and of the geodynamo must either resolve the small-scale
motions numerically, an impossible task at present, or pa-
rameterize their effects on the macroscales in a plausible
way. Every published geodynamo simulation has replaced
the molecular diffusivities by much larger eddy diffusivities.
Even this has not sufficed, and it has been necessary to sup-
plement viscosity with hyperdiffusivity (e.g., Glatzmaier and
Roberts, 1995a,b; Kuang and Bloxham, 1997).

The representation of unresolved scales by enhanced diffu-
sivities is an idea that, through Osborne Reynolds’ treatment
of shear turbulence, goes back to the nineteenth century. It
is the cornerstone of what is sometimes called ‘local turbu-
lence theory’. A local turbulence model is one in which, as
for molecular transport, the fluxes sought are at each point
dependent only on the gradients of the relevant macroscale
fields at that point. The turbulent fluxes are then represented
by eddy diffusivities. Lacking a developed theory of MHD
turbulence in rapidly rotating fluids, it is natural to hope that
a local turbulence model will suffice to describe core turbu-
lence.

In the simulations cited above, the local turbulence ap-
proach is implicitly invoked. The turbulent fluxes take the
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same form as the relatively insignificant molecular fluxes,
i.e., turbulent diffusion is supposed, like molecular diffu-
sion, to be as isotropic, but with greatly enhanced diffusivi-
ties. The results of the simulations have been encouraging.
Many of the characteristics of the main geomagnetic field
have been approximately reproduced in magnitude and time
scale, e.g., polarity reversals, westward drift, etc. One might
say of the models that their success is unexpected, bearing in
mind that they are firmly based on isotropic turbulent diffu-
sion. In reality, because the small-scale motions are strongly
influenced by the Earth’s rotation and its magnetic field and
are highly anisotropic, turbulent transport should be repre-
sented not by scalar diffusivities but by highly anisotropic
tensor diffusivities. Hyperdiffusivity, as applied for example
by Glatzmaier and Roberts, acts (through the spherical har-
monic components) primarily on the horizontal scales. This
is certainly some kind of anisotropy, but one introduced from
computational expediency rather than physical necessity; the
preferred directions of turbulent diffusion should relate to the
directions of the rotation axis and the magnetic field (see be-
low), not only to the direction of gravity. It should also be
noted that Zhang and Jones (1997) argue cogently that hy-
perviscosity affects the dynamics of convection significantly
wherever the magnetic field is weak.

Braginsky and Meytlis (1990) took the first steps in deter-
mining anisotropic diffusivity tensors. They found, from the
linearized convection equations, that the most unstable mo-
tions have a small wavelength in the direction perpendicular
to the rotation axis and to the direction of the prevailing mag-
netic field, i.e., the small scale convection cells are ‘platelike’.
St. Pierre (1996) provided corroboration. He examined the
evolution of a spherical buoyant blob as it rises through the
core. He found that the blob quickly broke up into platelike
structures, elongated in the directions of the rotation axis and
field. Braginsky and Meytlis also developed a heuristic the-
ory of the turbulence that arises when the buoyancy gradient
is increased well beyond critical. They made estimates of
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the turbulent diffusivities in the three principal directions of
the diffusivity tensors, and found them to be very different.
Their work was developed further by Braginsky and Roberts
(19995).

In an attempt to improve on some of the heuristic features
of the Braginsky-Meytlis theory, we attempt in this paper to
simulate anisotropic buoyancy-driven turbulence in the core
by direct numerical simulation (DNS). The length scale of
the local turbulence considered here is so small, of the or-
der of kilometer (see below), that it is impossible to resolve
it by global simulations. By the same token, we may as-
sume that the macroscale velocity, magnetic fields and tem-
perature gradient merely provide a uniform background on
which the turbulence rides, this turbulence being driven by
thermal buoyancy rather than shear. We regard deviations
from the uniform background, arising perhaps from macro-
scopic velocity or field gradients, or from geometrical effects
associated with the curvature of the core, as small second-
order effects that can be ignored in a first approximation
when describing core turbulence, even though these effects
are very significant for the macroscale fields; e.g., see Zhang
(1999). We shall represent a small region in the outer core
by a rectangular box, moving with the mean flow, and having
faces in the coordinate planes of a locally Cartesian frame
(x,y,z). We first perform simple linear analyses for the
marginal state and (following Braginsky and Meytlis, 1990)
for the state that has the maximum growth rate. We then in-
vestigate numerically the turbulent magnetoconvection that
arises in supercritical conditions, and use the resulting solu-
tions to estimate quantitatively the effect of the motions on
the turbulent transport of mean fields.

Our quantitative assessment of the turbulent transport co-
efficients could be used in global simulations of the geody-
namo. We believe that these would be more realistic than
those that assumed isotropic turbulent diffusion. Such sim-
ulations have not yet been attempted.

2. Linear Analyses of Instability
The basic equations to be solved are

AV+(V-V)V=—plVP-2QxV
+(rop)(V x B) x B

+Cg +vV2V, (1)
3B =V x (VxB)+ VB, ()
8,C + (V-V)C =k VC, (3)
V.-V=0, V-B=0, 4)

where V is the velocity field in a coordinate system rotat-
ing with the angular velocity €2, B the magnetic field, C the
buoyancy source energizing the convection (called the ‘co-
density’ by Braginsky and Roberts, 1995), P the pressure,
p the density of the fluid (assumed to be incompressible in
the Boussinesq sense), 1o the magnetic permeability of free
space, g the gravitational acceleration vector, v the kinematic
viscosity, 1 the magnetic diffusivity, and « the diffusivity for
C. In this paper, we simply consider a thermally convective
system. Then the co-density C can be expressed in terms of
the deviation, ®, of the temperature from a reference field,
and the coefficient of thermal expansion, a7, by C = —a7 0.

The theory can be easily generalized to the case in which
buoyancy is also supplied, partially or completely, by dif-
ferences in chemical composition (Braginsky and Roberts,
1995).

As mentioned in the last section, we represent a small
region in the outer core by a rectangular box and impose
periodic boundary conditions. We adopt a locally Cartesian
frame, (x, y, z), that moves with the local macroscale ve-
locity, i.e., in this frame the effects of global motion are, to
a first approximation, removed. The directions of the coor-
dinate axes are chosen so that = 1., and 1, is in the
direction of increasing longitude. (We use 14 to denote the
unit vector in the k-direction.) We impose a uniform mag-
netic field, By, to represent a strong toroidal magnetic field
which is supposed to be generated by the global dynamo. We
take this to be By = 1, By, where By is a constant. Figure 1
presents schematic pictures of the computational box used in
our study.

Now we separate the velocity field, the magnetic field, the
buoyancy field, and the pressure into mean and fluctuating
parts as

V=V+V, B=B+Vb,

oY / D / (5)
©=0+0,P=P+p,

where the overbar denotes mean fields and the prime fluctu-
ating fields. In this study, the ensemble mean for a field is
its average over the computational box; for example, v/ = 0.

Qo

Earth’s Core

e

o]

/ \ Local Coordinates

Fig. 1. Schematic pictures of the computational box and its relationship to
the Earth’s core.
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We also have (see above) V = 0.

Scaling length by a, which is a typical length of the compu-
tational box, time by a? /1, velocity by n/a, magnetic field by
By, temperature by Sa, where B is the large-scale buoyancy
gradient, and pressure by 2225, we find that the fluctuating
parts of (1)—(3) are

ep{ov+(v-V)v} =-Vp -1, xv
+A(V xb) x (1, +b)
+Ra 01, + &, V2, (6)

b+ (v-V)b={1,+b)-V}v+V’b, (7)

860 +v-V0=—v.-VO + PgV?0, (8)
V.v=0, V:.-b=0, ©)
where g = —gl, and (r, ¥, ¢) are spherical coordinates.

The primes are omitted from (6)—(9) for simplicity. The
nondimensional numbers are the Rayleigh number, Ra, the
Elsasser number, A, the Ekman number, ¢,, the magnetic
Ekman number, ¢, and the diffusivity ratio, Pg, defined by

2 B2
Ra=&21Pe B
2Qn 2Qnpop (10)
v n P
gy = ——, & = ——, = —.
2042 "7 204 11T

The large-scale temperature field, ®, drives the flow.

We first perform a linear analysis by neglecting the non-
linear terms in (6)—(8). Only 9; in (8) is retained as in
Braginsky and Meytlis (1990). They estimated a growth rate
y (see below) and compared it with typical diffusion rates for
the velocity and the magnetic fields. It was assumed that the
magnetic diffusivity is larger than those for the velocity field
and the co-density. The magnetic diffusion rate is therefore
much larger than y, and 9; in (7) was neglected. Although
the kinematic viscosity can be as small as the co-density dif-
fusion, the magnetic friction which acts on the velocity field
is so large that 9, in (6) was also neglected. The resulting
equations are

0=—-Vp—1,xv+A(Vxb)x1,+Ra6l,+¢&,V?v, (11)

(12)
(13)

Assuming that v, b and 0 are proportional to exp(ik - r +
yt) = expli(kex +ky,y +k.2)+yt}, wehave b = (ik,/k*)v
from (12) and 6 = (v, sinA + v, cos A)/(y + Pq k?) from
(13), where it is assumed that V© is parallel to g (VO =
—1, = —1,sinA — 1, cos A in a nondimensional form), A is
the angle between 1, and 1, (i.e., the colatitude of the region
in the core where the computation box is supposed situated),
and k* = k2 + k% + k2. We obtain

0=1, Vv+ Vb,
9,0 = —v-VO + PgV?0,

Ray,{(ky cos A — k. sin1)* + k;}
7/ =

— Pg kK,
ky2 + k2 1

(14)

where 5

k
Ve = AL+ 8vk2.

e (15)

The critical Rayleigh number, Ra,,, is derived from (14), by
setting y at zero for a marginal state,
Ky?+k? k?

Vs (ke cos A — k. sin1)? + k2 '

Ray = Pg (16)

Braginsky and Meytlis (1990) considered that the Coriolis
and the Lorentz forces do not stabilize the fluid motion but de-
crease the growth rate, y. They presumed that the elongation
of a convective cell in the z-direction reduces the influence
of the Coriolis force and its elongation in the direction of
the strong magnetic field, the y-direction here, reduces the
magnetic friction. They also argued that these conclusions
are insensitive to latitude when VO is parallel to g. Hence
they pictured the core as filled with turbulent plate-like cells.

Here we quantitatively derive, in terms of the appropri-
ate nondimensional numbers, the shapes of convective cells,
both for the marginal states and for the modes that have the
maximum growth rate. The shape is defined by the wave-
lengths in the x, y and z directions given by £, = 27/|k,|,
£, =2n/lk,| and £, = 27 /|k.|. It is difficult to believe that
very long, slender convection cells can form and survive for
a long time in the core. If, however, we seek the values of &,
k, and k. that minimize Ra,, for given A, ¢, and Pg, by solv-
ing 0Rac/dky = dRae/0k, = 0Ra./dk. = 0, we discover
that k. = O when A = 0 (k, # O and k, # 0). This difficulty
was raised by Braginsky (1964), and is also mentioned by
Braginsky and Roberts (1995), who ask ‘How long are the
cells in the z-direction?’, and ‘What is the mechanism that
limits their length £,?” To make progress, we must postulate
a unit of length for the convective cells, so we here take £, as
that length, even though the shape and size of the cells may
depend on the location of the computational box in the core,
as defined by A.

Figure 2 shows, for A = 10, &, = 1072 and Pg = 107",
the latitudinal dependence of the shape of the convective cells
in the marginal state. Itis clearly seen that £, does not change
very much, whereas ¢, becomes larger as the computational
box approaches the equator, where ¢, is fixed at unity. In
particular, k, — 0, or £, — oo as A — m/2. (This case
is not shown in the figure.) It is found that £, ranges from
between 2 to 4 times larger than £,. This is caused by the
magnetic field imposed in the y-direction. In contrast, £,
is a little smaller than ¢, for A < 7/12, but becomes large
with increasing A, as mentioned above. In the marginal state,
therefore, the convective cells are not platelike.

The shape of the convective cells that maximize the growth
rate differs from that of the marginal state. We show, in Fig. 3,
the latitudinal dependence of their shape for (Ra,e,) =
(40, 1073), (40, 107°), and (160, 1073), with A = 10 and
Pg = 107!, The difference between ¢, for &, = 107> and
for &, = 1077 is clear. Generally the cells that maximize the
growth rate are smaller than those of the marginal state. It
is found that £, is always larger than £, = 1, whereas from
the pole (A = 0) to mid-latitudes £, is smaller. As for the
marginal state, £, becomes larger with increasing A, but this
tendency is less marked than for the marginal state.

Forx = Oande, = 107>, the marginal Rayleigh number is
Ra = 20.5136, the corresponding cell being (¢, £,, ;) =
(0.7398,2.405, 1). When Ra = 40 =~ 2Ra.,, the maximum
growth rate, y = 17.92, arises for the cell (¢, £,,£.) =
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Shapes of Convective Cells

for a marginal state
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Fig. 2. The latitudinal dependence of the shape of convective cells in the marginal state for A = 10*!, &, = 1073, and Pg = 10~
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Fig. 3. The latitudinal dependence of the shape of convective cells for which the growth rate is a maximum for (Ra, &,) = (40, 1073), (40, 107°), and
(160, 1073) with A = 10*! and Pg = 107"
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(0.3830, 1.883, 1), which does not so much resemble a plate
as it does a long matchbox. When Ra = 160 ~ 8Ra,,, how-
ever, the cells grow fastest in polar regions; the maximum
growth rate, y = 397.4, occurs for the cells (£, £, £;) =
(0.09851, 1.301, 1) which are indeed platelike, having com-
parable dimensions in the y- and z-directions, but which are
about ten times smaller in the x -direction. This caseis consis-
tent with the conclusions of Braginsky and Meytlis (1990):
platelike cells sometimes arise preferentially in the highly
turbulent state.

When the convective box is situated at mid-latitude, for ex-
ample at A = /3, the maximum growth rate for g, = 107>
and Ra = 80 ~ 8Ra is y = 47.1051, the corresponding
cell dimensions being ({4, £,,£;) = (0.7779, 2.406, 1).
Even when Ra = 160 ~ 16Ra., (¢, ¢,,L.) =
(0.4608, 1.995, 1). Ittherefore appears that platelike convec-
tive cells are not preferred at mid-latitude even for highly tur-
bulent states. This conclusion differs from that of Braginsky
and Meytlis (1990). In examining the anisotropy of local
turbulence in the Earth’s core, we are therefore motivated to
take special account of the location of the computational box
in the core (something that has not previously been done).

3. Numerical Methods

A control volume method and a pseudo-spectral method
were both used to solve (6)—(9). In the control volume
method, we represent the variables at staggered grid points
(e.g., Arakawa, 1994); that is, the pressure and co-density are
defined at (x;, y;, zx), where x; = £,i/I* (i =0,...,1%),
vi =4,/ (G =0,...,J9, and z; = Lk/K* (k =
0,...,K"), while x-, y- and z-components of the veloc-
ity and the magnetic fields are defined at (x; 11,2, y;, z4), at
(xi, ¥j+1/2, zk), and at (x;, y;, Zx41/2), respectively. The time
step is set so as to satisfy the Courant condition. The SMAC
(Simplified Marker and Cell) method is used to derive the
pressure from the equation of motion (6) and the equation
of continuity (9). In this computation, we used a multigrid
method to solve the Poisson equation to correct the pressure
which is then used to correct the velocity field. The magnetic
field is also corrected so as to satisfy V - b = 0 in a simi-
lar way. It may be noted that the multigrid method is more
efficient than successive over-relaxation (SOR).

The pseudo-spectral method we used is nearly identical to
that of St. Pierre (1996). The velocity and the magnetic fields
are decomposed into toroidal and poloidal parts, and their
defining scalar fields and the temperature 0 are expressed in
terms of three-dimensional Fourier series, for example,

I* m* n*
00, y,2,0=Y Y D O

|=—1* m=—m* n=—n*

Ix my »nz
. i | —+—+—|. 17
exp[nz(ex—i-ey—i-zz)} (17)

Like St. Pierre (1996), we removed (see above) all z-inde-

pendent components of the velocity v; these resemble geo-
¢

strophic modes. We did this by subtracting E;l / " vdz from

0
v. Here £, is the unit of length that defines the size of the
computational box.

We first tested the reliability of our computational meth-
ods. We used each method to derive a solution starting from
the same initial state for A = 0 and (¢, £,, £.) = (1,1, 1).
The nondimensional parameters selected were &, = 1073,
g, = 1072, A = 10", Pg = 107!, and Ra = 120.8 ~
4.25Ra,,, corresponding to © = 7.29 x 107> rad/s, n =
10v = 10k = 1.46 m?/s,a = 10° m, ug = 47 x 1077 H/m,
p = 1.1 x 10* kg/m?, and By = 5.42 mT. The numbers
of grid points, (/*, J*, K*), were taken to be (32, 32, 32) in
the both computations, and for the pseudo-spectral method
the maximum wave numbers /*, m™ and n*, in the x-, y- and
z-directions were all taken to be 10.

Figure 4 shows, for each of the two methods, the time evo-
lutions of the components vy, m and Ov, of the turbulent
flux

I=0v, (18)

which is our main objective in this paper. Even though the
variables are defined at different grid points in the two meth-
ods and even though the system is chaotic, the fluxes are
very similar up to ¢ = 0.05, approximately. Subsequently
the evolutions took slightly different courses, and we could

Bv  (Control Volume Method)

16.0

-8.0
0.00 0.05 Time 0.10
60 Ov  (Pseudo-Spectral Method)

-8.0

Time 0.10

Fig. 4. Time evolutions of the components v, (broken lines), W (dot-
ted lines), and Av. (solid lines) of the turbulent flux, according to both
our control volume method and our spectral transform method. Param-
eters used are A = 0, (by, £y, ¢;) = (1,1, 1), 6, = 1073, &y = 1072,
A = 10!, Pg=10"", and Ra = 120 ~ 4.25Ra,.
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Table 1. Comparison between results from the control volume method and the pseudo-spectral method.

Control volume method

Pseudo-spectral method

Control volume method

(another initial condition)

(Ovy) (—0.149 4 2.574) x 1070 (—0.180 4 1.994) x 1070 (1.326 +3.809) x 10+°
(Bvy) (0.300 & 6.040) x 10+° (0.579 & 5.041) x 10*° (—3.026 +9.393) x 1070
(Ov.) (4.154 £2.323) x 10+° (3.270 £ 1.784) x 10*° (4.544 +4.256) x 1010
(v_f)/Z (1.546 4 0.526) x 1072 (1.530 4 0.786) x 10+2 (1.917 £ 0.919) x 10*2
(v_)z,)/Z (3.294 +2.285) x 102 (3.361 £3.325) x 10*2 (3.942 +£4.013) x 10+2
(v_g)/Z (1.687 4 0.825) x 10*2 (1.463 & 1.486) x 10+2 (1.905 4 1.327) x 1072
(E)/Z (1.363 £+ 1.142) x 10*! (1.100 £ 1.632) x 10*! (1.329 + 1.436) x 10*!
(b_f,)/2 (2.107 £2.757) x 10*! (1.580 £3.281) x 10*! (2.204 £ 4.420) x 10!
(E)/Z (3.298 +3.437) x 10*! (2.483 +4.644) x 10*! (2.755 £3.419) x 10*!
Table 2. Cartesian components of the turbulent flux.

A Ra (1) (1) (1)

0 40 (—0.718 4 8.824) x 107! (+0.511 4 1.822) x 10*° (+2.003 4 0.593) x 1070
/6 40 (+1.709 & 0.864) x 1070 (—4.828 £ 2.569) x 100 (+2.378 +0.822) x 1070
/3 40 (+3.888 + 1.311) x 1070 (—7.924 +2.234) x 10*° (+2.384 4 0.631) x 1070

0 102 (—0.277 4+ 3.877) x 1070 (+1.016 % 6.940) x 100 (+4.836 & 4.149) x 1070
/3 120 (+2.803 & 1.457) x 107! (—3.966 +2.368) x 107! (+1.030 & 0.608) x 107!

only compare the fluxes by statistical methods. We eval-
uated the ensemble averages of the turbulent fluxes (Av,),
(6v,), and (Av.), where () denotes the ensemble average
as averages over one magnetic diffusion time. The standard
deviations of these quantities were also estimated. Table 1
gives these values and also the mean kinetic and magnetic
energies (v2)/2, (v2)/2, (v2)/2, (b2)/2, (b2)/2, and (b2)/2.
It is clear that the results from the two methods are in good
agreement with one another. We therefore consider that our
computation is reliable.

It should be noted that in order to compare magnetic energy
b? /2 with kinetic energy v* /2 on the same scale, the magnetic
energy has to be multiplied by A/e,; this has been done in
preparing Table 1.

4. Results and Discussion

A strong toroidal magnetic field is supposed to be gener-
ated by the differential rotation in global dynamo processes,
as mentioned in Section 2, and therefore A = 10 is used
in this paper. We also fixed the nondimensional parameters
as Pg = 107!, &, = 1073, and &, = 1072, The Rayleigh
number, Ra, was set at 2Ra.; ~ 15Ra... We then examined
the time evolution of the magneto-convective turbulence for
several choices of (¢, £,, £;) and colatitude 1. The integra-
tions were continued for more than one magnetic diffusion
time after the initial transients had disappeared.

Time Evolutions of Ov

0.0 4 o

-15.0

2.80 3.30 3.80

Time

Fig. 5. Time evolutions of components of the turbulent flux, Ovy (broken
line), Ov, (dotted line), and v, (solid line) for A = /6 and Ra = 40.

As demonstrated above, since local turbulence in the core
is expected to be anisotropic, the size of computational box
is of importance. As an example, consider the case A = /6.
We first took (£, £, £.) = (0.4812, 2.925, 1) which corre-
sponds to the cell size of maximum growth rate for Ra = 40.
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Table 3. The turbulent transport in the geophysical context.

A Ra " (W) (P)

0 40 (#2.755+£1.065 x 1070 37.8° £ 15.6° 21.3° +97.2°
/6 40 (+5.750 £2.618) x 1070 63.1° + 8.9° —68.7° £9.5°
/3 40 (49.185+£2516) x 1070 74.7°+£2.9° —63.8° +£4.9°

0 102 (+7.079 £ 7.399) x 1070 36.9° £+ 14.0° 39.8° +92.4°
/3 120 (+5.008 +2.768) x 10*! 78.0° + 3.0° —53.0° £8.2°

Trajectories of Ov
y z
5 5
X
-15 5 -15 5 Y
-15 -15
X
5

~ Z
5

-15

-15

Fig. 6. Trajectories of the turbulent flux, /,, I,, and I, projected onto the xy-, yz- and zx-planes for > = /6 and Ra = 40.

We spectrally analyzed the computed velocity field and found
that the kinetic energies in the x- and y-directions were great-
est at zero wave numbers. This indicates that the computa-
tional box is too small to simulate local turbulence. We
next took ({x, £,, £.) = (0.9624,2.925, 1); that is, a cell of
twice the x-dimension. The kinetic energies in the x- and
the y-directions were then greatest for higher modes than unit
wave numbers, indicating that this choice of computational
box is acceptable. As another example for A = 0, we per-
formed numerical simulations for a computational that was
four times larger in the x- and the y-directions than that used

for the marginal state. From the calculations up to Ra = 30
(Ra = 1.5Ray), it turned out that the kinetic and magnetic
energies in the x- and y-directions were still greater for the
3rd and 4th wave numbers, which means that the compu-
tational box was appropriate to the present study. A larger
computational box might be even better, but would require
more grid points and a much greater total integration time
for the numerical simulations. The selection of the size of
the computational box is a compromise between the need for
physical realism on the one hand and the need to husband
available computer resources on the other.
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Trajectories of Bv
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Fig. 7. Trajectories of the turbulent flux, Iy, /,, and I, projected onto the xy-, yz- and zx-planes for A = 0 and Ra = 102.

We performed numerical simulation for three choices of
colatitude for the computational box: A = 0, A = /6,
and A = m/3. Table 2 summarizes the resulting turbu-
lent flux, I. For A = 0 and Ra = 40 =~ 2Ra., we took
£y, £y, L) = (0.7660,3.766, 1) which is tantamount to
doubling in its x- and y-dimensions the cell for which the
growth rate is maximal when Ra = 40 and &, = 107>, (For
computational simplicity, we took &, = 1073.)

Judging from the values of the standard deviations, it
seems very likely that, when A = 0, both (/) and (/,,) vanish.
This result is inconsistent with a conclusion of Braginsky and
Meytlis (1990), who argued that (/,) ~ (I.) and evidently
(I,) is nonzero. Although our result was derived from not as
highly a turbulent state as they envisaged, we believe that our
result is likely to be generally correct. When A = 0, a fluid
parcel lighter (or hotter) than its surroundings should move
antiparallel to gravity, and a parcel that is heavier (or colder)
should move in the —z-direction. The Coriolis force does
not deflect this motion, and the Lorentz force does change
its direction. The existence of irregularities in v associated
with the turbulence will of course mean that, at any particular
time and point in space, fv, and fv, are nonzero, and that
therefore the time and space average of fv, and Hv, over
any simulation will not be precisely zero. Nevertheless, as

the duration of the simulation is continued, we may expect
these averages will tend to zero. It seems to us that the en-
semble mean turbulent flux, (I) = (Av), is therefore in the
z-direction when A = 0.

For A = n/6 and Ra = 40 =~ 3.35Ra., we took
£y, €y, L) = (0.9624,2.925,1). As an example, we show
in Fig. 5 the time evolution of I, [, and L. It is clear
that /, and /,, do not vanish. This may be explained in the
following way. A fluid parcel lighter than its surroundings
experiences a buoyancy force in the —g-direction, i.e., in
the direction %[lx + 4/31.]. As it moves in response to this
force, the Coriolis force deflects its upward motion into the
—y-direction. For a heavier parcel the deflection is reversed,
but so also is 8. We therefore have /. > 0 and /, < 0.
Also |1, ] exceeds |I|. This is a consequence of the Lorentz
force which hampers the motion of parcels in the x-direction,
across the lines of force of the applied field, but not in the
y-direction, which is parallel to the applied field.

For A = n/3 and Ra = 40 =~ 4.43Ra, we took
£y, €y, L) = (2.302,2.819,1). In the same way as for
A = /6, a buoyant fluid parcel is driven by gravity, which
is now in the %[\/3 1, + 1.] direction. Coriolis and Lorentz
forces act on its x-components of motion. Asaresult, 7, > 0,
I, <0,and |/,]| > |L].
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Fig. 8. Trajectories of the turbulent flux, /Iy, /,, and I, projected onto the xy-, yz- and zx-planes for A = /3 and Ra = 120.

We re-interpreted our time series for Iy, /, and /; in terms
of the magnitude / of I and its direction as defined by the
angles W and &, where

I=JU2 4124 12),
W = tan'[(I? + D)/ L],
® =tan~'(1,/L,).

(19)

The results are summarized in Table 3. It is interesting that
(W) > Ain all cases, and that the standard deviations for W
and @ are very small for A = /6 and A = 7/3. This implies
that the turbulent flux, I, has a preferred direction, determined
by the directions of the rotation axis, the imposed strong
magnetic field and the gravitational force. The local values
of the nondimensional parameters determine the magnitude
I of 1. We show in Fig. 6 an example of a trajectory of /I, /,
and I, for A = /6. It is clearly seen how the turbulent flux
I fluctuates about its preferred direction.

We have also examined turbulent transport for larger
Rayleigh numbers for which the motions are more highly
turbulent. For A = 0, Ra = 102 ~ 5Ra., was used together
with (€, £,, £;) = (0.7520, 1.729, 1). The other nondimen-
sional parameters were not changed. The components of the
turbulent flux (I) are shown in Table 2, and (/), (V) and (®)

in Table 3. The standard deviation for ®, which is about 90°,
arises because the turbulent transport is in opposite directions
as seen in the x y-plane, as shown in Fig. 7 which, as in Fig. 6,
displays trajectories of I, I, and /.. As mentioned earlier,
a fluid parcel lighter than its surroundings should move pre-
dominantly in the +z-direction although fluctuations give it
motion also in the +x- and the +y-directions. Such flows
perpendicular to the z-direction are influenced by the Coriolis
force, and lead to turbulent transport is opposite directions.

For » = =m/3, we took Ra = 120 ~ 13.3Ra., and
Uy, £y, £2) = (2.302,2.819, 1). Values of (), (1), (L),
(I, (W) and (D) are given in Tables 2 and 3. It is clear that
values of turbulent transport are much larger than those for
Ra = 40. Even for this much more highly turbulent state,
the turbulent flux again has a preferred direction, as shown
in Fig. 8.

These values of the turbulent flux are much larger than
the molecular flux for our value (10~!) of Pg. This demon-
strates that the effect of the small-scale turbulence on the
diffusion processes of global fields is significant. Also the
turbulent flux has a preferred direction. We should use this
fact when we parameterize the anisotropic local turbulence
in the Earth’s core in simulating the geodynamo.
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5. Concluding Remarks

We have examined the anisotropy of local turbulence in
the Earth’s core by performing direct numerical simulations
of thermally-driven magneto-turbulence in a rotating system.
Our main focus has been the turbulent flux I = v, the aver-
age being taken over the small scale motions. We have found
that, in the parameter ranges we have studied, this turbulent
flux greatly exceeds the molecular flux and is therefore more
effective in diffusing the global temperature field, ©. We
have demonstrated that this flux has a preferred direction
that depends on colatitude in the core. The mean part of (3),

)

+V.VO+V.-1=«V?0, (20)

ot
determines the evolution of ®. The effect of turbulent trans-
port V - T on the mean field is, in local turbulence theory,
described by an anisotropic diffusivity tensor, &’, as

I=—«'-V0, 1)
or o
00

I = —x!,— (22)
J 8xj

with the usual summation convention.

In this paper, we have assumed that V® is parallel to the
gravitational vector, g, so that we have focussed on only three,
but three crucial, components, &’ - 1,4, of the diffusion tensor

k'. To determine other components, it would be necessary to

assume that VO and g are not parallel in our computational
box. The character of the convection problem is then changed
from one of convective stability to one of free convection.
This raises fresh questions which were not addressed here.

For A = 0, Lis parallel to g, so that k;, ~ 0 and |, ~ 0.
We have evaluated /. = (fv,) # 0, and have found that it
depends strongly on the local Rayleigh number. For A = /6
and A = /3, we have shown that I is not parallel to g, and in
special cases we have determined its direction relative to g in
terms of angles W and ®. Since g is antiparallel to 1,, these
angles provide information about the off-diagonal elements
«h, and kg, of k', relative to the diagonal element «;,..

We found that, for the value 10~! of Pgq used in this study,
I greatly exceeds the molecular flux, which in dimensionless
variables is —kV® = Pgq]1, (since |[VO| = 1 in dimension-
less units). This means that the effect of local turbulence on

the diffusion of global fields is significant. Most elements
of the anisotropic diffusivity tensor k' exceed «, which sug-
gests that local turbulence is important for the geodynamo.

We have considered a small region in the bulk of the core,
and therefore periodic boundary conditions have been im-
posed. If a boundary exists, however, it is known that the
velocity-gradient is large and wall turbulence tends to de-
velop there (e.g., Arakawa, 1994). Very fine grids are then
required, but a law for wall turbulence facilitates numerical
computation. For the Earth’s core, the role of wall turbulence
in the presence of rotation and magnetic field will eventually
have to be clarified. These effects are beyond the scope
of the present study and remain to be solved in the future.
Meanwhile, a realistic parameterization of local turbulence
is important in modeling global geodynamo processes.
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