POSTER PRESENTATION

Open Access

0391. Comparison of the histopathologic effects on the lungs of two external chest compression devices (lucas versus autopulse) in a swine model of ventricular fibrillation

C Pantazopoulos^{1*}, I Floros¹, A Mega¹, C Rigas¹, I Pavleas¹, P Vernikos¹, N Archontoulis¹, D Xanthis¹, N Iacovidou², T Xanthos³

From ESICM LIVES 2014 Barcelona, Spain. 27 September - 1 October 2014

Introduction

Given the difficulty of performing efficient CPR compressions, technology has turned to automaticity. LUCAS device has a pneumatically driven piston to compress the heart and uses active decompression suction on the upstroke. AUTOPULSE is a load distributing band compressor, that is mechanically actuated and battery driven. It provides both direct compression and semi-circumferential thoracic compression.

Objectives

Lung injury may occur during cardiorespiratory resuscitation with external chest compression devices. Aim of this study is to compare 2 different external chest compression devices (LUCAS and AUTOPULSE) regarding differences in lung injury that they may cause.

Methods

Forty (40) pigs were randomly allocated into 2 groups. Group L (LUCAS), n=20 and Group A (AUTOPULSE), n=20. After anesthesia, ventricular fibrillation was induced. Five minutes post-cardiac arrest without treatment, resuscitation was initiated. After resuscitation, lung biopsy via a mini-thoracotomy was obtained (right lung lower lobe).

Results

Histopathology findings revealed a heterogeneous interstitial infiltrate and vascular congestion in all samples studied. There was no statistically significant difference between the two groups. (P>0.05)

Conclusions

LUCAS and AUTOPULSE devices present no histopathological differences concerning lung injury after cardiorespiratory resuscitation.

Authors' details

¹General Hospital of Athens Laiko, Intensive Care Unit, Athens, Greece. ²University of Athens, Medical School, Neonatology, Athens, Greece. ³University of Athens, Medical School, M.Sc. Programme in Cardiorespiratory Resuscitation, Athens, Greece.

Published: 26 September 2014

References

- Axelsson C, et al: Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of outof-hospital cardiac arrest-a pilot study. *Resuscitation* 2006, 71(1):47-55.
- Ong ME, et al: Use of an automated, load-distributing band chest compression device for out-of-hospital cardiac arrest resuscitation. JAMA 2006, 295(22):2629-37.

doi:10.1186/2197-425X-2-S1-P24

Cite this article as: Pantazopoulos *et al.*: **0391.** Comparison of the histopathologic effects on the lungs of two external chest compression devices (lucas versus autopulse) in a swine model of ventricular fibrillation. *Intensive Care Medicine Experimental* 2014 **2**(Suppl 1):P24.

¹General Hospital of Athens Laiko, Intensive Care Unit, Athens, Greece Full list of author information is available at the end of the article

© 2014 Pantazopoulos et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.