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Abstract

The purpose of this study was to investigate the effect of atmospheric pressure
plasma application on the water contact angle (CA) of zirconia ceramics. Two
zirconia ceramics (Katana, Kuraray Noritake Dental and Lava, 3 M ESPE) were used to
test the plasma treatment (SAP, surface) with argon gas for one minute (1 L/min). To
measure the CA, a drop of water was placed on a zirconia surface, which was
observed under optical microscopy, and images were used to calculate the CA
(n = 5). The dynamic behavior of the surface wettability was analyzed by collecting
the CA data over a 70-hour period. CA data were analyzed by two-way ANOVA and
the Tukey test (5%). The CA baseline values were 66° and 68° for Katana and Lava,
respectively. After the application of plasma, the CA was reduced significantly to 36°
and 31°, respectively. The CAs for Lava zirconia and Katana returned to baseline
values after 5 and 15 hours, respectively. The plasma treatment improved the
wettability of the zirconia surface, decreasing the CA approximately 50%. The
duration of the effect of plasma on zirconia surfaces was at least 5 hours and
material-dependent.
Background
Zirconia has been used for over 40 years for industrial purposes and for about 20 years

in dentistry. Its composition is basically zirconium dioxide (approximately 95%), and

it is stabilized with yttrium and enriched with alumina to prevent the leaching of the

yttrium oxide. This composition ensures the longevity of zirconia restorations, and the

sintering process at 1200–1500°C provides high flexural strength and hardness. An-

other advantage of using zirconia is its translucency properties that allow light to pass

partially through the material, resulting in good esthetic effects [1-3]. Although zirco-

nia has good mechanical properties and biocompatibility, the low surface energy con-

fers poor adhesion of resin cements to their surfaces. Treatment of the surface and the

use of adhesive primers have been suggested as methods to overcome the poor adhe-

sion [4-6].

As a surface treatment, atmospheric pressure plasma is an option, since the reactive spe-

cies created with the interaction between the ions and electrons of argon plasma and the

micro-atmosphere around the treatment zone may improve the reactive level of the
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zirconia surface [7,8]. When these highly reactive species reach the sample surface, they

break weak bonds stabilized with radicals, promoting the formation of polar groups at the

surface and opening up the chemical sites to future bonding. In summary, plasma treatment

destabilizes the surface, rendering it reactive [9].

A simple technique to measure the reactive level of a surface is the contact angle. It con-

sists of placing water droplets on the surface and observing their shape. If the droplets are

spherical, this indicates a low surface energy of the zirconia surface, and hence, poor adhe-

sion. However, if the drop spreads over the surface, this indicates a high surface energy and

high adhesion. The measurement of the angle between the surface and the drop of water is

called the contact angle [10,11]. After plasma treatment, the contact angles are commonly

lower than that obtained with the natural surface, because of the insertion of polar groups

at the surface. As dictated by the first law of thermodynamics, matter seeks a state of lowest

possible energy; thus, the instability promoted by the plasma treatment loses efficiency over

time because the surface will try to recover the original low surface energy [12-14].

This work supports the idea that new polar groups added on the material surface by

atmospheric plasma treatment would result in a decrease of the initial contact angle,

and, consequently, improve the bond strength of adhesives, primers and resin cements

interacting with zirconia-based materials. It is also necessary to determine the time ne-

cessary to reach stability after the onset of plasma treatment, measuring the contact

angle until it becomes stable. The purpose of this study was to measure the contact

angle formed on zirconia surfaces treated with atmospheric pressure plasma in com-

parison with that on untreated surfaces. In addition, the contact angle of water droplets

was monitored for 70 hours to evaluate the longevity of the effect of plasma on zirconia

surfaces. The main research hypothesis tested was that the contact angle on zirconia

surfaces is reduced when they are treated with plasma. The second hypothesis was that

there are no differences between zirconia ceramics regarding the stability of the contact

angle after the application of plasma.
Methods
Contact angle

The equipment used to treat the zirconia samples was a Surface plasma tool model

SAP - Lab applications (Surface – Engineering and Plasma Solution LTDA, Campinas,

SP, Brazil) (Figure 1). Argon was used as the working gas (Praxair 4.8, White Martins

Gases Ind. S.A., Rio de Janeiro, RJ, Brazil), with an output of 1.0 liter per minute.

Fifteen sintered zirconia plates (10 × 10 × 1 mm) of Katana (Kuraray Noritake, Nagoya,

Japan) and Lava (3 M ESPE, Seefeld, Germany) were obtained by using zirconium

dioxide stabilized by yttrium oxide. CAD/CAM blocks of both zirconia ceramics were

sectioned with a diamond saw (Buehler Ltd, Lake Bluff, IL, USA) and sintered accord-

ing to the manufacturer’s instructions.

To measure the original contact angle, water droplets of 15 to 20 μL were placed on

the zirconia surface, and a digital 300× microscope (Digimicro, Digital Microscope,

Shenzhen King Leader Technology Co., Ltd., China) was used to acquire the profile im-

ages, as illustrated in Figure 2. The initial contact angle was measured (Wayne Rasband

National Institutes of Health, ImageJ 1.47,Bethesda, MD, USA) by 1 measurement per

sample of each brand group, with 5 samples per group (n = 5).
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Figure 1 Surface plasma tool model: SAP - Lab applications used as the plasma source. A plasma
torch of 20 mm length was obtained with Argon at 1 liter per minute as the working gas.
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The plasma torch, which was 20 mm long, was operated at room temperature (22°C).

The distance between the nozzle and the samples was 10 mm, and the time of plasma

exposure was 1 minute for each sample. The plasma application was vertical and

moved around the specimen. Afterwards, the shape of the water drop was recorded

and the contact angle was measured again. A two-way repeated measures analysis of

variance (ANOVA) (effect of plasma application and brand) was performed when the

contact angle was the variable selected. All statistical tests were performed at a pre-set

alpha of 0.05 and followed by Tukey’s post hoc test.

To evaluate the dynamic behavior of the contact angle as a function of the time

elapsed after plasma treatment, ten zirconia samples of each brand were treated and

kept in a controlled temperature room (approximately 22°C). The contact angles on

seven samples of each group were measured every hour for 10 hours. The contact
Figure 2 Contact angle measurement. Ө is the angle between the surface and the tangent of the water
drop placed on the zirconia surface.
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angles on the other zirconia samples were measured at 40, 50, 60 and 70 hours after

plasma treatment to ensure that the new surface structure was stable.

Theoretical mathematical simulation

The model assumes an exponential decay in the population of mobile polar groups on

the surface, fm. Thus, the population of polar groups, fp, on a surface can be written as:

f p tð Þ ¼ f im þ f m:e
−t
τ ð1Þ

where fim is the fraction of immobile polar groups and τ is the time decay constant [6].

According to Rangel et al. [14], the contact angle can be expressed by:

cos θð Þ ¼ f p: cos θpð Þ þ f np:cos θ
npð Þ ð2Þ

Where θp is the contact angle of a pure polar surface and fnp and θnpare the fraction

of non-polar groups and the contact angle of a pure non-polar surface, respectively,

with fp + fnp = 1.

However, the combination of the equations (1) and (2) produces:

cosθ tð Þ ¼ f p tð Þcosθp þ 1−f p tð Þ
h i

:cosθnp ð3Þ

And developing the substitutions on equation (3) produces:
cosθ tð Þ ¼ f im cosθp−cosθnpð Þ½ � þ f m cosθp−cosθnpð Þ:e−tτ
h i

ð4Þ

Thus, with this final equation, it is possible to compare the evolution of the contact
angle and the kinetic distribution of polar groups.

Results
Two-way ANOVA indicated that the application of plasma and the type of zirconia

ceramic, as well as their interaction, significantly influenced the contact angle results

(p < 0.01). Table 1 presents a summary of the statistics for the different experimental

groups. The contact angle was significantly lower when the zirconia surface was treated

with plasma (p < 0.05). In the comparison of the zirconia ceramics, Katana presented a

lower contact angle (p < 0.05).

The original contact angle for Katana zirconia was recovered after 15 hours of plasma

exposure (Figure 3), whereas for Lava, this time was 5 hours (Figure 4).

The mobile polar fractions for Katana and Lava were approximately 46% and 40%, re-

spectively. The immobile polar fractions were approximately 76% and 74% for Katana

and Lava, respectively. The polar fraction of zirconia ceramics ranged from 33% to

34%, whereas the non-polar fraction was 66% to 67% (Figure 5).
Table 1 Contact angle before (original) and after plasma treatment on zirconia surfaces

Zirconia Original Plasma-treated surface

Katana 66,8° ± 0,35 36,2° ± 0,6

Lava 68,5° ± 1,5 31,6° ± 0,4

Means followed by different letters (capital letters within column; lower case letters within row) are significantly different.
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Figure 3 The contact angle of water droplets placed on Katana measured as a function of time. In
this graphic, it is possible to observe the surface recovering its original properties within 15 hours after
plasma treatment.
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Discussion
The surfaces of all indirect restorative materials are composed of polar and non-polar

groups. After plasma exposure, new polar groups are available in the treated area; this

improves the wettability of zirconia surfaces. Confirming this statement, Valverde et al.

[15] reported higher surface energy levels resulting from the polar components after
Figure 4 The contact angle of water droplets placed on Lava measured as function time. In this
picture, it is possible to observe the surface recovering its original properties within 5 hours after
plasma treatment.
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Figure 5 Bar graphs showing the species distribution at the surface (fm: mobile polar fraction, fim:
immobile polar fraction, fp: polar fraction, and fnp: non-polar fraction of zirconia ceramics).
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treatment with non-thermal plasma. In this study, the contact angles decreased ap-

proximately 50% when compared to untreated surfaces, because new polar groups

formed on the zirconia surface because of exposure to plasma. Therefore, our results

support our hypothesis that the contact angle on zirconia surfaces is reduced after

plasma treatment.

The plasma torch used in this study was 20 mm long, and the distance between the

nozzle and the sample was 10 mm. Each sample was exposed to plasma for 1 minute.

This plasma application protocol was used because the distance between the samples

and the plasma nozzle should be shorter than the full length of the torch, ensuring that

the entire surface of zirconia was totally immersed in the plasma torch. The time of 1

minute of plasma exposure allowed a significant improvement in the hydrophilic char-

acter of the surface.

Commercially available primers can also improve the bond strength, and change the

contact angles by 30° to 40°. The reason for the use of primers is to raise the inherent

inert properties of natural zirconia. The decrease in the contact angle indicates that the

surfaces are becoming hydrophilic, thus increasing their potential to bond with

acrylate-based resins in restorations. The lower contact angle can be explained by the

formation of reactive oxygen species and reactive nitrogen species as a result of plasma

treatment and, consequently, their dispersion on the surface [8,9,15,16]. Thus, because

of the poor adhesion of most resin cements to zirconia [2,17], the use of adhesive

primers, sandblasting with aluminum oxide, Er:YAG laser irradiation or tribochemical

silica coating has been suggested as methods to improve the bond strength [15,18-20].

The relatively high original contact angle, upper 50˚ (Table 1), indicates the poor ad-

hesion properties of zirconia ceramics. Plasma bonding pretreatment is a possible clin-

ical technique to improve the bond strength of polar resins to zirconia, because of the

increase in surface wettability after plasma exposure. Katana zirconia presented a lower

contact angle than Lava, even after plasma treatment. ZirCAD is a pre-sintered
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yttrium-stabilized zirconium oxide CAD/CAM block, whereas Katana is made of non

pre-sintered oxidized yttrium ceramic for use as CAD/CAM milling blanks, which in-

fluences the contact angle, since the surface may be more porous before and after the

sintering process than Lava. Also, the polar fraction (fp) and non-polar fraction (fnp)

from the Katana zirconia surface are approximately 34% and 66%, respectively. For

Lava, the polar fraction is slightly lower, and thus the non-polar fraction is higher. Ac-

cording to the theoretical simulation, the presence of a majority of non-polar groups in

the zirconia surface explains the low hydrophilic properties and the low surface energy

of zirconia ceramics [21-24].

The relatively high speed of the aging effect is related to the low percentage of the

mobile polar fraction (fm), which is an estimate of the fraction of new polar groups after

plasma exposure. Regarding the recovery of hydrophobicity, Katana zirconia main-

tained the contact angle stability for 12 hours after the plasma treatment, and had 46%

of the mobile polar fraction. For Lava, the duration of plasma treatment was 5 hours

and 40% of the mobile polar fraction, which may influence the lower duration of the

plasma effects. Thus, the second hypothesis stating that there is no difference between

zirconia ceramics regarding the duration and stability of contact angle after plasma

application was not supported by the evidence, since Lava had a faster hydrophobic

recovery and loss of polar groups than Katana.

The model proposed by Chatelier et at. [25] based on exponential fit, allowed the

quantitative evaluation of the kinetics of surface reconstruction. The model assumes an

exponential decay in time of the population of mobile polar groups on the surface. This

theoretical mathematical simulation was performed to investigate the dynamics of polar

and non-polar groups at the surface after plasma treatment, to compare with the stabil-

ity rate. Thus, with this final equation, it is possible to evaluate the evolution of contact

angle and the kinetics of the distribution of polar groups. Clinically, it is strongly

suggested to carry out the bonding step and the cementation of indirect restorations

immediately after the plasma treatment to have a zirconia surface with high surface

energy and an excellent condition for bonding with the resin cements.

Conclusions
The treatment of zirconia with plasma reduced the contact angle, increasing the surface

wettability, which may improve the bond strength of restorative materials (adhesives,

primers or resin cements) to zirconia ceramics. Regarding the recovery of hydrophobi-

city, the stability of the contact angle on zirconia surfaces depended on the material.
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