POSTER PRESENTATION

Open Access

Phosphoinositide 3-Kinase regulates glycolysis through mobilization of Aldolase A from the actin cytoskeleton

Hai Hu¹, Ashish Juvekar¹, Costas Lyssiotis², John G Albeck⁴, Dean R Tolan³, John M Asara¹, Gerburg M Wulf^{1*}, Lewis C Cantley²

From Metabolism, Diet and Disease 2014: Cancer and metabolism Washington DC, USA. 28-30 May 2014

Background

Phosphoinositide 3-Kinase (PI3K) has been shown to modulate multiple steps in glucose uptake and metabolism through activation of the protein kinase, AKT. In order to dissect the contributions of PI3K-pathway components, we examined the effects of specific enzyme inhibitors on the regulation of glycolysis.

Methods

We measured reduction of NAD to NADH, occurring at the GAPDH step, as a read-out for glycolysis in living cells; mass spectroscopy to determine the relative abundance of glycolytic metabolites in breast cell cultures and in a mouse model of breast cancer; immunoblotting and confocal live cell microscopy to delineate the intracellular signaling cascade downstream from PI3K and a spectrophotometric assay to determine Aldolase activity.

Results

In breast epithelial cells PI3K-, but not AKT-, SGK- or mTOR-inhibitors cause a significant decrease in glycolysis at the step catalyzed by Aldolase A. We show that growth factors stimulate Aldolase A release from the actin cytos-keleton and an increase in cellular Aldolase activity in a PI3K dependent manner. The mobilization and activation of Aldolase is dependent on Rac1-catalyzed phosphorylation of p-21 activated kinase (PAK) and subsequent mobilization of the actin cytoskeleton.

¹Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA Full list of author information is available at the end of the article

Conclusions

This newly identified AKT- and mTOR-independent role of PI3K in controlling glucose metabolism has important implications in regard to utilization of PI3K pathway inhibitors for treatment of epithelial cancers.

Authors' details

 ¹Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
²Medicine, Weil Cornell Medical College, New York, NY, USA. ³Biology, Boston University, Boston, NY, USA. ⁴University of California, Davis, CA, USA.

Published: 28 May 2014

doi:10.1186/2049-3002-2-S1-P86 Cite this article as: Hu *et al.*: Phosphoinositide 3-Kinase regulates glycolysis through mobilization of Aldolase A from the actin cytoskeleton. *Cancer & Metabolism* 2014 2(Suppl 1):P86.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2014 Hu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.