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The changing phenotype of microglia from
homeostasis to disease
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Abstract

It has been nearly a century since the early description of microglia by Rio-Hortega; since then many more
biological and pathological features of microglia have been recognized. Today, microglia are generally considered
to be beneficial to homeostasis at the resting state through their abilities to survey the environment and
phagocytose debris. However, when activated microglia assume diverse phenotypes ranging from fully inflamed,
which involves the release of many pro-inflammatory cytokines, to alternatively activated, releasing anti-
inflammatory cytokines or neurotrophins, the consequences to neurons can range from detrimental to supportive.
Due to the different experimental sets and conditions, contradictory results have been obtained regarding the
controversial question of whether microglia are “good” or “bad.” While it is well understood that the dual roles of
activated microglia depend on specific situations, the underlying mechanisms have remained largely unclear, and
the interpretation of certain findings related to diverse microglial phenotypes continues to be problematic. In this
review we discuss the functions of microglia in neuronal survival and neurogenesis, the crosstalk between microglia
and surrounding cells, and the potential factors that could influence the eventual manifestation of microglia.
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Introduction
Microglia are generally considered the immune cells of
the central nervous system (CNS) and account for 10%
of the total glial cell population in the brain. In a normal
physiological environment, they work as sentinel cells by
continually screening the brain tissue; they actively par-
ticipate in pathological processes by changing morph-
ology, expressing various antigens and becoming
phagocytic. During the past 20 years, thousands of papers
have been published describing both the detrimental and
beneficial roles of microglia in various brain disorders,
from acute infection or stroke to the long and chronic
process of neurodegeneration. Microglia have been firmly
established as a key cellular component involved in the
eventual outcome of inflammation and eventually contrib-
ute to the chronic neurodegeneration; The physiology and
signaling of microglia have been comprehensively reviewed
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by Kettenmann’s series papers[1-6], however, the regulation
of microglial activity is a highly complex system, and the
responses of microglia are tailored in a multi-factor
dependent manner, and which are the focus we try to re-
view in this paper.

The origin of microglia
The precise origin and cell lineage of microglia has been a
long time debate. So far two most important hypotheses for
microglial origin have been held: “neuroectodermal” or
“myeloid-monocytic”. Even though the latter has been more
widely accepted now, the neuroectodermal hypothesis
remains interesting. Skoff [7] detected “multipotential glia
cell” with a rat model of optic nerve degeneration and optic
nerve development, these cells were demonstrated to ori-
ginate from neuroectodermal matrix cells, and Kitamura
later confirmed this result by describing a continuous mor-
phological transition between glioblasts and ramified micro-
glia in the developing gray matter of hippocampus [8]. The
hematopoietic origin of microglia also received a lot atten-
tion, the presence of bone marrow Mac-1 positive cells
were demonstrated in the brain of embryonic and adult
mice, and these cells were proved to be the progenitors for
microglial cells [9], also transplantation of GFP+mice bone
marrow cells in GFP- host mice revealed the presence of
many GFP+microglia throughout developing and/or
inflamed CNS [10,11], which strongly suggest the
hematopoietic stem cells as one of the origins for replenish-
ment of microglia in the neuropathology. Additionally due
to the high similarity in marker expression and phagocytosis
behavior between circulating monocytes and microglia,
people speculate the monocytic origin of microglia, and a
couple of experiments have been performed to show the ap-
pearance of labeled monocytes in the developing [12] or
inflamed brain [13]. In many cases, the peripheral macro-
phages are considered to be the orthologue [14,15] or
backup of microglia and infiltrate the brain to supplement
microglia, thus to some extent peripheral macrophages mir-
ror the behavior of microglia in the brain and Monocyte-
derived Macrophages (MDMs) from patients have been
used as a substitute of microglia in many studies [16-18].

Microglia: the dual natures of neurotoxicity and
neuroprotection
Neuroinflammation has long been considered a mediator
of secondary damage following a small injury to the CNS.
As the primary immune cells in the brain, microglia are
expected to take active roles in the damage process. The
presence of activated microglia within injured brain regions
and in post-mortem tissue from patients having various
neurodegenerative disorders has led to the assumption that
all reactive microglia contribute to an adverse and degen-
erative process. Further studies describe destructive roles
for microglia by demonstrating the release of a range of
neurotoxins from microglia that includes pro-inflammatory
cytokines [19-21], nitric oxide [22,23] and reactive oxygen
species [24,25]; the inhibition of microglial activation in
various experiments results in the attenuation of neuro-
toxic events and improves neuronal survival. In various
neurodegenerative disorders, the over-activation of micro-
glia is considered to be a key causative factor in the process
or, at a minimum, to promote the neuropathology. For ex-
ample, in Alzheimer’s disease, microglia activated by amyl-
oid-β(Aβ) protein, the hallmark of the disease, release
neurotoxins and potentiate neuronal damage, and this
microglial over-activation is an early event that precedes
neuropil destruction [26]. The activated microglia cluster
around or penetrate the neuritic plaques [27], supporting a
critical role of microglial activation in the pathogenesis and
progression of the disease. In Parkinson’s disease (PD), an
increased number of activated microglia are present in the
vicinity of degenerating neurons [28] in the substantia
nigra [29], which is particularly deleterious to dopamin-
ergic neurons due to their glutathione deficiency [30]. A
single injection of lipopolysaccharide (LPS) to activate
microglia in the substantia nigra region led to a progres-
sive, preferential and irreversible loss of dopaminergic neu-
rons [31-33], even though LPS itself did no direct harm to
the neurons, indicating that the over-activation of micro-
glia is capable of inducing neuronal death in the absence of
other pathological stimulation. All of the evidence
described above supports the hypotheses of the neurotoxic
features of microglia.
However, as the sentinel and essential cells of the CNS,

it is unlikely that microglia would function to damage neu-
rons in all scenarios. Once stimulated the microglia mi-
grate rapidly to the injury site along the chemokine
gradients in vitro [34] and also in response to chemoat-
tractants including ATP and NO released directly or indir-
ectly by the injury [35] to exert effect on the survival of
neurons. In fact, some specifically designed experiments
have begun to uncover the neuroprotective roles of micro-
glia, and more studies are emerging to show beneficial
functions of microglia. Firstly, studies have demonstrated
instructive roles for microglia in the developing brain for
neuronal differentiation [36,37] and in the regulation of
neuronal apoptosis [38] through the production of neuro-
trophins [39]. Secondly, in the adult brain, resting micro-
glia, which are characterized by many fine perpendicular
processes extending from a few long prolongations, have
been regarded as sensor cells for the detection of abnor-
malities or changes in the brain [40] and help to maintain
environmental homeostasis. Lastly but most importantly,
activated microglia have also been shown to perform
neurotrophic functions following neuronal injury. One
compelling study supporting this finding involves the axot-
omy of peripheral nerves (facial or optic), where a rapid
microglial response is exhibited with the efficient clearance



Table 1 Factors that can activate microglia

Substance that can
activate microglia

Reference

Pathological conditions

hypoxia Morigiwa et al., 2000 [51]

tumor Bosco et al., 2011[52]

Ischemic insult Hur et al., 2010 [53]

Nerve injury Maeda et al., 2010 [54]

Proteins

α-synuclein Lee et al., 2010; Su et al., 2008;
Zhang et al., 2005 [55-57]

amyloid-beta Jana et al., 2008 [58]

fibrinogen Piers et al., 2011 [59]

Thrombin Lee et al., 2005 [60]

Tissue plasminogen activator Siao et al., 2002 [61]

Matrix protein
(vitronectin, fibronectin, MMP-3)

Milner et al., 2007;
del Zoppo et al., 2007;
Kim et al., 2005 [62-64]

Chemicals

Adenosine Triphosphate Matsui et al., 2011 [65]

Toxins (MPTP,
Rotenone, Paraquat)

Yasuda et al., 2008;
Gao et al., 2002;
Wu et al., 2005 [66-68]

Alchohol McClain et al., 2011 [69]

Dopamine quinone Kuhn et al., 2006 [70]

Berberine Lu et al., 2010 [71]

lipopolysacchride Jung et al., 2010;
Meng et al., 2008;
Xu et al., 2009 [72-74]

Cytokines

TNF-α Iribarren et al., 2005 [75]

IL-6 Krady et al., 2008 [76]

IL-12 Tamakawa et al., 2004 [77]

IL-3 Natarajan et al., 2004 [78]

IFN-Υ Rozenfeld et al., 2005;
Hall et al., 1999 [79,80]

Others

gangliosides Kim et al., 2009;
Min et al., 2004 [81,82]

Kalic acid Zheng et al., 2010;
Zhu et al., 2010 [83,84]
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of myelin debris that contained inhibitory molecules of
axon growth, finally leading to successful axonal regener-
ation [41]; the inhibition of this microglial response to fa-
cial nerve axotomy impairs neuronal survival [42]. In
addition, in neonatal mice administered MPTP, highly acti-
vated microglia show neurotrophic potential towards
dopamine neurons [43] and after traumatic injury, clear
glutamate without evoking inflammatory mediators [44].
The benefits of microglial activation are further demon-
strated by the exacerbation of neuropathology in inducible
mouse models that are deficient in microglia [45,46], the
finding of protective microglia in cases of cerebral ische-
mia [47] and multiple sclerosis [48] and the fact that trans-
plantation of microglia can help to enhance neurite
growth and functional recovery after CNS injury [49,50].
The bunch of factors that can activate microglia and the
differential behavior of microglia in various conditions
have been listed in Table 1 & 2. The above studies clearly
demonstrate that microglia can be neurotrophic in the
proper situations; there might be a third possibility that
microglia are activated by simply reacting to pathogenic
stimulation and takes very limited roles in the neurological
disorders, in such case the activation of microglia is solely
a result of pathogenic stimulation and work as a by-
stander that either involved passively during the whole
process or even go to apoptosis by some other signals.
Thus These activated microglia might have different phe-
notypes. However, the details of what conditions induce
microglia to take beneficial phenotypes remain unknown.
Many factors are likely involved in determining the even-
tual outcome of the manifestation of microglia, including
their interaction with neurons or astrocytes in the same
environment, age-related dysfunction of microglia, activa-
tion timing, and the activation state of the microglia,
which we will be discussing below.

Crosstalk between microglia and other brain cells
Microglia have been considered to be the first line of
defense in the CNS [91], a hypothesis that has been sup-
ported by the finding that microglia actively screen their
microenvironment with highly motile processes; thus, the
brain is under continual surveillance by microglia. To do
this with high efficiency, microglia must be variable, adap-
tive to their environment and capable of integrating vari-
ous inputs and responding appropriately [92,93]. All of
these processes require significant interactions with other
components within the same environment, including neu-
rons and astrocytes.

Crosstalk between microglia and neurons: neurons as
regulators of microglial activation
When we talk about whether microglia are neuroprotective
or neurotoxic, we only refer to the influence of microglia on
neurons. However, many studies indicate that neurons are
not merely passive targets of microglia but rather exert con-
trol over microglial activities [94]. There are considerable
interactions between neurons and microglia. For example,
Polazzi hypothesized that activation of microglia as a conse-
quence of neuronal injury is primarily aimed at neuropro-
tection, with the loss of specific communications between
neurons and microglia leading to the neurotoxic behavior
of microglia [95]. Accumulating evidence demonstrates that
there is significant information exchange between neurons
and microglia. Depending on whether they are healthy or
injured, neurons send “on” or “off” signals to influence
microglial activation. On one hand, the activation of



Table 2 Behavior of microglia in different conditions

Conditions Microglia function

In steady state

Healthy resting
state

Surveillance, homeostasis [85] Fixed cell and
motile processes, minimal expression of cell
surface markers and release of cytokines
and chemokines, not involved in Phagocytosis

In disease state

Neuroprotective

Axotomy of the
optic nerve

Efficient clearance of myelin debris [41]

Traumatic injury Clear glutamate without evoking
inflammatory mediators [44]

Ischemia Synthesis of tumor necrosis factor,
engulfment of harmful invading neutrophil
granulocytes [86]

Alzheimer’s Disease Internalize and degrade amyloid beta [87]

Multiple sclerosis Secrete soluble mediators that trigger
neural repair and usually contribute to the
creation of an environment conductive for
regeneration [48]

Neurotoxic

Parkinson’s disease Releasing various kinds of noxious cytokines,
reactive oxygen species [88]

Multiple sclerosis Express iNOS [89] and generate toxic ROS
which might injure neurons

Alzheimer’s disease Produce of chemokines, neurotoxic
cytokines and reactive oxygen an dnitrogen
species that are deletrious to the CNS [90]
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microglia by neuronal injury or degeneration has been
widely reported [91,96]. On the other hand, in the healthy
brain, microglial activation is tightly restricted by signaling
from neurons. CD200-CD200R has been identified as one
of the critical pathways in attenuating microglial activation.
CD200 is a member of the immunoglobulin superfamily
and is expressed on the neuronal membrane surface, while
the CD200 receptor (CD200R) is primarily present in the
macrophage lineage, which includes microglia [97]. The
disruption of CD200-CD200R interactions results in an
accelerated microglial response, whereas intensified
CD200-CD200R interactions contribute to an attenu-
ation in neurodegeneration [98]. In mice that have had
CD200 selectively removed from neurons, microglia
exhibited an activated phenotype and were numerous
upon facial nerve transaction; damaged CD200-deficient
neurons elicited an accelerated microglial response,
which demonstrated a loss of the neuronal inhibitory
signal for microglial response [97]. Apart from direct
interactions through receptor-ligand combinations,
electrical activity and soluble factors released from in-
tact neurons also maintain microglial quiescence. In a
neuron-glia co-culture, the blockade of neuronal elec-
trical activity by tetrodotoxin or a glutamate receptor
antagonist facilitated microglial activation induced by
IFN-γ [99]. Soluble molecules from neurons such as
neurotrophins and anti-inflammatory agents down-
regulate antigen expression on cultured rat microglia
[99,100]. Additionally, released factors from neurons
can also influence the survival of microglia. Fukui et al.
demonstrated that treatment with conditioned media
from mature neurons significantly induced the death of
microglial cells independent of LPS, while heated
neuron-conditioned media or low-calcium-ion media
prevented the death of microglia [101], indicating that
specific factors released from neurons exert detrimental
effects on microglia. It has been demonstrated that
microglial cells undergo apoptosis following peripheral
nerve injury [102-104] or in cases of experimental auto-
immune encephalomyelitis(EAE) [105]Injured neurons
induced either neuroprotective or neurotoxic behaviors
in microglia depending on the manner of injury
[91,106-109], providing strong evidence to support the
hypothesis of crosstalk between neurons and microglia.
Thus, microglia are not merely surveyors of brain tissue
but also receive and actively respond to signals from
neurons.

Crosstalk between astrocytes and microglia: reciprocal
influences
Although less obvious than the crosstalk with neurons,
the interactions between microglia and astrocytes are
far from simple and are also crucial for our understand-
ing of how microglia respond to their environment and
exert influence on neuronal degeneration or regener-
ation. Several studies have demonstrated the substantial
influence of astrocytes on microglial activation [110].
The induction of microglia by Trimethyltin or Borna
disease virus-infected neurons is dependent on the pres-
ence of astrocytes [111,112]. Astrocytes play neuroprotec-
tive roles by modulating microglial cell activity and
decreasing their cytotoxicity [113,114]. The expression of
IL-12 and the production of inducible nitric oxide syn-
thase (iNOS) in activated microglia have been reported to
be suppressed by astrocytes or conditioned media from
astrocytes [82,111,115-117], delineating the signals from
astrocytes that affect the activities of microglia. Further-
more, the communication between these two types of cells
is two-way; microglia both receive and give signals, as pro-
inflammatory cytokines released from microglia inhibit
gap junctions and down-regulate connexin 43 expression
in astrocytes [118-120], which enhances astrocyte survival.
In another study, comparative proteome analysis was per-
formed on astrocytes that were treated with conditioned
media from quiescent or activated microglia. Following
culture in activated-microglial media, the anti-oxidative
enzymes expressed in astrocytes were up-regulated, and
these astrocytes were protected against oxidative stress.
This result gave insight into the complex intercellular
events that take place during neurological disorders [121].
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As in many pathological conditions in the central nervous
system such as in neurodegeneration [122], microglia, acti-
vated earlier than astrocytes, promote astrocytic activation
through IL-1which is mostly from microglia [123]. On the
other hand, activated astrocytes not only facilitate activa-
tion of distant microglia via calcium wave [124,125], but
also inhibit microglial activities [126]. Additionally, it was
observed that activated-microglial-conditioned media
increased astroglial proliferation [127], down-regulated the
astroglial metabotropic glutamate receptor [128] and
induced astroglial brain-derived neurotrophic factor
(BDNF) and IL-6 gene expression [129]. Taken together,
the importance of microglial activities lies in that they not
only exert direct effects on neuronal survival, but they also
affect the responses of other supporting cells in the same
environment.

Microglia-T cell crosstalk: key determinants for the trend
of immune response
The entire immune response consists of the cooperation of
the innate and adaptive immune systems. In the brain, it
has been postulated that the beneficial or destructive out-
come of the local microglial (innate) response is determined
by a well-controlled dialogue between the innate and the
adaptive immune players, which are, in most cases, the
microglia and T cells. Activated T cells can cross the blood–
brain barrier and interact with resident microglia in the par-
enchyma [130]; these microglia have been characterized as
myeloid progenitor cells that can differentiate into macro-
phage-like or dendritic-like cells [131] and thus work cru-
cially as the principal APCs [85] in the CNS. Monsonego
et al. demonstrated that IFN-γ-treated microglia serve as ef-
ficient Aβ antigen-presenting cells (APCs) of both Aβ1-40
and Aβ1-42, mediating CD86-dependent proliferation of
Aβ-reactive T cells [132]. The activated T cells then exert
effects in the injured neural tissues by altering the reactive
microglial phenotypes and inducing the astrocytic expres-
sion of growth factors or modulating microglia to act as glu-
tamate scavengers [44] to improve neuronal survival
[133,134]. In a model for optic nerve injury, the passive
transfer of regulatory CD4+CD25+ T cells was either de-
structive or beneficial depending on the genetic background
of the mice tested, which determines the differential inter-
action of T cells with microglia and thus the different T cell-
mediated microglial phenotypes [133]. Kipnis even observed
that both the suppressor and the effector activities of T cells
could be mediated through dialogue with microglia in the
condition of neurodegneration [135], The entire scenario of
crosstalk between T cells and microglia could be described
as the following: microglia are initially activated by patho-
logical stimuli during acute or chronic injury to the brain; if
the activation occurs with the proper timing and mode and
is well-controlled, the activated microglia will work as APCs
[133] to stimulate Treg cells that eventually modulate the
microglial activation directly or indirectly and affect the mi-
lieu balance between neurotrophism and cytotoxicity
[44,136,137].

Whether microglial activation is neurotrophic or
neurotoxic is context-dependent
After considerable time and research, we have recognized
the “double-edged sword” nature of microglial cells. On
one hand, significant evidence from in vitro and in vivo
studies has associated neuronal injury with microglial acti-
vation [138-141]. This evidence results from an inflamma-
tory phenotype of microglia releasing neurotoxic factors,
mediators and reactive oxygen species [138-141]. On the
other hand, several other studies have highlighted the
beneficial and important roles of microglia in neuronal re-
generation, repair and neurogenesis [142-146]. These
seemingly paradoxical results cannot be directly compared,
because they come from different experimental sets that
vary in terms of the stimulus, timing of microglial activa-
tion and age of animals. Thus, whether microglia have
positive or negative effects on neuronal survival is context-
dependent.

Aging can result in microglial dysfunction and subsequent
neurotoxicity
There are studies suggesting that senescence in microglia
causes them to function abnormally and that the destructive
roles of activated microglia in the aged neurodegenerative
brain may result from age-associated microglia senescence,
causing a failure of the aged microglia to respond correctly
to stimuli [147,148] and eventually promoting neurodegen-
eration [149] (Figure 1). The most prominent and also the
initially identified feature of microglial senescence is the
morphological alteration described as “dystrophy” [150].
Characteristics of “dystrophic” microglia observed in the
aged brain include de-ramification (the loss of finely
branched cytoplasmic processes), cytoplasmic beading/
spheroid formation, shortened and twisted cytoplasmic pro-
cesses, and instances of partial or complete cytoplasmic
fragmentation [150]. Such dystrophic microglia were preva-
lent and extensively distributed in the brain of older human
subjects [150,151], whereas normally ramified microglial
morphology with only rare instances of dystrophic micro-
glia is observed in the young brain [148]. These observa-
tions provide initial evidence for the age-associated changes
in microglia in the healthy elderly brain. Telomere shorten-
ing, a marker of aging, has also been demonstrated in
microglia in the aged brain in Flanary’s study, who reported
that microglial cells in rats exhibit significant telomere
shortening and a reduction in telomerase activity during
normal aging [152]. More importantly, microglial senes-
cence is also manifested by functional alterations, such
as an altered inflammatory profile, increased immuno-
phenotypic expression, and the switch from neuroprotective



Figure 1 Age-primed microglia hypothesis of Parkinson’s disease. Microglia functions differentially in the young (left) and aged (right) brain.
Left: when facing pathogenic stimuli (large black dots), the healthy microglia in the young brain respond by releasing neurotrophic factors (small
yellow dots) to support the endangered dopaminergic neurons and limit neuronal damages. Right: in the aged brain oxidative stress and
inflammatory factors (small black dots), which damage the vulnerable dopaminergic neurons and eventually lead to neurodegeneration. (From
Luo et al.,2010 with permission).
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in the young brain to neurotoxic in the aged brain upon
activation [147]. Also, the timing of microglial proliferation
and presentation in the injured aged brain is distinct from
that in the young brain. For example, Conde et al. reported
that microglial proliferation rates in the aged rat brain were
significantly higher than in the young rat brain four days
after axotomy of the facial nerve [148]. The distinct pattern
of the microglial response to injury in the aged brain has
also been recorded in the 1-methyl-4-phenyl-1,2,3,6-tetra-
hydropyridine (MPTP)-induced model of neurotoxicity
[153], the model of controlled cortical impact (CCI) [154],
cortical stab injury [155]and transient retinal ischemia
[156]. Although more attention has been paid to the dys-
function of aged microglia, many critical questions remain
unanswered. Some of these questions are: whether the acti-
vated state of microglia in the aging brain is concurrent
with or secondary to microglial dystrophy; which specific
function of microglia is primarily affected by microglial
dystrophy, how it is affected and what is the direct conse-
quence of the affected function; and whether the deterior-
ation of a specific microglial function is more related to
neurodegeneration than others. Clearly, more research is
needed to answer these questions.

The timing of activation is an indispensible determinant
of microglial function
Another important element that critically determines the
destructive or neuroprotective role of microglia is the
timing of their activation. Because large and very compli-
cated communications pathways exist between immuno-
competent cells and cytokines in the CNS, the timing of
microglial activation leads to diverse trends and out-
comes related to the entire inflammation event. In a
model of optic nerve crush injury, Shaked et al. found
that an earlier onset of phagocytic activity and antigen
presentation by microglia results in a resistance to injury
and neurons survived [133]; the early, moderate, transi-
ent and well-controlled activation of local microglia
caused them to function as APCs, leading to the com-
munication with Treg cells that subsequently proves to
be neuroprotective through the modulation of microglial
activation states [133]. In a multiple sclerosis (MS)
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model of experimental allergic encephalomyelitis (EAE)
[157], the inhibition of microglial activation through tPA
knockout (tissue plasminogen activator, an essential
element for microglia activation) leads to a delayed onset
of the disease but increased severity and delayed recov-
ery from the neurological dysfunction, which suggests
that microglial activation is harmful during the onset of
the disease but beneficial in the recovery phase [157].
Furthermore, when microglial activation was either sti-
mulated or inhibited at different stages, the disease pro-
gression was attenuated or exacerbated accordingly
[158]. For example, the inhibition of microglial activation
at EAE onset, rather than prior to EAE induction, mark-
edly decreased EAE progression, while the stimulation of
microglial activation prior to the onset of EAE promotes
lower-level EAE and an earlier recovery from symptoms.
Together, these findings suggest different roles for
microglial activation during various phases of the disease
and that different timing of microglial activation dramat-
ically affects whether microglia will be neuroprotective
or deleterious [158]. Similarly, in an oxygen-glucose
deprivation model, the time window of microglial neuro-
protection has been estimated to up to 48 hour after in-
jury, while the pre-stimulation of microglia with LPS
before the injury fails to induce microglial-mediated neu-
roprotection [86]. It has been proposed that the effects
of the early activation of microglia on disease progres-
sion could be beneficial through phagocytic activity and
antigen presentation, recruitment and interactions with
the adaptive immune response and the induction of pro-
tective autoimmunity [133]. Furthermore, the balance
between protective autoimmunity and autoimmune dis-
ease may be determined by the timing and intensity of
microglial activation [133]. As the immuno-competent
cells in the CNS, microglia are critical determinants of
the outcome of injury, and the timing of microglial acti-
vation appears to be crucial to the outcome of the injury.
Thus, any interference with microglial activation in
an attempt to affect the disease course clearly must be
temporally-restricted.

Activation states of microglia
Two distinct phenotypes of macrophages have long been
known to play different roles in the inflammatory con-
text. Classically-activated macrophages, characterized by
the involvement of T Helper type 1 (Th-1) cytokines
such as interferon-γ, promote the release of various pro-
inflammatory cytokines and thus exacerbate the inflam-
mation. Alternatively, activated macrophages predomin-
ate in the T Helper type 2 (Th-2) microenvironment and
tend to soothe the inflammation. Thus, the behavior of
macrophages is dictated by their phenotype, which may
eventually affect the beneficial or detrimental roles of
macrophages during inflammation. Similarly, research
over the past few years has established that microglia do
not constitute a single, uniform cell population, but ra-
ther comprise a family of cells with diverse phenotypes;
some are neuroprotective while others are destructive
[92]. So far, three distinct functions have been proposed
for microglia. The first is the classical activation state of
microglia, which, accompanied by the induction of
receptors that participate in the innate immune response
[159], is responsible for the pro-inflammatory milieu,
and has been linked to neurotoxic effects in the brain.
The second is alternatively activated microglia, which are
associated with the production of anti-inflammatory
cytokines in the resolution phase of the inflammatory re-
sponse. Recently, the third activation state of microglia
has been identified: it overlaps with and is complemen-
tary to the alternative activation and is called acquired
deactivation [160,161]. This is another activation state
that promotes immunosuppression and is associated
with the anti-inflammatory and functional repair pheno-
type .Both alternative activation and acquired deactiva-
tion down-regulate innate immune responses and have
similar gene profiles; the most prominent difference is
that acquired deactivation is induced by the exposure of
microglia to apoptotic cells or to TGF-β or IL-10, while
IL-4 and IL-13 induce alternative activation [160,161]. It
has been observed that multiple activation states of
microglia coexist in certain chronic inflammations due
to parasitic disease [162], in which the balance between
classical activation and alternative activation/acquired
deactivation states is of “benefit” to both host and parasite:
the host benefits from reduced self-damage, and the para-
site eventually survives within the host. Neurodegenerative
disorders are also associated with chronic inflammation and
the coexistence of various activation states. For example, in
AD, some levels of classical activation may be required to
limit the brain levels of Aβ despite the risk of self-damage
[163], while alternative activation of microglia in AD may
foster the protection of the surrounding tissue from im-
mune damage even though it may facilitate Aβ deposits.

Similar studies [164-166] have shown that the immune cells
in the vicinity of amyloid deposits in AD express mRNA
and proteins for pro-inflammatory cytokines, leading to the
hypothesis that microglia demonstrate classical activation in
AD, while Colton et al. found increased mRNA expression
of alternative activation-associated gene profiles in microglia
in both the AD brain and an AD mouse model [167], sug-
gesting the presence of multiple activation states of micro-
glia during neurodegeneration. However, the recognition of
heterogeneous phenotypes of microglia only raises more
questions: what instructs microglia to acquire a particular
phenotype; can any conversion occur between these pheno-
types; and is it possible to avoid or at least change the com-
mitment to a destructive phenotype? All of these questions
are difficult to answer with our current knowledge of
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microglia; more extensive work is warranted before we can
reach a conclusion.

The stimulus type is another turning point for microglial
function
As an active sensor in the brain, microglia respond to
even minor stimuli; however, different types of stimula-
tion may also lead to different actions of microglia and
thus be either harmful or beneficial to neuronal survival.
In a neonatal mouse MPTP-induced brain injury model,
microglia activated by systemic administration of LPS
were shown to be neuroprotective. In contrast to the
MPTP model, LPS-activated microglia in neonatal mice
receiving a stereotaxic injection of ethanol into the stri-
atum were shown to be neurotoxic, and systemic LPS
administration in the ethanol-injury model caused a
marked increase both in the volume of necrotic lesions
and in the number of degenerating neurons in the stri-
atum [168]. Even with the same stimuli, the degree can
also determine microglial release of toxic versus protective
effectors [169]; neurotoxic cytokines and ROS were
released from microglia only in response to mild neuronal
injuries, while trophic microglial effectors such as BDNF
and GDNF were up-regulated in response to all degrees of
neuronal injury [169]. Additionally, different types of pain
resulted in differing activations of microglia [170].
So far, what we know is that not all microglia respond in

the same way, even to the same stimulus, and microglial
function is tailored in a context-specific manner [171]. Nu-
merous elements are involved in this context; most likely
there are many more beyond what we have discussed here.
Identifying these elements and clarifying their interactions
or crosstalk with microglia is essential before we are able
to design a strategy to control inflammation through the
manipulation of microglia. The simple therapy of inhibit-
ing all microglia without differentiating their function in a
context-dependent manner surely should be abandoned.

Microglia and neurogenesis
It has been long recognized that the birth of new neurons
within the postnatal brain continues throughout life and
remains as a potential source of replacement cells in the
CNS for the treatment of disease. The microenvironment
or the niche in which neural progenitor cells live critically
influences the process of neurogenesis, which spans several
steps including the proliferation of stem or progenitor cells;
the survival of immature or mature neurons; the migration
of new neuroblasts to their appropriate locations; and the
differentiation of neuroblasts to a neuronal phenotype and
the construction of synaptic connectivity [172]. As an im-
portant component of the brain microenvironment and due
to their invariant participation in most pathological pro-
cesses in the CNS, microglia are increasingly implicated as
a potential non-neural regulator of neurogenesis, as
demonstrated by circumstantial evidence [144,172]. How-
ever, just as in the debate over the neuroprotective or
neurotoxic nature of microglial activation, whether micro-
glia support or damage the survival and development of
neural progenitor cells also remains controversial. On one
hand, microglia were shown to play instructive roles during
postnatal neurogenesis in the neurogenic niche either by in-
fluencing the differentiation of stem cells toward a neuronal
phenotype or by directing their migration [144,173-175].
On the other hand, multiple studies have demonstrated the
deleterious effect of microglial activation on neurogenesis
[176,177] and the effective restoration of neurogenesis
though the blockade of microglial activation.

In the two situations of neurogenesis and neuronal
survival, similar factors are shared, leading microglia to
take supportive or detrimental roles. Among these fac-
tors, the most prominent is the microglial activation
phenotype that is associated with different cytokine pro-
files. When acutely activated by either LPS or injury,
microglia that release the pro-inflammatory cytokines
IL-6, TNF-α or IL-1β usually down-regulate the differen-
tiation or proliferation of neural stem cells or induce the
aberrant migration of newborn neurons [178]. This
group of inflammatory cytokines has been proven to in-
hibit neurogenesis [176,177,179]; conversely, blocking
antibodies to these pro-inflammatory cytokines (such as
IL-6 [177]) or the use of monocycline to mitigate the
microglial activation simply restores neurogenesis [176].
In contrast, microglia that are activated by anti-inflamma-
tory cytokines such as IL-4 or TGF-β increase neurogen-
esis in vitro or the differentiation of neural stem cells
(NSCs) in vivo [180,181]. Neurotrophins, such as IGF-1,
were identified [181] in anti-inflammatory cytokine-
activated microglia and were proposed to be one of the
mechanisms underlying this pro-neurogenic activity of
microglia [182,183]. However, just like the dual roles in
neuroprotection, whether a specific cytokine-activated
microglial cell will take a pro- or anti-neurogenic role is
also context-dependent. For example, microglial cells
activated by IFN-γ, a pro-inflammatory cytokine can be
neurotoxic or supportive of neurogenesis, depending on
the concentration of IFN-γ [184]. TGF-β, which is con-
sidered to be beneficial to neurogenesis, can actually
exert a negative influence on neurogenesis when it is
chronically produced in the aged brain [185]. Additionally,
if other cytokines exist in the same niche simultaneously,
the outcome will be determined by the balance among the
various cytokines; some authors have concluded that acti-
vated microglia are not pro- or anti-neurogenic per se, but
the balance between pro- and anti-inflammatory secreted
molecules influences the final effect of microglial activa-
tion [172,180]. However, in which situations the microglia
will release pro- or anti-inflammatory cytokines is compli-
cated and is affected by multiple factors such as the injury
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type, the phase of disease or inflammation, and crosstalk
with other regulating components, including neural pre-
cursors; this is similar to the question of whether microglia
will be neuroprotective or neurotoxic. Most likely the
same inflammatory scenario that induces neurodegenera-
tion would also inhibit neurogenesis, while a situation that
favors neuronal survival would also support neurogenesis.
Interestingly, even in a high-inflammation environment,
such as two days after a Trimethyltin-induced acute injury
in the hippocampus, significant neurogenesis can be
detected [186,187], suggesting a complicated system of
neurogenesis regulation beyond the inflammation
scenario.
Cumulative studies have found an age-related decline

in neurogenesis, both in the aged adult and in the dis-
eased brain. Because aging may contribute to microglial
dysfunction and neurotoxicity, as we discussed previ-
ously in this review, one could assume that microglial
dysfunction may also be involved in the downregulation
of neurogenesis in the aged or diseased brain [188,189].
Even though very few studies have focused on the effect
of microglial dysfunction on neurogenesis, we can still
find a clue from Zhu’s study that the difference in micro-
glia function patterns between the immature and juvenile
brain might be related to a decrease in neurogenesis in
the juvenile brain [190]; however, stronger evidence from
the direct comparison of microglia-associated neurogen-
esis between aged and young brains is needed to support
this view.

Another important element regulating the activities of
microglia is the T cell, which comes from the peripheral
adaptive immune system and enters the CNS by extravasat-
ing across the endothelium of the choroid plexus into the
cerebrospinal fluid [191]. The interaction of T cells with
microglia in the injured spinal cord correlates with
enhanced neuronal survival [184], and rapidly recruited T
cells in the middle cerebral artery obstruction (MCAO)
model increased hippocampal and cortical neurogenesis by
modulating the microglial response and through the pro-
duction of IGF in the sub-acute phase [192]. Hippocampal
neurogenesis was associated with the recruitment of T cells
and microglial activation. Immune-deficient mice show
impaired neurogenesis in the hippocampus, but this defi-
ciency was attenuated and neurogenesis boosted by T cells
recognizing a specific CNS antigen [193]. The cellular
source of IFN-γ and IL-4 in vivo is likely to be T cells, there-
fore it is reasonable to assume that the T cell-mediated im-
mune response is an integral part of the regulation of
microglial phenotype or function, and thus can influence
neuronal survival or neurogenesis directly or indirectly.

Conclusion
From an increasing number of studies of diverse micro-
glial activity in different experimental sets, we are
beginning to appreciate the heterogeneity of microglial
functions that have either beneficial or detrimental roles
in specific physiological or pathological environments.
Whether microglia are committed to one function from
the very beginning or if there is any conversion between
different phenotypes remains elusive and the factors that
initiate this commitment or promote its conversion are
far from being clarified. Due to the invariant critical par-
ticipation of microglia in most diseases, ongoing research
to uncover these questions is warranted; before we are
sure about the answer, any potential strategies targeting
microglia to manipulate inflammation and modify a dis-
ease course are unrealistic.

Competing interests
The authors declare that they have no competing interests.

Acknowledgement
This work was funded by the National Program of Basic Research (2010CB945200,
2011CB504104) of China, the National Nature Science Fund (No.30973153,
No.30772280), Liaoning Doctoral Starting Fund (20071042), and the Foundation of
the Liaoning Educational Committee (L202013136, L2010560).

Authors’ contributions
XL drafted the manuscript, SC critically revised the manuscript. All authors
read and approved the final manuscript.

Author details
1Department of Neurology, First Affiliated Hospital of China Medical
University, Shenyang 110001, China. 2Department of Neurology & Institute of
Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University,
Shanghai 200025, China.

Received: 1 January 2012 Accepted: 24 April 2012
Published: 24 April 2012

References
1. Farber K, Kettenmann H: Purinergic signaling and microglia. Pflugers Arch

2006, 452:615–621.
2. Hanisch UK, Kettenmann H: Microglia: active sensor and versatile effector

cells in the normal and pathologic brain. Nat Neurosci 2007, 10:1387–1394.
3. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia.

Physiol Rev 2011, 91:461–553.
4. Kettenmann H, Banati R, Walz W: Electrophysiological behavior of

microglia. Glia 1993, 7:93–101.
5. Noda M, Kettenmann H, Wada K: Anti-inflammatory effects of kinins via

microglia in the central nervous system. Biol Chem 2006, 387:167–171.
6. Pocock JM, Kettenmann H: Neurotransmitter receptors on microglia.

Trends Neurosci 2007, 30:527–535.
7. Skoff RP: The fine structure of pulse labeled (3-H-thymidine cells) in

degenerating rat optic nerve. J Comp Neurol 1975, 161:595–611.
8. Kitamura T, Miyake T, Fujita S: Genesis of resting microglia in the gray matter

of mouse hippocampus. J Comp Neurol 1984, 226:421–433.
9. Alliot F, Lecain E, Grima B, Pessac B: Microglial progenitors with a high

proliferative potential in the embryonic and adult mouse brain. Proc Natl
Acad Sci U S A 1991, 88:1541–1545.

10. Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernandez-Klett F, Prass
K, Bechmann I, de Boer BA, et al: Targeting gene-modified hematopoietic cells
to the central nervous system: use of green fluorescent protein uncovers
microglial engraftment. Nat Med 2001, 7:1356–1361.

11. Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, Friedlander M: Myeloid
progenitors differentiate into microglia and promote vascular repair in a
model of ischemic retinopathy. J Clin Invest 2006, 116:3266–3276.

12. Ling EA, Penney D, Leblond CP: Use of carbon labeling to demonstrate the role
of blood monocytes as precursors of the 'ameboid cells’ present in the
corpus callosum of postnatal rats. J Comp Neurol 1980, 193:631–657.



Luo and Chen Translational Neurodegeneration 2012, 1:9 Page 10 of 13
http://www.translationalneurodegeneration.com/content/1/1/9
13. Davoust N, Vuaillat C, Cavillon G, Domenget C, Hatterer E, Bernard A,
Dumontel C, Jurdic P, Malcus C, Confavreux C, et al: Bone marrow CD34+/B220+
progenitors target the inflamed brain and display in vitro differentiation
potential toward microglia. Faseb J 2006, 20:2081–2092.

14. Schmitz G, Leuthauser-Jaschinski K, Orso E: Are circulating monocytes as
microglia orthologues appropriate biomarker targets for neuronal diseases?
Cent Nerv Syst Agents Med Chem 2009, 9:307–330.

15. Djukic M, Mildner A, Schmidt H, Czesnik D, Bruck W, Priller J, Nau R, Prinz M:
Circulating monocytes engraft in the brain, differentiate into microglia
and contribute to the pathology following meningitis in mice. Brain 2006,
129:2394–2403.

16. Templeton SP, Kim TS, O’Malley K, Perlman S: Maturation and localization
of macrophages and microglia during infection with a neurotropic
murine coronavirus. Brain Pathol 2008, 18:40–51.

17. Liu M, Eguchi N, Yamasaki Y, Urade Y, Hattori N, Urabe T: Focal cerebral
ischemia/reperfusion injury in mice induces hematopoietic prostaglandin D
synthase in microglia and macrophages. Neuroscience 2007, 145:520–529.

18. Luo X, Carlson KA, Wojna V, Mayo R, Biskup TM, Stoner J, Anderson J,
Gendelman HE, Melendez LM: Macrophage proteomic fingerprinting predicts
HIV-1-associated cognitive impairment. Neurology 2003, 60:1931–1937.

19. Balasubramaniam B, Carter DA, Mayer EJ, Dick AD: Microglia derived IL-6
suppresses neurosphere generation from adult human retinal cell
suspensions. Exp Eye Res 2009, 89:757–766.

20. Dheen ST, Jun Y, Yan Z, Tay SS, Ling EA: Retinoic acid inhibits expression
of TNF-alpha and iNOS in activated rat microglia. Glia 2005, 50:21–31.

21. Bi XL, Yang JY, Dong YX, Wang JM, Cui YH, Ikeshima T, Zhao YQ, Wu CF:
Resveratrol inhibits nitric oxide and TNF-alpha production by
lipopolysaccharide-activated microglia. Int Immunopharmacol 2005,
5:185–193.

22. Moss DW, Bates TE: Activation of murine microglial cell lines by
lipopolysaccharide and interferon-gamma causes NO-mediated decreases
in mitochondrial and cellular function. Eur J Neurosci 2001, 13:529–538.

23. Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS: Role of nitric
oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci
2002, 962:318–331.

24. Colton CA, Gilbert DL: Production of superoxide anions by a CNS
macrophage, the microglia. FEBS Lett 1987, 223:284–288.

25. Mao H, Liu B: Synergistic microglial reactive oxygen species generation
induced by pesticides lindane and dieldrin. Neuroreport 2008, 19:1317–1320.

26. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T,
Banati RB: In-vivo measurement of activated microglia in dementia. Lancet
2001, 358:461–467.

27. McGeer PL, Itagaki S, Tago H, McGeer EG: Reactive microglia in patients
with senile dementia of the Alzheimer type are positive for the
histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987, 79:195–200.

28. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y:
Distribution of major histocompatibility complex class II-positive
microglia and cytokine profile of Parkinson’s disease brains. Acta
Neuropathol 2003, 106:518–526.

29. Lawson LJ, Perry VH, Dri P, Gordon S: Heterogeneity in the distribution
and morphology of microglia in the normal adult mouse brain.
Neuroscience 1990, 39:151–170.

30. Loeffler DA, DeMaggio AJ, Juneau PL, Havaich MK, LeWitt PA: Effects of
enhanced striatal dopamine turnover in vivo on glutathione oxidation.
Clin Neuropharmacol 1994, 17:370–379.

31. Castano A, Herrera AJ, Cano J, Machado A: Lipopolysaccharide intranigral
injection induces inflammatory reaction and damage in nigrostriatal
dopaminergic system. J Neurochem 1998, 70:1584–1592.

32. Liu B, Jiang JW, Wilson BC, Du L, Yang SN, Wang JY, Wu GC, Cao XD, Hong
JS: Systemic infusion of naloxone reduces degeneration of rat substantia
nigral dopaminergic neurons induced by intranigral injection of
lipopolysaccharide. J Pharmacol Exp Ther 2000, 295:125–132.

33. Lu X, Bing G, Hagg T: Naloxone prevents microglia-induced degeneration
of dopaminergic substantia nigra neurons in adult rats. Neuroscience
2000, 97:285–291.

34. Cartier L, Hartley O, Dubois-Dauphin M, Krause KH: Chemokine receptors in
the central nervous system: role in brain inflammation and
neurodegenerative diseases. Brain Res Brain Res Rev 2005, 48:16–42.

35. Duan Y, Sahley CL, Muller KJ: ATP and NO dually control migration of
microglia to nerve lesions. Dev Neurobiol 2009, 69:60–72.
36. Farinas I, Cano-Jaimez M, Bellmunt E, Soriano M: Regulation of
neurogenesis by neurotrophins in developing spinal sensory ganglia.
Brain Res Bull 2002, 57:809–816.

37. Markus A, Patel TD, Snider WD: Neurotrophic factors and axonal growth.
Curr Opin Neurobiol 2002, 12:523–531.

38. Oppenheim RW, Prevette D, Tytell M, Homma S: Naturally occurring and
induced neuronal death in the chick embryo in vivo requires protein
and RNA synthesis: evidence for the role of cell death genes. Dev Biol
1990, 138:104–113.

39. Miller FD, Kaplan DR: Neurotrophin signalling pathways regulating neuronal
apoptosis. Cell Mol Life Sci 2001, 58:1045–1053.

40. Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly
dynamic surveillants of brain parenchyma in vivo. Science 2005,
308:1314–1318.

41. Battisti WP, Wang J, Bozek K, Murray M: Macrophages, microglia, and
astrocytes are rapidly activated after crush injury of the goldfish optic
nerve: a light and electron microscopic analysis. J Comp Neurol 1995,
354:306–320.

42. Hao HP, Doh-Ura K, Nakanishi H: Impairment of microglial responses to
facial nerve axotomy in cathepsin S-deficient mice. J Neurosci Res 2007,
85:2196–2206.

43. Sawada H, Hishida R, Hirata Y, Ono K, Suzuki H, Muramatsu S, Nakano I, Nagatsu T,
Sawada M: Activated microglia affect the nigro-striatal dopamine neurons
differently in neonatal and aged mice treated with 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine. J Neurosci Res 2007, 85:1752–1761.

44. Shaked I, Tchoresh D, Gersner R, Meiri G, Mordechai S, Xiao X, Hart RP,
Schwartz M: Protective autoimmunity: interferon-gamma enables
microglia to remove glutamate without evoking inflammatory mediators.
J Neurochem 2005, 92:997–1009.

45. Bruccoleri A, Harry GJ: Chemical-induced hippocampal neurodegeneration
and elevations in TNFalpha, TNFbeta, IL-1alpha, IP-10, and MCP-1 mRNA
in osteopetrotic (op/op) mice. J Neurosci Res 2000, 62:146–155.

46. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J: Selective
ablation of proliferating microglial cells exacerbates ischemic injury in
the brain. J Neurosci 2007, 27:2596–2605.

47. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH,
Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, et al: Microglia protect
neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci
2009, 29:1319–1330.

48. Napoli I, Neumann H: Protective effects of microglia in multiple sclerosis.
Exp Neurol 2010, 225:24–28.

49. Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M,
Solomon A, Gepstein R, Katz A, Belkin M, et al: Implantation of stimulated
homologous macrophages results in partial recovery of paraplegic rats.
Nat Med 1998, 4:814–821.

50. Rabchevsky AG, Streit WJ: Grafting of cultured microglial cells into the lesioned
spinal cord of adult rats enhances neurite outgrowth. J Neurosci Res 1997,
47:34–48.

51. Morigiwa K, Quan M, Murakami M, Yamashita M, Fukuda Y: P2 Purinoceptor
expression and functional changes of hypoxia-activated cultured rat retinal
microglia. Neurosci Lett 2000, 282:153–156.

52. Bosco A, Steele MR, Vetter ML: Early microglia activation in a mouse
model of chronic glaucoma. J Comp Neurol 2011, 519:599–620.

53. Hur J, Lee P, Kim MJ, Kim Y, Cho YW: Ischemia-activated microglia induces
neuronal injury via activation of gp91phox NADPH oxidase. Biochem
Biophys Res Commun 2010, 391:1526–1530.

54. Maeda M, Tsuda M, Tozaki-Saitoh H, Inoue K, Kiyama H: Nerve injury-
activated microglia engulf myelinated axons in a P2Y12 signaling-
dependent manner in the dorsal horn. Glia 2010, 58:1838–1846.

55. Lee EJ, Woo MS, Moon PG, Baek MC, Choi IY, Kim WK, Junn E, Kim HS:
Alpha-synuclein activates microglia by inducing the expressions of
matrix metalloproteinases and the subsequent activation of protease-
activated receptor-1. J Immunol 2010, 185:615–623.

56. Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ:
Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol
Aging 2008, 29:1690–1701.

57. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W,
Zhou Y, Hong JS, Zhang J: Aggregated alpha-synuclein activates
microglia: a process leading to disease progression in Parkinson’s
disease. Faseb J 2005, 19:533–542.



Luo and Chen Translational Neurodegeneration 2012, 1:9 Page 11 of 13
http://www.translationalneurodegeneration.com/content/1/1/9
58. Jana M, Palencia CA, Pahan K: Fibrillar amyloid-beta peptides activate
microglia via TLR2: implications for Alzheimer’s disease. J Immunol 2008,
181:7254–7262.

59. Piers TM, Heales SJ, Pocock JM: Positive allosteric modulation of
metabotropic glutamate receptor 5 down-regulates fibrinogen-activated
microglia providing neuronal protection. Neurosci Lett 2011, 505:140–145.

60. Lee DY, Oh YJ, Jin BK: Thrombin-activated microglia contribute to death of
dopaminergic neurons in rat mesencephalic cultures: dual roles of
mitogen-activated protein kinase signaling pathways. Glia 2005, 51:98–110.

61. Siao CJ, Tsirka SE: Tissue plasminogen activator mediates microglial
activation via its finger domain through annexin II. J Neurosci 2002,
22:3352–3358.

62. Milner R, Crocker SJ, Hung S, Wang X, Frausto RF, del Zoppo GJ:
Fibronectin- and vitronectin-induced microglial activation and matrix
metalloproteinase-9 expression is mediated by integrins alpha5beta1
and alphavbeta5. J Immunol 2007, 178:8158–8167.

63. Kim YS, Kim SS, Cho JJ, Choi DH, Hwang O, Shin DH, Chun HS, Beal MF, Joh
TH: Matrix metalloproteinase-3: a novel signaling proteinase from
apoptotic neuronal cells that activates microglia. J Neurosci 2005,
25:3701–3711.

64. del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Berg GI, Koziol JA:
Microglial activation and matrix protease generation during focal
cerebral ischemia. Stroke 2007, 38:646–651.

65. Matsui T, Motoki Y, Inomoto T, Miura D, Kato Y, Suenaga H, Hino K, Nojima J:
Temperature-Related Effects of Adenosine Triphosphate-Activated Microglia
on Pro-Inflammatory Factors. Neurocrit Care 2011.

66. Yasuda Y, Shimoda T, Uno K, Tateishi N, Furuya S, Yagi K, Suzuki K, Fujita S:
The effects of MPTP on the activation of microglia/astrocytes and
cytokine/chemokine levels in different mice strains. J Neuroimmunol 2008,
204:43–51.

67. Gao HM, Hong JS, Zhang W, Liu B: Distinct role for microglia in rotenone-
induced degeneration of dopaminergic neurons. J Neurosci 2002, 22:782–790.

68. Wu XF, Block ML, Zhang W, Qin L, Wilson B, Zhang WQ, Veronesi B, Hong JS:
The role of microglia in paraquat-induced dopaminergic neurotoxicity.
Antioxid Redox Signal 2005, 7:654–661.

69. McClain JA, Morris SA, Deeny MA, Marshall SA, Hayes DM, Kiser ZM, Nixon K:
Adolescent binge alcohol exposure induces long-lasting partial
activation of microglia. Brain Behav Immun 2011, 25(Suppl 1):S120–S128.

70. Kuhn DM, Francescutti-Verbeem DM, Thomas DM: Dopamine quinones
activate microglia and induce a neurotoxic gene expression profile:
relationship to methamphetamine-induced nerve ending damage. Ann N
Y Acad Sci 2006, 1074:31–41.

71. Lu DY, Tang CH, Chen YH, Wei IH: Berberine suppresses neuroinflammatory
responses through AMP-activated protein kinase activation in BV-2 microglia.
J Cell Biochem 2010, 110:697–705.

72. Jung HW, Oh TW, Jung JK, Lee JH, Shin GJ, Park YK: Inhibitory Effects of the
Methylene Chloride Fraction of JP05 on the Production of Inflammatory
Mediators in LPS-activated BV2 Microglia. Inflammation 2010, 35:332–341.

73. Meng XL, Yang JY, Chen GL, Zhang LJ, Wang LH, Li J, Wang JM, Wu CF: RV09,
a novel resveratrol analogue, inhibits NO and TNF-alpha production by
LPS-activated microglia. Int Immunopharmacol 2008, 8:1074–1082.

74. Xu Y, Xue Y, Wang Y, Feng D, Lin S, Xu L: Multiple-modulation effects of
Oridonin on the production of proinflammatory cytokines and
neurotrophic factors in LPS-activated microglia. Int Immunopharmacol 2009,
9:360–365.

75. Iribarren P, Chen K, Hu J, Zhang X, Gong W, Wang JM: IL-4 inhibits the
expression of mouse formyl peptide receptor 2, a receptor for amyloid
beta1-42, in TNF-alpha-activated microglia. J Immunol 2005, 175:6100–6106.

76. Krady JK, Lin HW, Liberto CM, Basu A, Kremlev SG, Levison SW: Ciliary
neurotrophic factor and interleukin-6 differentially activate microglia. J
Neurosci Res 2008, 86:1538–1547.

77. Tamakawa N, Saio M, Suwa T, Ohe N, Yoshimura S, Iwama T, Shinoda J, Sakai N,
Takami T: Interleukin-2 activated microglia engulf tumor infiltrating T cells in
the central nervous system. Int J Mol Med 2004, 13:497–503.

78. Natarajan C, Sriram S, Muthian G, Bright JJ: Signaling through JAK2-STAT5
pathway is essential for IL-3-induced activation of microglia. Glia 2004,
45:188–196.

79. Rozenfeld C, Martinez R, Seabra S, Sant’anna C, Goncalves JG, Bozza M,
Moura-Neto V, De Souza W: Toxoplasma gondii prevents neuron
degeneration by interferon-gamma-activated microglia in a mechanism
involving inhibition of inducible nitric oxide synthase and transforming
growth factor-beta1 production by infected microglia. Am J Pathol 2005,
167:1021–1031.

80. Hall GL, Girdlestone J, Compston DA, Wing MG: Recall antigen
presentation by gamma-interferon-activated microglia results in T cell
activation and propagation of the immune response. J Neuroimmunol
1999, 98:105–111.

81. Kim KS, Park JY, Jou I, Park SM: Functional implication of BAFF synthesis
and release in gangliosides-stimulated microglia. J Leukoc Biol 2009,
86:349–359.

82. Min KJ, Yang MS, Kim SU, Jou I, Joe EH: Astrocytes induce
hemeoxygenase-1 expression in microglia: a feasible mechanism for
preventing excessive brain inflammation. J Neurosci 2006, 26:1880–1887.

83. Zheng H, Zhu W, Zhao H, Wang X, Wang W, Li Z: Kainic acid-activated
microglia mediate increased excitability of rat hippocampal neurons
in vitro and in vivo: crucial role of interleukin-1beta.
Neuroimmunomodulation 2010, 17:31–38.

84. Zhu W, Zheng H, Shao X, Wang W, Yao Q, Li Z: Excitotoxicity of TNFalpha
derived from KA activated microglia on hippocampal neurons in vitro
and in vivo. J Neurochem 2010, 114:386–396.

85. Aloisi F: Immune function of microglia. Glia 2001, 36:165–179.
86. Neumann J, Sauerzweig S, Ronicke R, Gunzer F, Dinkel K, Ullrich O, Gunzer M,

Reymann KG: Microglia cells protect neurons by direct engulfment of
invading neutrophil granulocytes: a new mechanism of CNS immune
privilege. J Neurosci 2008, 28:5965–5975.

87. Lee CY, Landreth GE: The role of microglia in amyloid clearance from the
AD brain. J Neural Transm 2010, 117:949–960.

88. Teismann P, Schulz JB: Cellular pathology of Parkinson’s disease:
astrocytes, microglia and inflammation. Cell Tissue Res 2004, 318:149–161.

89. Hill KE, Zollinger LV, Watt HE, Carlson NG, Rose JW: Inducible nitric oxide
synthase in chronic active multiple sclerosis plaques: distribution, cellular
expression and association with myelin damage. J Neuroimmunol 2004,
151:171–179.

90. Mandrekar-Colucci S, Landreth GE: Microglia and inflammation in
Alzheimer’s disease. CNS Neurol Disord Drug Targets 2010, 9:156–167.

91. Kreutzberg GW: Microglia: a sensor for pathological events in the CNS.
Trends Neurosci 1996, 19:312–318.

92. Schwartz M, Butovsky O, Bruck W, Hanisch UK: Microglial phenotype: is the
commitment reversible? Trends Neurosci 2006, 29:68–74.

93. Hanisch UK: Microglia as a source and target of cytokines. Glia 2002,
40:140–155.

94. Biber K, Neumann H, Inoue K, Boddeke HW: Neuronal ‘On’ and ‘Off’ signals
control microglia. Trends Neurosci 2007, 30:596–602.

95. Polazzi E, Contestabile A: Reciprocal interactions between microglia and
neurons: from survival to neuropathology. Rev Neurosci 2002, 13:221–242.

96. Zhou Y, Wang Y, Kovacs M, Jin J, Zhang J: Microglial activation induced
by neurodegeneration: a proteomic analysis. Mol Cell Proteomics 2005,
4:1471–1479.

97. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B,
Homola ME, Streit WJ, Brown MH, et al: Down-regulation of the
macrophage lineage through interaction with OX2 (CD200). Science 2000,
290:1768–1771.

98. Chitnis T, Imitola J, Wang Y, Elyaman W, Chawla P, Sharuk M, Raddassi K,
Bronson RT, Khoury SJ: Elevated neuronal expression of CD200 protects
Wlds mice from inflammation-mediated neurodegeneration. Am J Pathol
2007, 170:1695–1712.

99. Neumann H: Control of glial immune function by neurons. Glia 2001,
36:191–199.

100. Wei R, Jonakait GM: Neurotrophins and the anti-inflammatory agents
interleukin-4 (IL-4), IL-10, IL-11 and transforming growth factor-beta1
(TGF-beta1) down-regulate T cell costimulatory molecules B7 and CD40
on cultured rat microglia. J Neuroimmunol 1999, 95:8–18.

101. Fukui K, Urano S, Koike T: Releasing factors from mature neurons
modulate microglial survival via purinergic receptor activation. Neurosci
Lett 2009, 456:64–68.

102. Gehrmann J, Banati RB: Microglial turnover in the injured CNS: activated
microglia undergo delayed DNA fragmentation following peripheral
nerve injury. J Neuropathol Exp Neurol 1995, 54:680–688.

103. Kuhlmann T, Bitsch A, Stadelmann C, Siebert H, Bruck W: Macrophages are
eliminated from the injured peripheral nerve via local apoptosis and



Luo and Chen Translational Neurodegeneration 2012, 1:9 Page 12 of 13
http://www.translationalneurodegeneration.com/content/1/1/9
circulation to regional lymph nodes and the spleen. J Neurosci 2001,
21:3401–3408.

104. Shuman SL, Bresnahan JC, Beattie MS: Apoptosis of microglia and
oligodendrocytes after spinal cord contusion in rats. J Neurosci Res 1997,
50:798–808.

105. White CA, McCombe PA, Pender MP: Microglia are more susceptible than
macrophages to apoptosis in the central nervous system in experimental
autoimmune encephalomyelitis through a mechanism not involving Fas
(CD95). Int Immunol 1998, 10:935–941.

106. Pais TF, Figueiredo C, Peixoto R, Braz MH, Chatterjee S: Necrotic neurons
enhance microglial neurotoxicity through induction of glutaminase by a
MyD88-dependent pathway. J Neuroinflammation 2008, 5:43.

107. Eleuteri S, Polazzi E, Contestabile A: Neuroprotection of microglia
conditioned media from apoptotic death induced by staurosporine and
glutamate in cultures of rat cerebellar granule cells. Neurosci Lett 2008,
448:74–78.

108. Moran LB, Graeber MB: The facial nerve axotomy model. Brain Res Brain Res
Rev 2004, 44:154–178.

109. Nakajima K, Tohyama Y, Maeda S, Kohsaka S, Kurihara T: Neuronal
regulation by which microglia enhance the production of neurotrophic
factors for GABAergic, catecholaminergic, and cholinergic neurons.
Neurochem Int 2007, 50:807–820.

110. Shih AY, Fernandes HB, Choi FY, Kozoriz MG, Liu Y, Li P, Cowan CM, Klegeris
A: Policing the police: astrocytes modulate microglial activation. J
Neurosci 2006, 26:3887–3888.

111. Rohl C, Sievers J: Microglia is activated by astrocytes in trimethyltin
intoxication. Toxicol Appl Pharmacol 2005, 204:36–45.

112. Ovanesov MV, Ayhan Y, Wolbert C, Moldovan K, Sauder C, Pletnikov MV:
Astrocytes play a key role in activation of microglia by persistent Borna
disease virus infection. J Neuroinflammation 2008, 5:50.

113. von Bernhardi R, Eugenin J: Microglial reactivity to beta-amyloid is
modulated by astrocytes and proinflammatory factors. Brain Res 2004,
1025:186–193.

114. Ramirez G, Toro R, Dobeli H, von Bernhardi R: Protection of rat primary
hippocampal cultures from A beta cytotoxicity by pro-inflammatory
molecules is mediated by astrocytes. Neurobiol Dis 2005, 19:243–254.

115. Aloisi F, Penna G, Cerase J, Menendez Iglesias B, Adorini L: IL-12 production
by central nervous system microglia is inhibited by astrocytes. J Immunol
1997, 159:1604–1612.

116. Pyo H, Yang MS, Jou I, Joe EH: Wortmannin enhances lipopolysaccharide-
induced inducible nitric oxide synthase expression in microglia in the
presence of astrocytes in rats. Neurosci Lett 2003, 346:141–144.

117. Vincent VA, Van Dam AM, Persoons JH, Schotanus K, Steinbusch HW,
Schoffelmeer AN, Berkenbosch F: Gradual inhibition of inducible nitric
oxide synthase but not of interleukin-1 beta production in rat microglial
cells of endotoxin-treated mixed glial cell cultures. Glia 1996, 17:94–102.

118. Rouach N, Calvo CF, Glowinski J, Giaume C: Brain macrophages inhibit gap
junctional communication and downregulate connexin 43 expression in
cultured astrocytes. Eur J Neurosci 2002, 15:403–407.

119. Rouach N, Calvo CF, Duquennoy H, Glowinski J, Giaume C: Hydrogen
peroxide increases gap junctional communication and induces astrocyte
toxicity: regulation by brain macrophages. Glia 2004, 45:28–38.

120. Meme W, Calvo CF, Froger N, Ezan P, Amigou E, Koulakoff A, Giaume C:
Proinflammatory cytokines released from microglia inhibit gap
junctions in astrocytes: potentiation by beta-amyloid. Faseb J 2006,
20:494–496.

121. Rohl C, Armbrust E, Kolbe K, Lucius R, Maser E, Venz S, Gulden M: Activated
microglia modulate astroglial enzymes involved in oxidative and
inflammatory stress and increase the resistance of astrocytes to
oxidative stress in vitro. Glia 2008, 56:1114–1126.

122. McCann MJ, O’Callaghan JP, Martin PM, Bertram T, Streit WJ: Differential
activation of microglia and astrocytes following trimethyl tin-induced
neurodegeneration. Neuroscience 1996, 72:273–281.

123. Griffin WS: Inflammation and neurodegenerative diseases. Am J Clin Nutr
2006, 83:470S–474S.

124. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin
ML, Gan WB: ATP mediates rapid microglial response to local brain injury
in vivo. Nat Neurosci 2005, 8:752–758.

125. Verderio C, Matteoli M: ATP mediates calcium signaling between
astrocytes and microglial cells: modulation by IFN-gamma. J Immunol
2001, 166:6383–6391.
126. Liu W, Tang Y, Feng J: Cross talk between activation of microglia and
astrocytes in pathological conditions in the central nervous system. Life
Sci 2011, 89:141–146.

127. Giulian D, Baker TJ: Peptides released by ameboid microglia regulate
astroglial proliferation. J Cell Biol 1985, 101:2411–2415.

128. Tilleux S, Berger J, Hermans E: Induction of astrogliosis by activated
microglia is associated with a down-regulation of metabotropic
glutamate receptor 5. J Neuroimmunol 2007, 189:23–30.

129. Savli H, Gulkac MD, Esen N: The effect of stimulated microglia conditioned
media on BDNF gene expression of striatal astrocytes: quantification by
real-time PCR. Int J Neurosci 2004, 114:1601–1612.

130. Engelhardt B, Ransohoff RM: The ins and outs of T-lymphocyte trafficking
to the CNS: anatomical sites and molecular mechanisms. Trends Immunol
2005, 26:485–495.

131. Re F, Belyanskaya SL, Riese RJ, Cipriani B, Fischer FR, Granucci F, Ricciardi-
Castagnoli P, Brosnan C, Stern LJ, Strominger JL, Santambrogio L:
Granulocyte-macrophage colony-stimulating factor induces an
expression program in neonatal microglia that primes them for
antigen presentation. J Immunol 2002, 169:2264–2273.

132. Monsonego A, Imitola J, Zota V, Oida T, Weiner HL: Microglia-mediated
nitric oxide cytotoxicity of T cells following amyloid beta-peptide
presentation to Th1 cells. J Immunol 2003, 171:2216–2224.

133. Shaked I, Porat Z, Gersner R, Kipnis J, Schwartz M: Early activation of microglia as
antigen-presenting cells correlates with T cell-mediated protection and repair
of the injured central nervous system. J Neuroimmunol 2004, 146:84–93.

134. Goldman JE, Reynolds R: A reappraisal of ganglioside GD3 expression in
the CNS. Glia 1996, 16:291–295.

135. Kipnis J, Avidan H, Caspi RR, Schwartz M: Dual effect of CD4+CD25+
regulatory T cells in neurodegeneration: a dialogue with microglia. Proc
Natl Acad Sci U S A 2004, 101(Suppl 2):14663–14669.

136. Beers DR, Henkel JS, Zhao W, Wang J, Appel SH: CD4+ T cells support glial
neuroprotection, slow disease progression, and modify glial morphology
in an animal model of inherited ALS. Proc Natl Acad Sci U S A 2008,
105:15558–15563.

137. Ghasemlou N, Jeong SY, Lacroix S, David S: T cells contribute to
lysophosphatidylcholine-induced macrophage activation and
demyelination in the CNS. Glia 2007, 55:294–302.

138. Levesque S, Wilson B, Gregoria V, Thorpe LB, Dallas S, Polikov VS, Hong JS,
Block ML: Reactive microgliosis: extracellular micro-calpain and microglia-
mediated dopaminergic neurotoxicity. Brain 2010, 133:808–821.

139. Harry GJ, Kraft AD: Neuroinflammation and microglia: considerations and
approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol
2008, 4:1265–1277.

140. Knoch ME, Hartnett KA, Hara H, Kandler K, Aizenman E: Microglia induce
neurotoxicity via intraneuronal Zn(2+) release and a K(+) current surge.
Glia 2008, 56:89–96.

141. Qian L, Tan KS, Wei SJ, Wu HM, Xu Z, Wilson B, Lu RB, Hong JS, Flood PM:
Microglia-mediated neurotoxicity is inhibited by morphine through an
opioid receptor-independent reduction of NADPH oxidase activity. J
Immunol 2007, 179:1198–1209.

142. Diestel A, Troeller S, Billecke N, Sauer IM, Berger F, Schmitt KR: Mechanisms
of hypothermia-induced cell protection mediated by microglial cells
in vitro. Eur J Neurosci 2010, 31:779–787.

143. Liang J, Takeuchi H, Jin S, Noda M, Li H, Doi Y, Kawanokuchi J, Sonobe Y,
Mizuno T, Suzumura A: Glutamate induces neurotrophic factor production
from microglia via protein kinase C pathway. Brain Res 2010, 1322:8-23.

144. Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM, Marshall GP 2nd,
Scheffler B, Steindler DA: Microglia instruct subventricular zone
neurogenesis. Glia 2006, 54:815–825.

145. Thored P, Heldmann U, Gomes-Leal W, Gisler R, Darsalia V, Taneera J, Nygren JM,
Jacobsen SE, Ekdahl CT, Kokaia Z, Lindvall O: Long-term accumulation of
microglia with proneurogenic phenotype concomitant with persistent
neurogenesis in adult subventricular zone after stroke. Glia 2009, 57:835–849.

146. McPherson CA, Kraft AD, Harry GJ: Injury-induced neurogenesis:
consideration of resident microglia as supportive of neural progenitor
cells. Neurotox Res 2011, 19:341–352.

147. Sawada M, Sawada H, Nagatsu T: Effects of aging on neuroprotective and
neurotoxic properties of microglia in neurodegenerative diseases.
Neurodegener Dis 2008, 5:254–256.

148. Conde JR, Streit WJ: Effect of aging on the microglial response to
peripheral nerve injury. Neurobiol Aging 2006, 27:1451–1461.



Luo and Chen Translational Neurodegeneration 2012, 1:9 Page 13 of 13
http://www.translationalneurodegeneration.com/content/1/1/9
149. Luo XG, Ding JQ, Chen SD: Microglia in the aging brain: relevance to
neurodegeneration. Mol Neurodegener 2010, 5:12.

150. Streit WJ, Sammons NW, Kuhns AJ, Sparks DL: Dystrophic microglia in the
aging human brain. Glia 2004, 45:208–212.

151. Wasserman JK, Yang H, Schlichter LC: Glial responses, neuron death and
lesion resolution after intracerebral hemorrhage in young vs. aged rats.
Eur J Neurosci 2008, 28:1316-1328.

152. Flanary BE, Sammons NW, Nguyen C, Walker D, Streit WJ: Evidence that aging
and amyloid promote microglial cell senescence. Rejuvenation Res 2007,
10:61–74.

153. Sugama S, Yang L, Cho BP, DeGiorgio LA, Lorenzl S, Albers DS, Beal MF,
Volpe BT, Joh TH: Age-related microglial activation in 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic
neurodegeneration in C57BL/6 mice. Brain Res 2003, 964:288–294.

154. Sandhir R, Onyszchuk G, Berman NE: Exacerbated glial response in the
aged mouse hippocampus following controlled cortical impact injury.
Exp Neurol 2008, 213:372–380.

155. Kyrkanides S, O’Banion MK, Whiteley PE, Daeschner JC, Olschowka JA:
Enhanced glial activation and expression of specific CNS inflammation-
related molecules in aged versus young rats following cortical stab
injury. J Neuroimmunol 2001, 119:269–277.

156. Kim KY, Ju WK, Neufeld AH: Neuronal susceptibility to damage:
comparison of the retinas of young, old and old/caloric restricted rats
before and after transient ischemia. Neurobiol Aging 2004, 25:491–500.

157. Lu W, Bhasin M, Tsirka SE: Involvement of tissue plasminogen activator in
onset and effector phases of experimental allergic encephalomyelitis. J
Neurosci 2002, 22:10781–10789.

158. Bhasin M, Wu M, Tsirka SE: Modulation of microglial/macrophage activation
by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the
disease course of experimental autoimmune encephalomyelitis. BMC
Immunol 2007, 8:10.

159. El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD: Ccr2
deficiency impairs microglial accumulation and accelerates progression of
Alzheimer-like disease. Nat Med 2007, 13:432-438.

160. Gordon S: Alternative activation of macrophages. Nat Rev Immunol 2003,
3:23–35.

161. Gordon S, Taylor PR: Monocyte and macrophage heterogeneity. Nat Rev
Immunol 2005, 5:953–964.

162. Wynn TA, Thompson RW, Cheever AW, Mentink-Kane MM:
Immunopathogenesis of schistosomiasis. Immunol Rev 2004, 201:156–167.

163. Herber DL, Mercer M, Roth LM, Symmonds K, Maloney J, Wilson N, Freeman MJ,
Morgan D, Gordon MN:Microglial activation is required for Abeta clearance
after intracranial injection of lipopolysaccharide in APP transgenic mice. J
Neuroimmune Pharmacol 2007, 2:222–231.

164. Akiyama H: Inflammatory response in Alzheimer’s disease. Tohoku J Exp
Med 1994, 174:295–303.

165. Ciaramella A, Bizzoni F, Salani F, Vanni D, Spalletta G, Sanarico N, Vendetti S,
Caltagirone C, Bossu P: Increased pro-inflammatory response by dendritic cells
from patients with Alzheimer’s disease. J Alzheimers Dis 2010, 19:559–572.

166. Rogers J: The inflammatory response in Alzheimer’s disease. J Periodontol
2008, 79:1535–1543.

167. Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP: Expression
profiles for macrophage alternative activation genes in AD and in mouse
models of AD. J Neuroinflammation 2006, 3:27.

168. Sawada H, Suzuki H, Nagatsu T, Sawada M: Neuroprotective and neurotoxic
phenotypes of activated microglia in neonatal mice with respective MPTP-
and ethanol-induced brain injury. Neurodegener Dis 2010, 7:64–67.

169. Lai AY, Todd KG: Differential regulation of trophic and proinflammatory
microglial effectors is dependent on severity of neuronal injury. Glia
2008, 56:259–270.

170. Hald A, Nedergaard S, Hansen RR, Ding M, Heegaard AM: Differential
activation of spinal cord glial cells in murine models of neuropathic and
cancer pain. Eur J Pain 2009, 13:138–145.

171. Carson MJ, Reilly CR, Sutcliffe JG, Lo D: Mature microglia resemble
immature antigen-presenting cells. Glia 1998, 22:72–85.

172. Ekdahl CT, Kokaia Z, Lindvall O: Brain inflammation and adult neurogenesis: the
dual role of microglia. Neuroscience 2009, 158:1021–1029.

173. Aarum J, Sandberg K, Haeberlein SL, Persson MA: Migration and differentiation
of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A
2003, 100:15983–15988.
174. Luo X, Ge C, Ren Y, Zhou J, Li X, Yan R, Zhang C: BV2 enhanced the
neurotrophic functions of mesenchymal stem cells after being
stimulated with injured PC12. Neuroimmunomodulation 2009, 16:28–34.

175. Luo XG, Wang H, Zhou J, Yan R, Wu Z, Zhang CD, Wang QS: Beneficial effects of
BV2 cell on proliferation and neuron-differentiating of mesenchymal stem
cells in the circumstance of injured PC12 cell supernatant. Neurosci Bull 2006,
22:221–226.

176. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O: Inflammation is
detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 2003,
100:13632–13637.

177. Monje ML, Toda H, Palmer TD: Inflammatory blockade restores adult
hippocampal neurogenesis. Science 2003, 302:1760–1765.

178. Yang F, Liu ZR, Chen J, Zhang SJ, Quan QY, Huang YG, Jiang W: Roles of
astrocytes and microglia in seizure-induced aberrant neurogenesis in the
hippocampus of adult rats. J Neurosci Res 2010, 88:519–529.

179. Monje ML, Mizumatsu S, Fike JR, Palmer TD: Irradiation induces neural
precursor-cell dysfunction. Nat Med 2002, 8:955–962.

180. Battista D, Ferrari CC, Gage FH, Pitossi FJ: Neurogenic niche modulation by
activated microglia: transforming growth factor beta increases
neurogenesis in the adult dentate gyrus. Eur J Neurosci 2006, 23:83–93.

181. Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G,
Schwartz M: Microglia activated by IL-4 or IFN-gamma differentially
induce neurogenesis and oligodendrogenesis from adult stem/
progenitor cells. Mol Cell Neurosci 2006, 31:149–160.

182. Aberg MA, Aberg ND, Palmer TD, Alborn AM, Carlsson-Skwirut C, Bang P,
Rosengren LE, Olsson T, Gage FH, Eriksson PS: IGF-I has a direct
proliferative effect in adult hippocampal progenitor cells. Mol Cell
Neurosci 2003, 24:23–40.

183. Choi YS, Cho HY, Hoyt KR, Naegele JR, Obrietan K: IGF-1 receptor-mediated
ERK/MAPK signaling couples status epilepticus to progenitor cell
proliferation in the subgranular layer of the dentate gyrus. Glia 2008,
56:791–800.

184. Butovsky O, Hauben E, Schwartz M: Morphological aspects of spinal cord
autoimmune neuroprotection: colocalization of T cells with B7–2 (CD86)
and prevention of cyst formation. Faseb J 2001, 15:1065–1067.

185. Buckwalter MS, Yamane M, Coleman BS, Ormerod BK, Chin JT, Palmer T,
Wyss-Coray T: Chronically increased transforming growth factor-beta1
strongly inhibits hippocampal neurogenesis in aged mice. Am J Pathol
2006, 169:154–164.

186. Ogita K, Nishiyama N, Sugiyama C, Higuchi K, Yoneyama M, Yoneda Y:
Regeneration of granule neurons after lesioning of hippocampal dentate
gyrus: evaluation using adult mice treated with trimethyltin chloride as a
model. J Neurosci Res 2005, 82:609–621.

187. Harry GJ, McPherson CA, Wine RN, Atkinson K, Lefebvre d’Hellencourt C:
Trimethyltin-induced neurogenesis in the murine hippocampus. Neurotox
Res 2004, 5:623–627.

188. Kuhn HG, Dickinson-Anson H, Gage FH: Neurogenesis in the dentate gyrus
of the adult rat: age-related decrease of neuronal progenitor
proliferation. J Neurosci 1996, 16:2027–2033.

189. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B,
Kempermann G: Murine features of neurogenesis in the human hippocampus
across the lifespan from 0 to 100 years. PLoS One 2010, 5:e8809.

190. Zhu C, Qiu L, Wang X, Xu F, Nilsson M, Cooper-Kuhn C, Kuhn HG, Blomgren
K: Age-dependent regenerative responses in the striatum and cortex
after hypoxia-ischemia. J Cereb Blood Flow Metab 2009, 29:342–354.

191. Ransohoff RM, Kivisakk P, Kidd G: Three or more routes for leukocyte
migration into the central nervous system. Nat Rev Immunol 2003, 3:569–581.

192. Ziv Y, Finkelstein A, Geffen Y, Kipnis J, Smirnov I, Shpilman S, Vertkin I,
Kimron M, Lange A, Hecht T, et al: A novel immune-based therapy for
stroke induces neuroprotection and supports neurogenesis. Stroke 2007,
38:774–782.

193. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J,
Schwartz M: Immune cells contribute to the maintenance of
neurogenesis and spatial learning abilities in adulthood. Nat Neurosci
2006, 9:268–275.

doi:10.1186/2047-9158-1-9
Cite this article as: Luo and Chen: The changing phenotype of microglia
from homeostasis to disease. Translational Neurodegeneration 2012 1:9.


	Abstract
	Table of contents
	Introduction
	The origin of microglia
	Microglia: the dual natures of neurotoxicity and neuroprotection
	Crosstalk between microglia and other brain cells
	Crosstalk between microglia and neurons: neurons as regulators of microglial activation

	link_Tab1
	Crosstalk between astrocytes and microglia: reciprocal influences

	link_Tab2
	Microglia-T cell crosstalk: key determinants for the trend of immune response

	Whether microglial activation is neurotrophic or neurotoxic is context-dependent
	Aging can result in microglial dysfunction and subsequent neurotoxicity
	The timing of activation is an indispensible determinant of microglial function

	link_Fig1
	Activation states of microglia
	The stimulus type is another turning point for microglial function

	Microglia and neurogenesis
	Conclusion
	show [ackn]
	Authors&rsquo; contributions
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53
	link_CR54
	link_CR55
	link_CR56
	link_CR57
	link_CR58
	link_CR59
	link_CR60
	link_CR61
	link_CR62
	link_CR63
	link_CR64
	link_CR65
	link_CR66
	link_CR67
	link_CR68
	link_CR69
	link_CR70
	link_CR71
	link_CR72
	link_CR73
	link_CR74
	link_CR75
	link_CR76
	link_CR77
	link_CR78
	link_CR79
	link_CR80
	link_CR81
	link_CR82
	link_CR83
	link_CR84
	link_CR85
	link_CR86
	link_CR87
	link_CR88
	link_CR89
	link_CR90
	link_CR91
	link_CR92
	link_CR93
	link_CR94
	link_CR95
	link_CR96
	link_CR97
	link_CR98
	link_CR99
	link_CR100
	link_CR101
	link_CR102
	link_CR103
	link_CR104
	link_CR105
	link_CR106
	link_CR107
	link_CR108
	link_CR109
	link_CR110
	link_CR111
	link_CR112
	link_CR113
	link_CR114
	link_CR115
	link_CR116
	link_CR117
	link_CR118
	link_CR119
	link_CR120
	link_CR121
	link_CR122
	link_CR123
	link_CR124
	link_CR125
	link_CR126
	link_CR127
	link_CR128
	link_CR129
	link_CR130
	link_CR131
	link_CR132
	link_CR133
	link_CR134
	link_CR135
	link_CR136
	link_CR137
	link_CR138
	link_CR139
	link_CR140
	link_CR141
	link_CR142
	link_CR143
	link_CR144
	link_CR145
	link_CR146
	link_CR147
	link_CR148
	link_CR149
	link_CR150
	link_CR151
	link_CR152
	link_CR153
	link_CR154
	link_CR155
	link_CR156
	link_CR157
	link_CR158
	link_CR159
	link_CR160
	link_CR161
	link_CR162
	link_CR163
	link_CR164
	link_CR165
	link_CR166
	link_CR167
	link_CR168
	link_CR169
	link_CR170
	link_CR171
	link_CR172
	link_CR173
	link_CR174
	link_CR175
	link_CR176
	link_CR177
	link_CR178
	link_CR179
	link_CR180
	link_CR181
	link_CR182
	link_CR183
	link_CR184
	link_CR185
	link_CR186
	link_CR187
	link_CR188
	link_CR189
	link_CR190
	link_CR191
	link_CR192
	link_CR193

