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Target gene expression levels and competition
between transfected and endogenous microRNAs
are strong confounding factors in microRNA
high-throughput experiments
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Abstract

Background: MicroRNA (miRNA) target genes tend to have relatively long and conserved 3’ untranslated regions
(UTRs), but to what degree these characteristics contribute to miRNA targeting is poorly understood. Different
high-throughput experiments have, for example, shown that miRNAs preferentially regulate genes with both short
and long 3" UTRs and that target site conservation is both important and irrelevant for miRNA targeting.

Results: We have analyzed several gene context-dependent features, including 3" UTR length, 3" UTR conservation,
and messenger RNA (mRNA) expression levels, reported to have conflicting influence on miRNA regulation. By
taking into account confounding factors such as technology-dependent experimental bias and competition
between transfected and endogenous miRNAs, we show that two factors - target gene expression and
competition - could explain most of the previously reported experimental differences. Moreover, we find that these
and other target site-independent features explain about the same amount of variation in target gene expression
as the target site-dependent features included in the TargetScan model.

Conclusions: Our results show that it is important to consider confounding factors when interpreting miRNA high
throughput experiments and urge special caution when using microarray data to compare average regulatory
effects between groups of genes that have different average gene expression levels.
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Background

MicroRNAs (miRNAs) are an abundant class of small
non-coding RNAs (ncRNAs) that negatively regulate
protein-coding genes [1,2]. MicroRNAs are involved in
many important regulatory roles [3-5], and current esti-
mates indicate that miRNAs regulate at least 60% of the
human protein-coding genes [6].

In animals, functional miRNA sites preferentially
reside in 3" UTRs [7], and these sites are generally well
conserved [6]. Moreover, some ubiquitously expressed
genes, such as housekeeping genes, have shorter 3’
UTRs to potentially avoid miRNA regulation [2,8],
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whereas proliferating cells express mRNAs with shor-
tened 3° UTRs to avoid miRNA regulation [9]. Hence,
miRNA target genes are likely to have relatively long
and conserved 3 UTRs. However, to what degree the
length and conservation of 3° UTR contribute to miRNA
targeting is still poorly understood. To illustrate, data
from Argonaute RNA immunoprecipitation (RIP) in
human and fly indicate that miRNAs target short 3’
UTRs [10,11], whereas microarray data from miRNA
transfection experiments and sequence data from Argo-
naute cross-linked immunoprecipitation (CLIP) experi-
ments indicate that miRNAs target long 3" UTRs [12].
Wen and colleagues also found that target site conserva-
tion was more important for CLIP-supported target sites
than for targets that were down-regulated in the trans-
fection experiments [12]. Moreover, our previous study
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[13] showed that genes with a 3" UTR longer than 4,000
nucleotides were less affected by ectopically expressed
miRNAs than were genes with a shorter 3’ UTR, and
that target site conservation had little or no effect on
the performance of our miRNA target prediction
algorithm.

In addition to 3" UTR length and conservation, several
other gene characteristics also affect miRNA regulation.
For example, many miRNAs are known to regulate
genes involved in cell development processes [3].
Another example is that miRNAs appear to preferen-
tially target genes with high CpG promoters [14]. Also,
as highly expressed genes transcribe a large number of
mRNAs, the miRNA regulation of those mRNAs can be
different from those of weakly expressed genes, although
current analyses disagree on whether miRNAs affect
highly expressed genes more or less than medium or
lowly expressed genes [15,16].

High throughput experiments based on microarrays or
proteomics have been important for characterizing
miRNA regulation [17-20]. Although these and more
recent comparative studies [10,12] found that some fea-
tures such as seed complementarity and seed strength
are consistently important for miRNA targeting, other
features such as 3 UTR length and site conservation
mentioned above differ between studies and technolo-
gies. There are at least three potential features that may
contribute to the difference between miRNA high-
throughput experiments. First, the number of genes that
cover a microarray experiment is usually much larger
than that of a proteomics experiment. For instance,
Baek et al. [20] used both microarray and proteomics
for their miRNA target gene analysis, and the number
of genes detected for microarray and proteomics sam-
ples were about 20,000 and 2,000, respectively. Second,
transfected (exogenous) miRNAs compete with endo-
genous miRNAs for the protein complex needed for
miRNA regulation [21]. Therefore, genes targeted by
endogenous miRNAs but not by the exogenous miRNA
can be up-regulated. Third, the effect of miRNA regula-
tion can be diluted by target abundance, which means
that each target gene is less down-regulated when the
miRNA has many highly expressed compared with a few
lowly expressed target genes [22]. Common for these
features is that they are target site-independent, but
gene context-dependent.

In this study, we have investigated the effects on
miRNA targeting of several such target site-independent
but gene context-dependent features. We categorized
these features into three types: (i) target mRNA features,
such as 3° UTR length, 3" UTR sequence conservation,
and mRNA expression level; (ii) sample features, such as
the competition and dilution effects; and (iii) platform
features, such as different types of technologies and
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experimental methods. We found that two features - the
competition effect between endogenous miRNAs and
transfected miRNAs, and mRNA expression level - have
a strong impact on results from high throughput experi-
ments. Both features are confounding factors that
explain many of the previously reported differences
between different studies and high throughput technolo-
gies. It is important to consider these confounding fac-
tors in order to analyze accurately and robustly different
types of miRNA high-throughput experiments and to
infer correctly the characteristics of miRNA regulation.

Results and discussion

Target mRNA features: ectopic miRNA expression
differentially affects subgroups of genes with differing 3’
UTR length, 3’ UTR conservation, and mRNA expression
level

As we expected that mRNAs targeted by miRNA have
long and conserved 3° UTRs, we wanted to examine
how these characteristics actually affect miRNA regula-
tion. Specifically, we wondered whether there was a dif-
ference in how different gene groups, such as genes
with long, medium, or short 3’ UTRs or genes with
high, medium, or low 3 UTR conservation, were
affected by ectopic miRNA expression. To address this
question, we used microarray and proteomics data from
five and two miRNA transfection experiments, respec-
tively, and microarray data from two miRNA inhibition
experiments and analyzed the differences in gene
expression log ratio values of predicted targets in the
different gene groups (see Methods). We also included
microarray data from a small interfering RNA (siRNA)
transfection experiment because siRNAs behave as miR-
NAs in terms of target recognition [23,24]. In contrast
to evolutionary selected miRNA targets, however, targets
for artificially designed exogenous siRNAs should be
evolutionary unbiased. The siRNA dataset, therefore,
served as an estimate of the general regulatory effects of
over-expressing small RNAs. In total, we used 10 differ-
ent types of miRNA high-throughput experiments,
which covered 140 samples and 70 miRNAs and siRNAs
(Additional file 1, Table S1 and S2).

For each miRNA and siRNA, we first separated pre-
dicted miRNA or siRNA target genes from the rest. The
predicted target genes were genes that have at least one
canonical seed site in their 3° UTRs (see Methods). We
used the set of predicted miRNA or siRNA target genes
to analyze miRNA down-regulation effects on three dif-
ferent target mRNA features: (i) 3° UTR length, (ii) 3’
UTR conservation, and (iii) mRNA expression level as
determined by RNA-Seq counts. We split these three
features into smaller sub-groups as described in the
Methods section. We then used a one-sided Wilcoxon
rank-sum test to determine whether the predicted target
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genes in one sub-group were significantly more down-
regulated than the genes in the rest of the sub-groups
(Figure 1). To illustrate, Figures 1A and 1B show the
cumulative density plots of the log-ratio values for the 3’
UTR length sub-groups on the Lim microarray and Sel-
bach proteomics datasets [17,19]. In the Lim dataset
(Figure 1A), the sub-group Med Short, representing
genes with 3" UTRs in the range of 248 to 629 nucleo-
tides (nts), was significantly left-shifted and, therefore,
more down-regulated than the rest as indicated in the
corresponding heatmap (Figure 1C; P-value 4.02e-17;
Additional file 1, Table S3). In the Selbach proteomics
dataset (Figure 1B), the Short sub-group was most
shifted to the left compared to the others, but the differ-
ences were not as significant as in the Lim dataset -
likely due to the smaller dataset (Figure 1C; P-value
0.02; Additional file 1, Table S3). Additional file 1,
Tables S3 to S5 summarize all P-values of the one-sided
Wilcoxon rank-sum test on 3° UTR length, 3’ UTR con-
servation, and mRNA expression; Kolmogorov-Smirnov
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tests on the same sub-groups gave similar results (Addi-
tional file 1, Tables S6 to S8). The following sections
describe and discuss the results for each target mRNA
feature.

Target mRNA features: predicted target genes with short
3’ UTRs are more down-regulated than genes with long 3’
UTRs

We have previously reported that genes with very long
3" UTRs (> 4,000 nts) are poor targets for ectopically
expressed miRNAs or siRNAs [13]. Consistent with this,
there was no experiment that showed significant down-
regulation for the Very Long sub-group (Figure 1C,
Additional file 1, Table S3). Interestingly, genes with
short or medium 3’ UTRs (Short, Med Short, and Med
Long) were significantly down-regulated compared to
genes with long 3" UTRs (Long and Very Long) among
nearly all of the experiments. We saw the strongest
effect for 3° UTRs with sub-groups Med Short and Med
Long, as one or both groups were significantly down-
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Figure 1 Heatmaps show effects of ectopic miRNA regulation for sub-groups of 3’ UTR length, 3’ UTR conservation, and mRNA
expression level. Three heat maps show -log (base 2) transformed P-values for (C) 3" UTR length, (D) 3" UTR conservation, and (E) mRNA
expression. We added two cumulative density plots for Lim (A) and Selbach (B) to illustrate the multiple non-parametric tests for the sub-groups
of 3" UTR lengths; ‘All" is the cumulative density for all the genes measured in the experiment and represents the reference distribution. ‘All
genes include both predicted miRNA target and non-target genes. Although the mRNA expression data (E) was cell type specific and for Hela
cells, we included the Linsley dataset (from HCT116 and DLD-1 colon tumor cells) in the heat map for comparison purpose (indicated with ).
The color labels under the dendrogram represent green for microarray of transfection assay, gray for proteomics of transfection assay, and
orange for both microarray and proteomics with inhibition assay. miRNA, microRNA; mRNA, messenger RNA; UTR, untranslated region.
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regulated compared to other predicted targets in eight
of ten experiments (Additional file 1, Table S3). Between
these two sub-groups, Med Short had lower P-values
than Med Long in seven of ten experiments. Using the
one-sided Kolmogorov-Smirnov test as an alternative
test method also supported the same trends (Additional
file 1, Table S6). These results indicate that miRNA or
siRNA target genes with short 3’ UTRs were generally
more down-regulated than genes with long 3° UTRs.

Target mRNA features: conservation in 3’ UTR regions has
inconsistent regulatory effects

Although the sub-group of highly conserved 3° UTR
regions was strongly down-regulated in five of ten
experiments, the non-conserved sub-group was down-
regulated in two of ten experiments (Figure 1D; Addi-
tional file 1, Table S4). One possible explanation for this
inconsistent pattern could be the conservation levels of
the miRNAs used in the experiments. Since highly con-
served miRNAs tend to have more target genes than
less-conserved miRNA, highly conserved miRNAs may
be more affected by the reported target dilution effect
[22]. However, we found no significant correlations
between the degree of miRNA conservation and the
down-regulation effects (data not shown). Moreover, the
siRNAs used in the Jackson experiment should be unaf-
fected by 3° UTR conservation, but these siRNAs
strongly down-regulated highly conserved 3" UTRs com-
pared with other 3" UTRs [24]. We observed the same
inconsistency for 3’ UTR conservation when testing with
the one-sided Kolmogorov-Smirnov test (Additional file
1, Table S7). Thus, although highly conserved 3’ UTRs
in some cases can be better targets for ectopically
expressed small RNAs, the inconsistent regulatory
effects suggest that other factors are more important.

Target mRNA features: predicted target genes with high
mRNA expression levels are more down-regulated than
the genes with low mRNA expression levels

A recent study showed that mRNA expression affects
siRNA efficacy such that lowly expressed mRNAs are
less affected by siRNAs than are highly expressed
mRNAs [15]. Consistent with these results, siRNA and
miRNA target genes with high or medium expression as
measured by RNA-seq [25] were significantly down-
regulated compared to the rest of the sub-groups in the
microarray experiments (Figure 1E). We saw a very
strong down-regulatory effect on mRNA expression
with sub-groups Very High, High, and Medium, as one
or more sub-groups were significantly down-regulated
compared to other predicted targets in seven of ten
experiments (Additional file 1, Table S5). Moreover,
there was no experiment that showed significant P-
values for sub-groups Very Low and NoExp. One-sided
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Kolmogorov-Smirnov tests also gave similar results
(Additional file 1, Table S8). These results indicate that
predicted miRNA or siRNA target genes with high or
moderate expression levels are generally more down-
regulated than genes with low expression levels.

Target mRNA features: comparison tests on individual
samples strongly support that the differences between
subgroups are common for many miRNAs

Our analyses so far showed clear differences in how ecto-
pic miRNA and siRNA expression affected certain sub-
groups of genes. Since these differences were based on the
average effects of multiple miRNAs, however, we could
not exclude that these differences were due to a few miR-
NAs instead of being common effects for many miRNAs.
To test this possibility, we repeated the tests of the three
target mRNA features - 3’ UTR length, 3’ UTR conserva-
tion, and mRNA expression levels - individually on the
140 different samples (Additional file 1, Table S2). We
then calculated the proportions of samples that showed
significant P-values (Additional file 1, Tables S9-S11) and
defined these proportions as Sample level scores (see
Methods). Consequently, a subgroup with Sample level
score = 0.5 would be significant in 70 (50%) of the indivi-
dual experiments. To compare the trends of the test
results between experiments and samples, we created two
types of counts to represent the trends for both experi-
ments and samples: (i) the number of experiments that
had significant P-values from the test results of the experi-
ments, and (ii) the number of experiments that had their
Sample level scores greater than 0.5 (Table 1). The trends
of mRNA expression level for experiments and samples

Table 1 Multiple comparison tests at an individual
sample level support the experimental level test results

Factor
3" UTR Length

Subgroup Expr Smpl

Very Long
Long
Med Long
Med Short
Short
High
Medium

3" UTR Consv

Low
NoConsv
Very High
High
Medium

mMRNA Exp

Low

O U1 L1 NI OV N = WOy — O

Very Low

O O N A~ UTOYO = — WO W Ww O O

(@}

NoExpr

Consv, conservation; Expr, the number of experiments that have significant P-
value; Smpl, the number of experiments that have Sample level scores greater
than 0.5; UTR, untranslated region.
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were very similar for (Pearson r = 0.91; P-value = 0.01),
whereas the trends of two other features showed high but
insignificant correlation coefficients (3" UTR length, r =
0.79, P-value = 0.11; 3’ UTR conservation, r = 0.81, P-
value = 0.19). The results show that many individual sam-
ples support the overall trends for each experiment set,
especially for the mRNA expression level features.

Sample features: competition with endogenous miRNAs
impacts exogenous miRNAs’ targeting of genes with long
3’ UTRs

Small RNA transfection perturbs endogenous miRNA
regulation such that genes targeted by endogenous miR-
NAs can become up-regulated [21]. We, therefore,
hypothesized that genes with long 3° UTRs had a net
unaffected expression or reduced response because these
genes potentially had more endogenous miRNA target
sites than genes with short 3’ UTRs. To test this hypoth-
esis, we separated the genes into four groups based on
whether the genes were predicted to be targeted by the
exogenous miRNAs and by highly expressed endogenous
miRNAs. Both the first (T +Endo) and the second (T
-Endo) groups consist of genes targeted by exogenous
miRNAs, whereas the third (NT +Endo) and the fourth
(NT -Endo) groups consist of genes without exogenous
miRNA targets. The second word in the group names
indicates that the group contains either genes targeted by
endogenous miRNAs (+Endo) or genes without endogen-
ous miRNA targets (-Endo) (Additional file 1, Table S12;
see Methods). Specifically, we used two of the four
groups, T -Endo and T +Endo, for statistical analysis. We
only used eight transfected experiments and excluded
two inhibition experiments because Selbach locked
nucleic acid (LNA) and Linsley 2’-O-methyl (OME)
experiments inhibited endogenous miRNAs.

Consistent with our hypothesis, there were no T
-Endo genes that belonged to the Very Long sub-group
in any of the eight experiments (Figure 2A; Additional
file 1, Table S13). For the other sub-groups of 3° UTR
length, we tested whether T -Endo genes were more
down-regulated than T +Endo genes (Additional file 1,
Table S13). Although the majority of experiments
showed no significant differences for the subgroups, T
-Endo genes were significantly more down-regulated
than T +Endo genes for the sub-group Long in three of
eight experiments. Moreover, the only other significant
difference was for the Med Long sub-group on the Sel-
bach dataset, where T -Endo genes again were signifi-
cantly more down-regulated than T +Endo genes. These
results suggest that genes with a very long 3° UTR are
less affected by exogenous miRNAs than are other genes
because these genes have a higher chance of being
under the influence of endogenous miRNAs.
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Figure 2 Endogenous miRNAs tend to target genes with long
3’ UTRs and exogenous miRNAs target highly expressed genes
that had a small influence of endogenous miRNAs. Two
cumulative density plots of the log-ratio values show the miRNA
down-regulatory effects on sub-groups of (A) 3" UTR length with
the Grimson dataset and (B) mRNA expression level with the
Jackson dataset for ectopically expressed miRNA or siRNA target
genes that were separated into T +Endo (T +E), T -Endo (T -E), NT
+Endo (NT + E), and NT -Endo (NT -E). miRNA, microRNA; mRNA,
messenger RNA; siRNA, small interfering RNA; UTR, untranslated
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region.

Sample features: PAR-CLIP data show that endogenous
miRNAs target most mRNAs with long 3’ UTR

To further test whether endogenous miRNAs target
most mRNAs with very long 3" UTR, we analyzed the
data from an experiment that used Photoactivatable-
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Ribonucleoside-Enhanced Crosslinking and Immunopre-
cipitation (PAR-CLIP) of the four human Argonautes
(AGOL1-4, also known as EIF2C1-4) to identify miRNA
binding sites [16]. We mapped PAR-CLIP-supported
AGO binding sites in 3’ UTR regions and for each of
the five different sub-groups defined by 3’ UTR length,
we counted the number of genes with binding sites
(Table 2). We found more AGO binding sites in long 3’
UTR genes (Very Long and Long) than in short 3’ UTR
genes (Med Long, Med Short, and Short) when com-
pared with all available RefSeq genes (P-values < 2.2e-
16, Fisher’s exact test for all four AGOs). Specifically, of
the five subgroups, the genes with very long 3" UTRs
(Very Long) had the highest fraction of genes with AGO
binding sites and this fraction decreased with decreasing
3’ UTR length (Table 2). These results support that
endogenous miRNAs preferentially target mRNAs with
very long 3° UTR.

Sample features: competition with endogenous miRNAs is
not affected by evolutionary conservation levels of 3’
UTRs

The test results of mRNA target features showed no
consistent evidence that genes in any sub-group of 3’
UTR conservation were significantly more down-regu-
lated than were the genes in the rest of the sub-groups
(Additional file 1, Table S4). We, therefore, did not
expect to find consistent patterns of interaction between
the competition effect and 3° UTR conservation. Indeed,
when we tested whether T -Endo genes were more
down-regulated than T +Endo genes in the sub-groups
of 3" UTR conservation, the test showed no consistent
trends across sub-groups; rather, the tests indicated con-
sistent differences between experiments, as all sub-
groups were significant on the Lim, Jackson, and Sel-
bach datasets (Additional file 1, Table S14). These

Table 2 PAR-CLIP data show that endogenous miRNA
tend to target mRNAs with long 3’ UTR

Very Long Med Long Med Short Short
Long

AllRef 917 6194 6201 6198 6201

AGO1 787 3757 2371 1123 471
(85.82%) (60.66%) (38.24%) (18.12%) (7.60%)

AGO2 320 1010 428 (6.90%) 148 (2.39%) 64 (1.03%)
(34.90%) (16.31%)

AGO3 883 4800 3332 1804 639
(96.29%) (77.49%) (53.73%) (29.11%) (10.30%)

AGO4 713 3087 1510 639 167
(77.75%)  (49.84%) (24.35%) (10.31%) (2.69%)

The table shows the total number of genes (AllRef) and the number of
Argonaute-bound 3’ UTRs (AGO1-4) for each sub-group defined by 3’ UTR
length (see Methods). Values in brackets indicate the percentage of all genes
in the sub-group that have AGO binding sites. miRNA, microRNA; mRNA,
messenger RNA; PAR-CLIP, Photoactivatable-Ribonucleoside-Enhanced
Crosslinking and Immunoprecipitation; UTR, untranslated region.
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results suggest that competition between endogenous
and exogenous miRNAs is unaffected by the levels of
evolutionary conservation on 3 UTRs.

Sample features: competition with endogenous miRNAs
has a strong impact on genes with medium or higher
mRNA expression levels

As endogenous miRNA regulation mostly reduces target
mRNA expression [8,26,27], miRNA target genes with
low mRNA expression levels would more likely be
under strong regulation by endogenous miRNAs. Simi-
larly, miRNA target genes with high mRNA expression
would less likely be under strong endogenous miRNA
regulation. Consequently, we expected lowly expressed
mRNAs to be less affected by competition with exogen-
ous miRNAs than were highly expressed mRNAs.
Indeed, T -Endo genes were significantly more down-
regulated than were T +Endo genes for high or moder-
ate mRNA expression levels (Very High, High, and
Medium; Figure 2B; Additional file 1, Table S15). More-
over, no experiments showed significant down-regula-
tion for low or no mRNA expression levels (Very Low
and NoExp). As, according to our results, endogenous
miRNAs preferentially target genes with long 3° UTRSs,
taken together, these results support that the genes with
a very long 3° UTR are less affected by exogenous miR-
NAs because most of them are under the influence of
endogenous miRNAs.

Sample features: tests on individual samples support that
the competition effect is strongest for genes with strong
mRNA expression levels

To analyze further the trends of competition effects on
3 UTR length, 3’ UTR conservation, and mRNA expres-
sion level, we tested the difference of miRNA down-reg-
ulation between T -Endo and T +Endo genes on the
140 individual samples instead of the collective experi-
ments. To compare the trends of the test results
between experiments and samples, we again created two
types of counts: (i) the number of experiments that had
significant P-values from the test results of the experi-
ments, and (ii) the number of experiments that had
their Sample level scores greater than either 0.5 or 0
(Additional file 1, Table S16). With a strict threshold of
Sample level scores (> 0.5), the tests on samples showed
no strong support for the trend observed when tested
on the experiments. With a less strict threshold of Sam-
ple level scores (> 0), the tests on samples supported
the trend for mRNA expression level (Pearson r = 0.86;
P-value = 0.03), whereas the 3° UTR length showed
some, but insignificant, support of the experiment-level
results (r = 0.47; P-value = 0.42). The 3’ UTR conserva-
tion showed no correlation with the experiment-level
results (r = -0.10; P-value = 0.9). Together, the results
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indicated that some samples support the result from the
collective experiments that the competition effect more
strongly affects genes with high compared with low
mRNA expression level.

Platform features: microarray datasets can have cryptic
bias towards detecting differential expression in highly
expressed genes

A recent study showed that mRNA expression affects
siRNA efficacy such that lowly expressed mRNAs are
less affected by siRNAs than are highly expressed
mRNAs [15]. Consistent with these results, siRNA and
miRNA target genes with high or medium expression,
as measured by RNA-Seq [25], were significantly down-
regulated compared to the rest of the sub-groups in the
microarray experiments (Figure 1E). However, these
trends were not apparent in the proteomics datasets,
which instead showed significant effects on the lowly
expressed genes (two of three experiments; Additional
file 1, Table S5).
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The cumulative density plots of log-ratio values for the
Grimson microarray and Selbach proteomics datasets
illustrate the differences (Figure 3A, B). The three sub-
groups of very high, high, and medium expression were
left-shifted and, therefore, more strongly down-regulated
relative to the other groups in the Grimson microarray
dataset (Figure 3A). Indeed, the groups’ expression level
appeared to strictly determine the degree of down-regula-
tion, as the very highly expressed genes were more left-
shifted compared to the highly expressed genes and so on.
In contrast, the Selbach proteomics datasets showed no
such trends (Figure 3B); the three sub-groups with the
highest expression levels were similarly affected, whereas
the lowly expressed genes were slightly more down-regu-
lated than the other groups.

As the proteomics experiments relied on detecting
and identifying individual proteins, whereas microarrays
use hybridization signals to infer gene expression, we
reasoned that the differences might be explained by dif-
ferences in the sensitivity of the two methods to detect
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datasets. (C) Barplots show the ratio of the six sub-groups of mRNA expression levels subdivided by predicted exogenous and endogenous
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highly and lowly expressed genes or to detect expression
changes for highly and lowly expressed genes. Whereas
the microarray signals were evenly distributed among all
subgroups of gene expression levels, the proteomics data
showed bias towards highly expressed genes and
detected few very lowly expressed genes (Figure 3C).
These trends were apparent in the other microarray and
proteomics datasets as well (Additional file 1, Figure
S1). When considering expression changes, however, the
proteomics data showed little bias and detected down-
regulated genes independently of their expression level
(Figure 3D). The microarray data, in contrast, showed
strong expression-related bias, such that down-regulated
genes were enriched among the highly expressed genes
and depleted among the lowly expressed genes.

Importantly, these results were independent of miRNA
targeting, as subdividing the genes into four groups based
on whether the genes contained predicted target sites for
the exogenous miRNAs and highly expressed endogenous
miRNAs gave similar results (Additional file 1, Figure S2).
This grouping further illustrated the effects of miRNA tar-
geting, however. Specifically, consistent with miRNAs inhi-
biting mRNA expression, the most highly expressed genes
constituted a smaller percentage of the genes predicted to
be targets for endogenous miRNA (T +Endo and NT
+Endo, Figure 3C) than of the genes predicted not to be
targets (T -Endo and NT -Endo; Figure 3C).

In summary, the exogenous miRNAs’ apparent strong
effects on highly expressed genes within the microarray
data can be explained by technology-related artifacts.
Specifically, our results show that although microarrays
detect lowly expressed genes, arrays have lower sensitiv-
ity for identifying differential expression for such genes
than for highly expressed genes. This is consistent with
previous results [28]. Proteomics data, in contrast, are
biased towards highly expressed genes, but detect differ-
ential expression independently of gene expression
levels. In other words, proteomics fails to detect many
genes with a low expression level but the sensitivity in
detecting differentially expressed genes is similar among
different expression levels, whereas microarrays can
detect genes with a low expression level but the sensitiv-
ity in detecting differential expression is low for these
genes compared with highly expressed genes. Because of
these differences, microarray but not proteomics data
will show that miRNAs on average have a stronger
effect on highly than on lowly expressed genes.

Platform and Sample features: competition with
endogenous miRNAs has a stronger impact on regulation
than has dilution from high overall target expression

A recent study has reported that when over-expressing
miRNAs, a high overall expression level of predicted tar-
gets reduces the miRNA’s average regulatory effect - the
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so-called target dilution effect [22]. Arvey and colleagues
mainly used the total mRNA expression level to test the
dilution effect, but they also suggested that other
approaches were almost equally effective, such as the
total number of target sites [22]. To test the dilution
effect on the samples, we, therefore, used the number of
target sites instead of total mRNA expression levels, as
these values were very highly correlated (r = 0.973;
Additional file 1, Figure S3) and also because mRNA
expression data were unavailable for the HCT116 and
DLD-1 cell-lines used in the Linsley experiment. Our
results confirmed a significant correlation between the
total number of target sites and the average log ratio of
predicted miRNA targets (r = 0.369; P-value < 0.001;
Figure 4A).

Targeting by endogenous miRNAs influences both the
genes’ expression levels before transfection (Figure 3D)
and response to exogenous miRNAs after transfection
(Figure 2). We therefore reasoned that part of the
observed correlation could be related to interactions
between endogenous miRNAs and the exogenous, ecto-
pically expressed miRNA because some exogenous
miRNA target genes also targeted by endogenous miR-
NAs were potentially up-regulated because of the com-
petition effects. Such interactions could be further
compounded by the microarrays’ bias towards detecting
differential expression among highly expressed genes
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Figure 4 Genes without target sites for endogenous miRNAs
show less dilution effects than does the complete set of
potential targets. (A) The scatter plot shows the average log ratios
for predicted miRNA and siRNA targets as measured by microarrays
of 90 over-expression experiments (55 miRNAs and 35 siRNAs) as a
function of the miRNAs" and siRNAs’ total number of target sites.
The line is based on a linear regression and indicates that there is a
significant correlation between the total number of target sites and
average log ratio (r = 0.37; P < 0.001). (B) The scatter plot shows the
average log ratios for the subset of genes that have no predicted
target sites for endogenous miRNAs as a function of the miRNAs'
and siRNAs' total number of target sites (r = 0.22; P = 0.068). Only
the 70 samples assayed in Hela were included. In both plots, red
circles represent miRNAs, and blue triangles represent siRNAs.
miRNA, microRNA; siRNA, small interfering RNA.
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(Figure 3E). Arvey and colleagues based their conclu-
sions on microarray data and they also reported that for
most transfected miRNAs or siRNAs (166 of 181 tested;
P-value = 2e-33, sign test), highly expressed genes are
more down-regulated than are lowly expressed genes
[22]. To eliminate such interactions between the endo-
genous and exogenous miRNAs, we calculated the cor-
relation between the total number of miRNA sites and
the average log ratio of the genes that were predicted
only to be targets for the exogenous miRNAs. The cor-
relation was not significant (r = 0.22; P-value = 0.067;
Figure 4B), indicating that when considering the average
effects of exogenous, ectopically expressed miRNAs,
endogenous miRNA regulation (competition [21]) is
more important than overall target expression levels
(dilution).

Regression analysis: linear regression confirmed trends
from individual feature analyses

To investigate further how the different features collec-
tively contributed to log ratio changes of gene expres-
sion, we built a linear regression model with eight
factors per mRNA target. These eight factors repre-
sented our previous target, sample, and platform level
features (Table 3). To create the model, we first calcu-
lated the eight factors for all predicted miRNA or
siRNA target genes and transformed the factors’ value
range to [0, 1], to make regression coefficient values
easily comparable. Second, we negated all log-ratio
values for the transfection experiments so that a positive
coefficient meant that a high value for the factor con-
tributed positively to gene down-regulation. Third, we
built a linear regression model with the eight factors on
the set of predicted miRNA and siRNA target genes
from the ten experiments (R* = 0.040; R* = 0.040, when
adjusted by the number of records and the number of
terms).

Table 3 Nine factors for linear regression
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The model showed that seven of the factors signifi-
cantly contributed to log ratio changes, although to dif-
ferent extents (Figure 5; Additional file 1, Table S17).
Consistent with published results that multiple miRNA
target sites enhance miRNA down-regulation [27], the
number of target sites (#site_m) was the strongest fac-
tor, and consistent with our non-parametric tests,
mRNA expression (exp) had the second largest coeffi-
cient. Furthermore, 3° UTR length (In3), the number of
target sites for endogenous miRNAs (#endo_m), and the
total number of target sites per sample (#site_s) had
strong negative coefficients, whereas transfection com-
pared with inhibition experiments (e_oe) had, as
expected, a positive coefficient. Partly contrary to the
non-parametric analyses, however, 3’ UTR conservation
(cs3) was consistently and strongly associated with tar-
get knock-down, but this result likely reflects the fact
that highly conserved 3’ UTRs were strongly associated
with target knock-down in four of the ten experiments
(Figure 1).

Regression analysis: factor crossing in the linear model
confirmed that several factors have combined effects on
miRNA down-regulation

Based on our analyses of the individual target, sample,
and experiment features, we expected that some factor
pairs such as mRNA expression (exp) and proteomics
compared with microarray experiments (p_ma), the
number of target sites for the exogenous small RNA
(#site_m) and endogenous miRNA (#endo_m), and 3’
UTR conservation (cs3) and transfection compared with
inhibition experiments (e_oe) had strong combined
effects. To investigate this possibility, we extended our
simple linear model to include all second-order interac-
tions, such as In3 * c¢s3, In3 * exp, and so on. This
extension slightly increased the R* of the model (R* =
0.047; adjusted R* = 0.046).

Factor Description Values

In3 Target's 3" UTR length 0~1

cs3 Target's overall 3" UTR conservation 0~1

exp Target's mRNA expression level as measured by RNA-Seq. 0~1

#site_m The number of miRNA or siRNA target sites in the target's 3" UTR 0~1

#endo_m The number of target sites for endogenous miRNAs in the target's 3" UTR 0~1

#site_s The total number of miRNA or siRNA target sites in all the potential target 3' UTRs 0~1

p_ma Binary variable stating whether the target’s fold change was measured by microarray or proteomics 1: Microarray
0: Proteomics

e_oe Binary variable stating whether the target's fold change was measured after miRNA transfection or inhibition 1: Transfection
0: Inhibition

ts_score mMRNA level TargetScan scores. Only used in the last regression model. 0~1

All values are either in a range between 0 and 1 (0~1) or binary (0 or 1). miRNA, microRNA; mRNA, messenger RNA; siRNA, small interfering RNA; UTR,

untranslated region.
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Figure 5 Coefficients of a linear regression with eight factors.
The dot plot shows the coefficients of the liner model with formula:
-log ratio = In3 + ¢s3 + exp +isite_m + #endo_m + #site_s +
p_ma + e_oe. The dot size shows -logq of the coefficient’s P-value.
Positive coefficients associate with miRNA down-regulation. miRNA,
microRNA.

Although directly comparing coefficients was less
straightforward than for the simpler model without fac-
tor interactions because of different range distributions
for combined factors, there were still several factors that
had significantly higher or lower coefficients than the
others (Additional file 1, Figure S4 and Table S18). The
number of target sites for the ectopically expressed
miRNA or siRNA (#site_m) had the highest coefficient,
whereas the interaction between #site_m and the num-
ber of target sites for endogenous miRNAs (#endo_m)
had the most negative and most significant coefficient.
Consistent with the importance of the number of target
sites for regulation, most factor combinations that
included #site_m were significant. These results confirm
that the number of target sites (#site_m) is the most
important factor to explain log ratio changes, but that
several other interacting factors and especially competi-
tion with endogenous miRNAs (#endo_m) influence the
resulting target knock-down.

Of the other factors, target expression (exp) was still
among the most significant single factor. Moreover, con-
sistent with our previous results, the coefficients for
exp’s interaction with the two experiment factors (p_ma
and e_oe) were strong, significant, and positive. In con-
trast, exp by itself or interacting with 3° UTR length
(In3) had a significant negative coefficient. Conse-
quently, our results suggest that when experiment-
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related features are factored out, miRNAs do more
strongly affect lowly than highly expressed genes.

As for the remaining features, both In3 and cs3
showed significant interactions with expected features.
Especially cs3 showed strong and significant interactions
with many factors (all except In3, exp, and p_ma), which
likely explains the conflicting results for 3" UTR conser-
vation in the individual feature analyses.

Regression analysis: target site-dependent features, as
modeled by TargetScan scores, show strong interactions
with site-independent features

So far, our regression models and analyses considered
all stringent seed sites as equally important target sites
(see Methods), but different features of individual target
sites, such as the seed type, the site’s AU context, the
site’s location in 3" UTR, and additional pairing between
the miRNA 3’ end and mRNA, do affect miRNA target-
ing [18]. We therefore extended our regression model to
include TargetScan [18] scores (see Methods) to deter-
mine how the predicted effects of individual miRNA tar-
get sites affect and interact with the mRNA, sample, and
platform level features in our model.

A simple regression model with only TargetScan scores
had R? = 0.043, which was very similar to the previous
models with eight factors (R* = 0.040 and R* = 0.046 for
the simple and combined effects models, respectively). In
contrast, a simple regression model that included all the
nine factors showed increased R* (R* = 0.071; adjusted R*
= 0.071). The most significant single factor in this model
was TargetScan score (ts_score; Figure 6; Additional file 1,
Table S19). Most factors showed very similar trends com-
pared with the previous model with eight factors (Figure
5), except for the number of target sites for the ectopically
expressed miRNA or siRNA (#site_m) which showed
decreased importance. This decrease can be explained,
however, by TargetScan modeling total mRNA regulation
as the sum of the scores for individual target sites; Tar-
getScan scores (ts_score) and the number of target sites
for the ectopically expressed miRNA or siRNA (#site_m)
are strongly correlated (r = 0.42; P-value < 2.2e-16).

Taking all second-order interactions into account
further improved the model (R* = 0.093; adjusted R* =
0.092) and TargetScan score combined with most other
factors (except #site_m) showed significant coefficients
(Additional file 1, Figure S5 and Table S20). Together,
these results show that although target site-dependent
features, such as those modeled by TargetScan, are
important for miRNA targeting, target mRNA, sample,
and platform level features are also important for cor-
rectly interpreting miRNA high-throughput experiments.
Specifically, in our analyses, target site-dependent and
-independent features explain about the same amount of
variation in target gene expression.
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Figure 6 Coefficients of a linear regression with nine factors.
The dot plot shows the coefficients of the liner model with formula:
-log ratio = In3 + ¢s3 + exp +i#site_m + #endo_m + #site_s +
p_ma + e_oe + ts_score. The dot size shows -log;q of the
coefficient's p-value. Positive coefficients associate with miRNA
down-regulation. miRNA, microRNA.

CpG frequency, and developmental and housekeeping
genes: overall gene expression is a major confounding
factor when analyzing microarray data
As studies reported that miRNAs preferably target the
high-CpG (CpGH) genes [14] and developmentally regu-
lated (Dev) genes [3] and also tend to avoid targeting
housekeeping (HK) genes [2,8], we expected the CpGH,
Dev, and non-housekeeping (Non-HK) genes to be
strongly down-regulated in the experimental data. To
test miRNA down-regulation of these features, we split
them into smaller sub-groups and used predicted
miRNA or siRNA target genes to test whether any sub-
group was more down-regulated than the others (Figure
7). As expected, the CpGH genes were significantly
affected (Figure 7A; Additional file 1, Table S21), but we
observed the opposite to the expected for the Dev and
Non-HK genes (Figure 7B, C; Additional file 1, Tables
S22 and S23). Importantly, only the microarray data
showed these unexpected differential effects. The pro-
teomics data showed slightly stronger effects on the Dev
and Non-HK genes, although only one of four compari-
sons was significant (Additional file 1, Tables S22 and
S23). We, therefore, reasoned that the results could be
related to the bias of the microarrays toward detecting
differential expression among highly expressed genes.
Consistent with this hypothesis, non-parametric tests
to find the characteristics of CpG, HK, and Dev showed
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Figure 7 CpG-rich genes, non-developmental genes, and
housekeeping genes appear to be strong miRNA targets in
microarray experiments. We subdivided all RefSeq genes into sub-
groups based on three different features: CpG frequency (CpG), and
whether the genes were developmental (Dev) and housekeeping
(HK) genes (see Methods). See Figure 1 for a description of the heat
maps. MiRNA, microRNA.

that CpGH and HK genes had more highly expressed
genes than the other sub-groups and also showed that
Dev genes had more lowly expressed genes (Table 4).
We, therefore, concluded that the overall expression
level of the genes was the major factor behind the
observed differences within the CpG, Dev, and HK
groups.

Conclusions

We analyzed the average regulatory effects that ectopi-
cally expressed miRNAs or siRNAs have on large gene
sets and identified two strong factors. First, competition
between endogenous miRNAs and the ectopically
expressed RNAs have a strong impact on the targets’
regulatory response. Genes with very long 3" UTRs, for
example, are likely targeted by endogenous miRNAs and
therefore are less affected by exogenous miRNAs than
are genes with shorter 3 UTRs. Second, target gene
expression is a strong confounding factor when
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Table 4 P-values of multiple Wilcoxon rank-sum tests on
three miRNA target features for CpGH, House-keeping,
and Developmental genes

Gene type Feature Greater Less
CpGH 3" UTR Length  3.85E-096 *
3" UTR Consv 2.13E-206 1
mMRNA Exp 0 o
Development 3" UTR Length  846E-017 *
3"UTR Consv  2.11E-051 *
mRNA Exp 0.989438416 0010561646  *
Housekeeping 3" UTR Length 1 1.89E-020 *
3" UTR Consv 0469643425 0.530357925
mRNA Exp 1.57E-091 o

Lower P-values in the Greater column indicate that the gene set of the Gene
type overall has longer 3’ UTR lengths, more conserved 3’ UTRs, or stronger
mRNA expression than has the rest of the human protein coding genes.
Lower P-values in the Less column indicates the opposite characteristics; that
is, shorter 3" UTR lengths, less conserved 3" UTRs, or lower mRNA expression.
CpGH, high-CpG; Consv, conservation; Exp, expression; miRNA, microRNA;
mRNA, messenger RNA; UTR, untranslated region.

analyzing microarray experiments. Target genes with
strong expression levels were significantly down-regu-
lated compared to other expressed genes only in the
microarray experiments. One explanation is that some
genes are highly expressed simply because they are less
targeted by endogenous miRNAs, and, therefore, ectopi-
cally expressed miRNAs have stronger down-regulating
effects on these genes. Consistent with this explanation,
miRNA transfection experiments give stronger target
expression changes than do miRNA inhibition
experiments.

Another explanation is that microarrays, compared
with high throughput proteomics, report significant
expression data for many more lowly expressed genes.
This technological difference means that microarrays
can detect more differentially expressed genes than can
high throughput proteomics. However, microarrays gen-
erally detect less differential expression for lowly
expressed genes than for highly expressed genes. Conse-
quently, microarrays will find a smaller fraction of the
lowly expressed genes than of the highly expressed
genes to be differentially expressed. The result is that
when using microarray data to compare average down-
regulation of miRNA-targets among housekeeping genes
and developmentally regulated genes - genes that have
high and low average expression levels, respectively -
the average down-regulation is stronger for housekeep-
ing genes than for developmental genes. This difference
is contrary to the general consensus within the field [7]
and to our analyses of high-throughput proteomics data
which indicate that developmentally regulated genes are
more likely miRNA targets than are housekeeping
genes. Supporting this, our regression analysis shows
that when such experiment-related confounding factors
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have been taken into account, miRNAs more effectively
knock down lowly expressed than highly expressed
genes.

These results suggest that it is important to consider
multiple factors when it comes to assessing miRNA tar-
geting effects. One example of this relates to the so-
called target dilution effect. A previous analysis has
reported that the total expression level of target candi-
dates for ectopically expressed miRNAs affects the tar-
gets’ average knockdown such that high total expression
gives low average knockdown [22]. Our analyses, how-
ever, show that some of this dilution effect can be
explained by interactions with endogenous miRNAs.
Consequently, it is very important to consider what
genes are already targeted by endogenous miRNAs
when designing and interpreting high throughput
miRNA or siRNA experiments.

In summary, our results can explain the results from
several recent studies that have analyzed features that
are important for miRNA regulation and found that the
importance of 3° UTR length, conservation, and target
gene expression depend on the technology used to mea-
sure miRNA targeting. Our results urge special caution
when using microarray data to compare average regula-
tory effects between groups of genes that have different
average gene expression levels, such as high and low
CpG genes and housekeeping and developmentally regu-
lated genes.

Methods

Data retrieval

miRNA annotation and miRNA seed types

We downloaded the annotations of human miRNAs,
mature miRNAs, and miRNA families from miRBase
(release 12.0) [29].

Microarray and proteomics datasets

We downloaded four microarray datasets, the Jackson
[24], Lim [17], Grimson [18], and Linsley [30] from the
Gene Expression Omnibus (GEO) database [GEO:
GSE5814, GEO:GSE2075, GEO:GSE8501, GEO:
GSE6838] [31], and two proteomics datasets, Selbach
[19] and Baek [20], from the original publications along
with the corresponding microarray datasets. In total, we
used six microarray and two proteomics datasets. Sam-
ples from both microarray and proteomics used in this
study are listed in Additional file 1, Table S2.

3’ UTR sequence and conservation

We downloaded the RefSeq transcripts (hgl8), human
chromosome sequences, and multiz 17-way [32] for
conserved sequences from the University of California,
Santa Cruz (UCSC) Genome Browser [33]. The posi-
tional data used to generate nucleotide sequences were
the exon positions from RefSeq for the 3" UTR region.
We selected the longest 3" UTRs when a RefSeq entry
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had multiple transcripts. In addition to the human
sequences, we generated 3" UTR sequences conserved in
human, mouse, and rat (HMR) from multiz 17-way.
mRNA expression in HeLa

We used replicate 1 of the ENCODE Caltech RNA-Seq
data [25] from USCS for the mRNA expression in HelLa.
Housekeeping and developmental genes

We obtained housekeeping genes from a list generated
by a Naive Bayes classifier [34], and the developmental
genes from the Gene Ontology [GO:0032502] [35].
Endogenous miRNAs in Hela

We used the Mammalian microRNA Expression Atlas
[36] to define the endogenous miRNAs in HeLa. For
endogenous miRNAs, we selected the top ten highly
expressed miRNA families and used the miRNAs that
belong to these miRNA families. We used three strin-
gent seed types - 8mer, 7mer-Al, and 7mer-m8 - to
search the candidate sites of the endogenous miRNAs.
PAR-CLIP

We obtained PAR-CLIP high-throughput sequencing
data of all four AGO proteins from the GEO database
[GEO:GSE21918] [16]. We used positional information
downloaded with the sequence reads and mapped these
positions on 3” UTR regions of all RefSeq genes. We
considered 3" UTRs that had at least one site with the
number of mapped reads greater than or equal to five
to have an AGO binding site.

Data preparation

Data preparation for microarray and proteomics data

We used pre-processed data either from GEO or from
the original publications. All log-ratio values that were
pre-computed in log, were transformed to log;,. Log-
ratio values of two inhibition experiments, Selbach LNA
and Linsley OME, were negated because genes with
positive log-ratio values were potential miRNA targets
for these experiments.

Predicted miRNA or siRNA targets

We separated the genes of each high throughput experi-
ment by target prediction into ‘Target’ and ‘Non-target’
genes. The target prediction method we used was a sim-
ple stringent seed search on the 3 UTRs and a gene
was defined as a ‘Target’ when the gene contained a
seed site for the miRNA or siRNA used in the experi-
ment. We used the previously described three stringent
seed types, 8mer, 7mer-Al, and 7mer-mS8, to define
miRNA targets [7].

3’ UTR sequence length

For the 3" UTR sequence length, we made five sub-groups,
Very Long (> 4,000 nts), Long (1,373 to approximately
4,000 nts), Medium Long (630 to approximately 1,372
nts), Medium Short (248 to approximately 629 nts), and
Short (0 to approximately 247 nts). The first group, Very
Long, was decided from our previous study [13] because it
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showed that the genes with 3’ UTR length longer than
4,000 nucleotides were less targeted by miRNAs. We
sorted the rest of the sequences by 3’ UTR length and
divided them into four equally sized sub-groups.

3’ UTR sequence conservation

For the 3’ UTR sequence conservation, we calculated the
conservation scores for each sequence by counting the
number of conserved nucleotides in the HMR sequences
and then divided the resulting number by the length of
the sequence. We sorted the sequences with non-zero
scores and divided them into three equal sub-groups;
High (> 0.238), Medium (0.054 to approximately 0.238),
and Low (0 to approximately 0.054). The sequences
with zero scores were categorized as NoConsv.

mRNA expression level

We used the average number of tags from Caltech
RNA-Seq as a measure (score) of mRNA expression
levels. We sorted the mRNAs with non-zero expression
scores by score and then divided them into five equally
sized sub-groups; Very High (> 0.2007), High (0.0795 to
approximately 0.2007), Medium (0.0344 to approxi-
mately 0.0795), Low (0.008 to approximately 0.0344),
and Very Low (0 to approximately 0.008). The mRNAs
with zero scores were categorized as NoExp.

CpG frequency in promoters

We defined the promoter regions as 1,000 nucleotides
upstream from the transcription start site. We used a
moving window approach (500 nt window moving 5 nt at
a time) to compute the CpG frequency and classified the
CpG frequency as ‘high’ when at least one 500-nucleo-
tide-window contained > 55% GC content and > 75%
CpG content, low” when none of the windows contained
> 48% CpG content, and ‘medium’ for the rest [37].
Housekeeping and developmental genes

We mapped housekeeping and developmental genes to
RefSeq genes based on gene IDs. Non-housekeeping and
non-developmental genes were the rest of the RefSeq
genes that were not mapped.

Endogenous miRNA targets

We split ‘Target’ and ‘Non-Target’ genes into “With endo-
genous’ and ‘Without endogenous’ to make the T +Endo,
T -Endo, NT +Endo, and NT -Endo gene groups, where
“T” and ‘N'T’ represent ‘Target’ and ‘Non-Target’, whereas
‘+Endo’ and ‘-Endo’ represent “With endogenous’ and
“Without endogenous’. We defined a gene as “With endo-
genous’ when the gene was a predicted targeted for one or
more of the top ten most highly expressed endogenous
miRNA families. The same approach as for predicting
miRNA and siRNA targets was used to predict target
genes for endogenous miRNAs.

Total mRNA expression levels and total number of target
sites for the dilution effects

We calculated both the total mRNA expression and the
number of target transcripts as previously described
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[22]. Specifically, the total mRNA expression was a sam-
ple level sum of the average number of tags from Cal-
tech RNA-Seq for predicted miRNA or siRNA target
genes. The total number of target sites was a sample
level sum of the number of target sites in predicted
miRNA or siRNA target genes.

mRNA level TargetScan scores

The stand alone version of TargetScan was downloaded
from the TargetScan website http://www.targetscan.org.
We then ran TargetScan on the 3’ UTR sequences of
the genes from the ten miRNA high-throughput experi-
ments with corresponding miRNA or siRNA sequences.
The scores of target sites were aggregated by miRNA:
mRNA pairs, and the aggregated scores were negated.
Therefore, a high mRNA-level TargetScan score indi-
cates that the mRNA is a strong candidate for miRNA
down-regulation.

Statistical analysis

Non-parametric tests

We used the log-ratio values from 10 different experi-
ments (Additional file 1, Table S1) that contain 140 dif-
ferent samples (Additional file 1, Table S2) to measure
the contributions of different groups to miRNA target-
ing efficacy. To test the significance level between multi-
ple groups, we performed both one-sided Wilcoxon
rank-sum and one-sided Kolmogorov-Smirnov non-
parametric multiple comparison tests on the log-ratio
values.

Sample level scores

We performed non-parametric tests on 140 samples and
counted the number of samples that had a significant P-
value (< 0.05) to calculate the proportion per experi-
ment as Sample level score.

PAR-CLIP analysis

We merged the five sub-groups of 3" UTR lengths into
the two bigger groups long (Very Long and Long) and
short (Med Long, Med Short, and Short) for all RefSeq
genes and identified potential miRNA target genes
bound by the four AGOs. The numbers of bound genes
in the long and short groups were compared between
each AGO and all RefSeq genes by Fisher’s exact test.
Log, enrichment of down-regulated genes

The enrichment was calculated as the average log ratio
values of down-regulated genes (P-value < 0.01 and log
ratio < -0.01 for microarray, and log ratio < -0.01 for
proteomics) divided by the average log-1ratio values of
all genes.

Linear regression

All factors were normalized to the [0, 1] value range
before building linear regression models. The normaliza-
tion was linear; that is, (feature value - min)/(max -
min), where min and max values were defined for each
factor as In (min: -2.0, max: 2.0), In3 (min: 0, max:
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1000), ¢s3 (min:0, max: 1), exp (min:6.1e-5, max: 64.0),
#site_m (min: 0, max: 20), #endo_m (min: 0, max: 30),
#endo_s (min: 0, max: 6000), and ts_score (min: 0.0,
max: 2.0).

Additional material

Additional file 1: Supplementary information. Additional file 1
contains Supplementary Tables S1-S23 and Supplementary Figures S1-S5.
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