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Abstract

Background: As we are witnessing a great interest in identifying and extracting chemical entities in academic
articles, many approaches have been proposed to solve this problem. In this work we describe a probabilistic
framework that allows for the output of multiple information extraction systems to be combined in a systematic
way. The identified entities are assigned a probability score that reflects the extractors’ confidence, without the
need for each individual extractor to generate a probability score. We quantitively compared the performance of
multiple chemical tokenizers to measure the effect of tokenization on extraction accuracy. Later, a single
Conditional Random Fields (CRF) extractor that utilizes the best performing tokenizer is built using a unique
collection of features such as word embeddings and Soundex codes, which, to the best of our knowledge, has not
been explored in this context before,

Results: The ensemble of multiple extractors outperforms each extractor’s individual performance during the
CHEMDNER challenge. When the runs were optimized to favor recall, the ensemble approach achieved the second
highest recall on unseen entities. As for the single CRF model with novel features, the extractor achieves an F1
score of 83.3% on the test set, without any post processing or abbreviation matching.

Conclusions: Ensemble information extraction is effective when multiple stand alone extractors are to be used,
and produces higher performance than individual off the shelf extractors. The novel features introduced in the
single CRF model are sufficient to achieve very competitive F1 score using a simple standalone extractor.

Background
Automatically extracting information from free text has
been of interest in many fields because the task is too
labor intensive to be carried by humans at scale. Some
of the applications try to identify person names and
locations that appear in news articles, extract product
information from online retailers website, and identify
author and title information in scientific publication.
Scientists have their share of interest in information
extraction. In the case of chemists, they are interested in
identifying chemical entities appearing in scientific pub-
lications and internal reports of companies. Identifying
mentions of chemical entities is crucial for the follow up
task of indexing. Some of the leading companies in the
chemical domain employ teams that manually identify
all chemical entities appearing in their internal reports.

Should identifying chemical entities become feasible
automatically with high accuracy, the extraction tasks
can be done on faster pace, and cover larger collections
of documents.
Many approaches have been proposed to tackle the

problem of automatically extracting information from
free text. The simplest methods relied on dictionaries,
sometimes referred to as gazetteers, that are compiled by
domain experts. Computer programs would check if the
document contains terms that are found in the diction-
ary; for these terms would be extracted as entities. It is,
however, challenging to keep a comprehensive dictionary
that contains all the entities of interest. Furthermore, dic-
tionary based approaches can not identify new terms that
are not in the dictionary. In other words, they fail to gen-
eralize beyond the list of chosen terms.
Rule based systems were later introduced as a step for-

ward from dictionaries. Rule based information extrac-
tion systems define a set of rules that identify mentions
of the entity type of interest. The rules are carefully
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crafted to capture descriptors of the entity that can be
used to describe terms of a given entity type. For exam-
ple, a rule for identifying chemical formulas might be
that the term has no two consecutive small case letters.
Rules can be cascaded and joined with dictionary look up
where the term is inspected for existence in a given dic-
tionary. Although rules provide a way to generalize
beyond dictionaries and identify terms that have not
been seen before, it is daunting to keep the rules up to
date. In fact, crafting the rules in the first place is a very
challenging task in many domains. Efforts were made to
craft the rules automatically using Inductive Logic Pro-
gramming (ILP) [1,2].
Machine learning methods for information extraction

became prevalent in the late 1990s and early 2000s with
the introduction of Maximum Entropy Markov Models
(MEMM) [3] and Conditional Random Fields (CRF) [4].
Both algorithms were applied successfully on information
extraction tasks, achieving improvements in precision
and recall over existing approaches. It seems as if CRF
has taken over other methods for sequence labeling
(information extraction is an application of sequence
labeling, where the sequence is a sentence and the labels
are the classes of interest that a word can take on) mainly
because it solves the label bias problem [4] that other
approaches suffer from, including MEMM. However, in
many scenarios CRF models do not outperform MEMM
models because the large number of parameters that
need to be learned in CRFs might lead to overfitting [5].
In the chemical domain, applications of information

extraction include identifying chemical formulas and
chemical names appearing in research articles and tech-
nical reports. OSCAR3 [6] was one of the early systems
that used automatic information extraction to extract
chemical names and formulas from free text. After that,
many researchers introduced new methods and tools for
extracting and indexing chemical entities [7-11].
One of the main challenges in chemical information

extraction was the lack of annotated corpus in which
mentions of chemical entities within documents are iden-
tified by human experts. Building an annotated corpus is
expensive, and can be challenging to share as the under-
lying documents might not be copyright-friendly. There-
fore, many research teams resort to creating their own
annotated corpus on which machine learning extraction
algorithms were trained and tested. This, however, has
made fairly comparing extraction approaches and sys-
tems challenging because it is hard to isolate the source
of improvement as it might have came from the approach
itself, the features used in the learning algorithm, or the
quality of the training corpus.
This obstacle was mainly addressed in the BioCrea-

tive’s CHEMDNER task with the release of an annotated
corpus of 10,000 PubMed abstracts. The CHEMDNER

challenge had two tasks. The first is to identify all che-
mical formulas and names mentioned within abstracts
of selected PubMed records. Formally it is referred to as
the Chemical Entity Mention (CEM) task. The second is
Chemical Document Indexing (CDI) which requires par-
ticipants to rank all the unique chemical names and for-
mulas within each document. The 10,000 PubMed
abstracts were divided into 3,500 abstracts for training,
3,500 abstracts for development, and 3,000 for testing.
For details about the CHEMDNER task, please refer
to [12].
We have participated in both tasks of the CHEMDNER

challenge by submitting 5 runs for each task [13]. For the
challenge, our approach involves an ensemble approach
that utilized multiple off-the-shelf extractors and allowed
for combining their output in a probabilistic fashion. The
ensemble framework assigns a probability score to each
extracted entity that depends on which extractors have
identified or failed to identify a given term as an entity.
The individual extractors that were used in the ensemble
approach were: OSCAR4 [10,14], ChemSpot [11,15], and
a modified version of ChemXSeer formula and name tag-
ger [7,8]. The probability score was used later as a confi-
dence measure that allowed for optimizing the extraction
result in respect to either precision or recall. When a
balanced cut off point was selected for confidence, the F1
score is optimized. This paper discusses our contribution
in the CEM task only. For our experiments and results
on CDI please refer to [13].
After the end of the competition we revisited the chal-

lenge tasks to investigate potential sources of improve-
ment. We started by studying the effect of tokenization
on the accuracy of the extractor. The performance of
three prominent tokenizers was studied were it was
found that OSCAR4 had the highest accuracy in tokeniz-
ing the test set of PubMed abstracts. Later, a new Condi-
tional Random Fields extractor was designed using a
unique collection of features that utilizes state of the art
word embedding algorithms along with Soundex code of
each term. Soundex is an algorithm that is usually used
by the USA Census Bureau to encode surnames phoneti-
cally. The generated code contains the first letter of the
surname combined with three digits representing the the
last name phonetically (how do they sound). It is used for
matching names with multiple spellings. The rationale
here for borrowing this last name matching algorithm is
that many chemical names tend to sound similar, albeit
being spelled and structured differently. To the best of
our knowledge, this is the first work that utilizes Soundex
code to identify chemical entities.
Using the new extractor and the features, we are able

to achieve F1 score of 83.3% on the test dataset without
doing any post processing on the tags. In the challenge
task, most of the top performing teams carried a post
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processing step that was optimized for this dataset only.
As we are interested in building a general extractor, we
did not do any post processing to boost the F1 score.
The CHEMDNER annotation guideline lists abbrevia-
tions to chemical entities as valid entity. However, we
did not implement or tackle the problem of identifying
abbreviations because we believe it is a different pro-
blem that can be solved with existing third party solu-
tions such as [16]. Given that the best performing team
obtained an F1 score of 88% using multiple extractors
and sophisticated post processing and abbreviation
matching algorithms, we believe our system achieves a
very competitive F1 score as a standalone system that
can be easily used as an API or as a program. The
source code has been released on Github: https://github.
com/SeerLabs/chemxseer-tagger

Methods
The Methods is split into two sections. In the first sec-
tion, the approach used during the competition is
described in detail, while the second section describes
the new extractor created after the competition which
we call ChemXSeer Tagger 2.0.

Ensemble extraction - pre competition
Our interest was initially in the Chemical Entity Mention
(CEM) task as it is the prerequisite to the following Che-
mical Document Indexing (CDI) task. We started by run-
ning a distribution of ChemXSeer’s formula and name
extractor [7-9] that is released for the general public on
the training and development datasets. The tagger is
based on Conditional Random Fields (CRF) [4] models,
with additional rules for pre and post processing docu-
ments. The off-the-shelf ChemXSeer tagger was originally
trained on a subset of papers from the Royal Society of
Chemistry (RSC). The extractor performed well when
evaluated on precision, but the mediocre recall ended up
penalizing the overall F1 score.
We then explored the use of other open source and

free chemical information extraction systems, in particu-
lar OSCAR4 [10,14], ChemSpot [11,15], Reflect [17],
Whatizit [18], and MiniChem [19], on the BioCreative
dataset. ChemSpot [11] and OSCAR4 (Originally we used
the standard setting of OSCAR4, but experiments with
the PubMed setting yielded similar results) [10] were
promising since the former’s result had high F1 score,
and the latter’s reported high recall compared to the
other extractors. To balance the performance and boost
both the precision and the recall, we chose two paths to
explore. First, modify ChemXSeer’s tagger and retrain it
on the corpus at hand since the distribution of vocabu-
lary might be different in the BioCreative dataset from
the original Royal Society of Chemistry (RSC) articles
that were used to train ChemXSeer’s CRF. The second

was to merge the results from all the aforementioned tag-
gers along with ChemXSeer in a way that would improve
recall, while sustaining high levels of precision.
Modified ChemXSeer
ChemXSeer utilizes two CRF modules, one for extract-
ing formulas and another for extracting chemical names.
We created a new unified CRF extractor for all chemical
entities. The unified extractor merges features that were
used for chemical formulas and chemical names. The
used features include

• The word itself
• Character level n-grams
• Prefix, postfix, inclusion of punctuation, has
superscript
• Regular expressions to match alphanumeric pat-
terns such as the state of capital letters in the word
(starts with, mixed caps, ends with cap), the occur-
rence of digits
• Dictionary look up against a collection of chemical
names, chemical elements, known symbols and
abbreviations

We also use a window of size n for features of the
previous and following n words to be included in each
word’s features, where n is set to 1 or 2 based on the
feature. After tokenization with the ChemXSeer chemi-
cal tokenizer which is based on Lucene StandardAnaly-
zer[20], each token is assigned to one of the following
classes: {B, I, O}, where B denotes a start of chemical
entity, I denotes a continuation from the previous entity,
and O for everything else. Three models are created for
the purpose of evaluation, one is trained on the training
data, the second is trained on the development dataset,
and the third is trained on both training and develop-
ment datasets.
After tagging the sequence of words in a document,

those identified as class B or I are passed to a chemical
entity parser which validates that the token is actually a
chemical entity. Also we compile a list of common false
positives which we denote to as a blacklist. The list can
be found on code repository website. An entity candi-
date is ignored if it is found in the blacklist.
Ensemble extraction
We run all the three extractors, ChemxSeer, OSCAR4,
and ChemSpot, on the datasets and combine their out-
put as follows. Let token t be identified as a chemical
entity by at least one of the extractors where t is defined
as an offset and length only therefore it can refer to uni-
gram or multi-gram token. Assume we have n chemical
entity extractors, then we are interested in measuring
the probability of t being an actual entity given the pre-
dictions from the n extractors. That is, we would like to
estimate
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P(t = Entity|E1..En) (1)

where Ei is an indicator random variable representing
the prediction of chemical entity extractor i, i ∈ {1, n},
for the token t. This represents a discriminative model
that tries to infer t given all the results form E1..En. Luck-
ily, estimating the probabilities and the final conditional
probability is not hard because it follows from the perfor-
mance of each extractor on the annotated dataset. In the
case of a single extractor i, we can estimate P(t|Ei) as the
precision of extractor i on the annotated corpus. When
two extractors are used, i and j, the conditional probabil-
ity P (t|EiEj) can be estimated by computing the precision
resulting from intersecting the list of chemical entities
identified by extractor i and j. P (t|EiEj) is interpreted as
the probability of correctly identifying a chemical entity
when both extractors i and j identified t as a chemical
entity. In other words, both extractors are used to iden-
tify chemical entities, and the intersection of their output
is used to compute the precision, which is the estimated
conditional probability. Finally, estimating P(t|EiEj) ,
meaning that extractor i has identified t as a chemical
entity while extractor j has not identified it as such, is
carried by computing the precision resulting from extrac-
tor i and not j. In other words, it is the precision of an
extractor whose output is given by {x : x∈i∧x ∉ j}. This
approach is generalized to estimate the probabilities
using n extractors.
For example, let CO2 be a token that was identified by

ChemSpot and OSCAR4 only where ChemXSeer failed to
recognize it as a chemical entity. So Echemspot = 1, Eoscar =
1, and Echemxseer = 0. The confidence of the term CO2 is
given by

P(CO2|Echemspot = 1,Eoscar = 1,Echemxseer = 0) = Precision(Y)

Y = {x : x ∈ chemspot ∧ x ∈ oscar ∧ x /∈ chemxseer}
So Y is an extractor whose output results from the inter-

section between OSCAR4 and ChemSpot, minus
ChemXSeer.
Since there are 2n possible combination for the output of

extractors, we need to estimate 2n – 1 parameters for the
probabilistic framework to output probability for every
possible combination (note that we do not need to esti-
mate the probability when none of the extractors identifies
a token to be a chemical entity). While this scales expo-
nentially, it is actually quite easy and fast to estimate the
parameters because the expensive part is the extraction
itself, and not merging or intersecting results. Since the
extraction is done before hand, estimating the parameters
only takes fraction of the time needed for extraction. In
our case, we have used 3 taggers only, hence there was 7
parameters to estimate.
Ensemble information extraction has been applied

before in many applications, including the CHEMDNER

challenge that we participated in. One of the popular
methods in using multiple extractors together is to feed
the output of one extractor as an input to a second
extractor to be used as a feature. This approach is often
referred to in the literature to as stacking [21,22], where
multiple extractors are stacked on top of each other
such that the output of of several base learners is used
as input for the following layer learner. In CHEMDNER
multiple teams applied stacking by using the output of
ChemSpot as a feature, with a CRF model comprising
the final extractor [23-25]. In this case, stacking intro-
duces a serious limitation as the model parameters of
the CRF become highly-dependent on the output from
individual extractors resulting in smaller weight being
assigned to other important features [5]. Another limita-
tion of stacking appears when the extractors use differ-
ent tokenizers and do not allow tokenization to be
performed outside of the classifier software package. In
this case, the tokens are not the same, therefore the
receiving extractor cannot benefit from the output of
the preceding extractor.
Combining the output of multiple extractors in a prob-

abilistic way has been introduced earlier [26]. The
approach used in [26] relies on linear interpolation of the
classifier class probabilities. The final probability is a
weighted average of the individual classifier probability
multiplied by the importance of each classifier. The para-
meters are estimated using cross validation. When the
weights are symmetric, each classifier is given equal vote,
and the problem becomes majority voting by the collec-
tion of extractors. Our method, on the other hand, esti-
mates the actual probabilities of merging the results which
can use certain dependencies between the random vari-
ables. This way, probabilities depend on the combination
of underlying classifiers that generated the output, and not
simply on the number of classifiers that generated that
output which is the case in majority voting. Furthermore,
we do not assume independence of the extractors. This
allows us to capture certain relations like what is the prob-
ability of an entity being a chemical entity when only
ChemSpot and OSCAR4 recognized it as such, while
ChemxSeer failed to? This is more powerful than relying
on the conditional probability when any two extractors
identified the entity as the case of majority voting.

ChemXSeer Tagger 2.0 - post competition
After the end of the CHEMDNER challenge, we seek to
identify areas of improvements that would enhance the
extractor’s performance. We start by examining the toke-
nization process as it is the first step in any information
extraction application. We later focus on crafting new set
of features that would capture the characteristics of chemi-
cal entities. These features are used to build a Conditional
Random Fields extractor.
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Tokenization
Tokenization has a significant effect on the performance of
any information extraction system as tokenizers provide
the tokens on which the extractor operates. However, very
little attention was paid to the quality of the tokenizers in
the CHEMD- NER challenge. Therefore, a study of
the performance of tokenizers is needed to justify using
one tokenizer instead of the other. The performance of
three prominent tokenizers is studied here by examining
how accurately they identify the boundaries of the chemi-
cal entities in the test data set of the CHEMDNER task.
The test set was chosen instead of the training and the
development dataset because the annotations were corro-
borated by a second annotator.
Each tokenizer, ChemSpot, OSCAR4, and ChemXSeer is

run to generate offset and length of each token in the test
corpus. The results of the tokenizers are given in Table 1.
In the table, Correct refer to the number of chemical enti-
ties in the test set that were tokenized correctly by the
tokenizer. In other words, the tokenizer correctly identi-
fied the offset and the end of the token within the docu-
ment in accordance to the tags provided in the test set.
The split correct refers to the number of tokens spanning
multiple words where space is the only allowed word
separator, that were identified correctly by the tokenizer.
Overall, there were 25,351 chemical entities in the test set.
OSCAR4 had the highest accuracy rate in tokenizing che-
mical entities at 87%.
The tokenization accuracy on the chemical entities

provide an upper bound for the highest possible recall by
an extractor using the provided tokenizer without per-
forming any post processing on the identified tokens. So,
the highest possible recall of an extractor using OSCAR4
tokenizer would be 87%, unless this extractor uses post
processing techniques. This helps in explaining the
sources of error and potential areas for improvement
when it comes to designing better extractors.
Since OSCAR4 tokenizer had the highest accuracy, we

adapt it as the default tokenizer in the ChemXSeer Tag-
ger 2.0. The other two tokenizers are available to the
CRF extraction software, but OSCAR4 is the default
tokenizer.

Extractor and features
ChemXSeer Tagger 2.0 uses the Conditional Random
Fields implementation provided in Mallet [27] to iden-
tify chemical entities in the CHEMDNER corpus.
We train the CRF using a “first-order model”, thus

each pair of labels and observations is assigned a weight.
This configuration captures global state information
effectively while at the same time avoid over-fitting.
Limited Memory BFGS algorithm is used to train the
model. Similar to the CRF model developed before the
competition, BIO is used to label the words.
As CRF works on the sentence level to identify the

true labels of the words within each sentence, Apache
openNLP[28] is used to detect sentence boundaries.
Each sentence is then tokenized using OSCAR4 tokeni-
zer. Later, features are extracted to represent each token
in the sentence. The feature classes are described below:
Word embeddings
Often in many information extraction applications, new
terms will show in the test cases that have not been seen
previously in the training dataset. To overcome this chal-
lenge, word embedding features are incorporated while
building the model. The idea behind word embedding is
to assign the words of a chosen corpus into multiple clus-
ters such that all the words belonging to a single cluster
are related to each other. At test time, the cluster Id of
the term is used as a feature allowing the model to link
the term to other terms that appeared previously in the
training dataset using cluster information. Since the
words in each cluster are related, a new unseen word
that belongs to a given cluster that often contains named
entities is likely to be a named entity. Word embeddings
can be thought of as a transformation of the term to a
finite space where elements from this space have been
observed previously during the training phase.
The corpus is usually chosen to be large enough such

that large number of terms will be observed. In addition,
the corpus needs to be representative of the domain of
the documents that contain entities which need to be
extracted. For example, to extract people names and
location information, a corpus about news articles can
be used, while to extract chemical entities, a corpus that
is built with chemical documents is needed.
Many approaches have been proposed to observe word

embeddings features including Brown Clustering [29] and
Word2Vec [30]. In Brown Clustering unigrams are clus-
tered hierarchically based on the bigrams in which they
appear, thus forming a dendogram that is encoded using
Hoffman code. At training and testing, the Hoffman code
or a prefix of the code are used as features to describe the
term. In word2vec each term is transformed into a vector
based on the surrounding terms appearing next to it in a
predefined window. Neural nets are used to infer the vector
space representation of each term. For example, Table 2

Table 1 Accuracy of multiple tokenizers when tested on
the chemical entities of the test set Word Cosine
Similarity

Measure ChemSpot OSCAR4 ChemXSeer

Correct 17149 20491 17869

Split Correct 2379 1744 3190

Total Correct 19528 22235 21059

Incorrect 5823 3116 4292

Accuracy Percentage 77.03% 87.7% 83.06%
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shows the list of words whose vector representation is
similar to calcium when cosine similarly is used as distance
measure. Later, the vector representaiton of each word is
used to cluster the terms using K-Means. Table 3 lists
examples from two clusters. Note that words in cluster 8
are chemical entities.
We run word2vec on a corpus containing 700,000

PubMed abstracts for articles appearing in journals
where the journal name had the word chemistry in it.
The corpus contains 213,030 unique terms, that appear
143,301,537 times. We use the default parameter values
of word2vec and choose the number of clusters to be
1000. A hash map between the terms and the cluster
Ids is created to be used in training and evaluation. As
part of the feature generation, each term will be looked
up in the hash map for the value of the cluster Id. If the
term has not been seen in the corpus, i.e. does not have
a cluster Id, the feature is not set.
Soundex features
Soundex is an algorithm that is used by the USA Census
Bureau to encode surnames phonetically. The generated
code contains the first letter of the surname combined
with three digits representing the the last name phoneti-
cally (how do they sound). Each digit represents a col-
lection of letters that are phonetically similar. Table 4
shows the letter mapping that is used by the Soundex
algorithm implemented at the Census office [31]. If the
word contains more than three encodable letters, which
is the default Soundex implementation, the remaining
letters are ignored.
Soundex is especially effective in matching names with

multiple spellings and overcoming spelling mistakes.
Soundex provides a powerful mechanism for matching

homophones (words that are pronounced similarly but
are written differently). For this reason, we borrow this
technique as many chemical names tend sound similar,
albeit being spelled and structured differently. For exam-
ple, carbon, carbonate, carbonic, and carbonyl all have
the same Soundex code C-615. This transformation
helps the extractor in identifying chemical entities that
did not appear in the training set, but a phonetically
similar entity appeared.
We are not aware of any work that utilizes Soundex

code to identify chemical entities. In our extractor we
use the implementation of Apache openNLP, while we
set the maximum number of allowed digits at 7. Thus
we allow the algorithm to encode more letters than the
typical Soundex implementation. At training and evalua-
tion, each term is converted to its Soundex code, and a
feature is set for each unique value of the Soundex code.
General token derived features
A collection of features are derived from the term itself
and its shape. These are the following:

• The word itself and lower case version of the word
• Regular expressions to identify if the term contains
digits, starts with a capital letter, all capped, all
small, mixed cap and small, ends in a sign, ends in a
number, contains dash, starts with a number
• Character level n-grams of length 2, 3, and 4
• Heuristic to identify formulas by setting a feature
when no two consecutive characters in the term are
small case
• Selected features from neighboring terms
• Whether the term marks beginning of a sentence.
This is useful in distinguishing proverbs that are
capitalized at the sentence beginning from others
that are intentionally capitalized
• NLP features based on BANNER [32] including
lemmatization, and word class conversion

Dictionary look up
Dictionaries are used to generate features corresponding
to the existence of a given term, or part of it, in the dic-
tionary. The main dictionary used was Jochem [33] which
contains more than 1.6 million chemical names that were
captured from multiple databases. The chemical entities

Table 2 Similar words to calcium when sorted by cosine
similarity

Word Cosine Similarity

Ca2 0.838966

Ca 0.692185

Thapsigargin 0.565048

Stores 0.562570

Potassium 0.549055

Magnesium 0.539387

Table 3 Example of word embedding clusters

Term Cluster Id

Tetralinoleoyl 8

thiophosphocholine 8

Phosphoethanolamines 8

y505f 10

Vav 10

Tsad 10

Table 4 Soundex code for English letters

Soundex Code Letters

1 B, F, P, V

2 C, G, J, K, Q, S, X, Z

3 D, T

4 L

5 M,N

6 R

No Code A, E, I, O, U, H, W, Y
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in Jochem were tokenized using OSCAR4 tokenizer
because many of them are multi-term entities that would
not match a unigram token, which is the unit of tagging
in the CRF model. Dictionary tokenization is necessary to
ensure that dictionary look up is effective and to avoid
the need for prefix matching with a huge dictionary like
that of Jochem.
Beyond Jochem, smaller dictionaries were compiled to

capture amino acids and their abbreviations. Another
dictionary was used to match common prefixes and
postfixes that appear in specific groups of chemicals like
organic chemistry. A special dictionary of boost terms
was used to boost certain terms that were occasionally
missed by the extractor. In this extractor, the black list
has been dropped.

Results
In this section the results are presented and discussed
for the classifier used during the competition, and the
CRF classifier developed after the competition.

Competition extractor - ensemble approach
The performance of the ensemble extractor is presented
on both the CEM and CDI tasks. In the ensemble
approach, OSCAR4 was combined with the output of
ChemSpot and a modified version of ChemXSeer. While
ChemSpot and OSCAR4 were used out of the box and
did not make use of the provided training dataset,
ChemXSeer was trained and tested on opposite datasets.
That is, to test ChemXSeer on the development dataset,
the model was built using the training dataset only. The
parameters of Equation 1 were found to be close enough
whether estimated using training or development data-
sets. Therefore, the final test dataset used the develop-
ment estimate probabilities. Table 5 shows the estimated
probabilities when conditioned on all the possible values
for the extractors outcome.
Using the probabilities generated from our probabilis-

tic framework, we can apply cut off points based on the

confidence assigned to each extracted entity. We have
experimented with multiple thresholds and found out
that at low threshold values, the recall is favored. The
precision is favored over recall as the threshold value
increases. Some of the obtained results for the CEM
task are summarized in Table 6. The highest obtained
F-measure was 73% on the development data, and 72%
on training data. Similarly the recall reached a maxi-
mum of 89% for development, and 88% for training.
Interestingly, one will be able to obtain near 73% recall
at 66% of precision. That is, we are able to identify
nearly 3/4 of all chemical entities in a document with
only 1/3 of these identified entities being false positives.
In Figures 1 and 2, we plot precision against various
values of recall for the CEM task using both training
and development datasets.

Post competition - ChemXSeer Tagger 2.0
The single CRF extractor with the novel feature set was
trained using both the training and the development
dataset, and tested on the test set. The test was done on
the CEM task only, as the extractor was optimized for
this task rather than CDI. Multiple runs with different
collection of feature set were conducted, and the best
performance was obtained using the combination of all
the features. The result is shown in Table 7. The F1
score was 83.3%, a significant improvement over pre-
vious standalone extractor performance. It is worth
mentioning that ChemXSeer Tagger 2.0 does not per-
form any post processing or abbreviation matching,
despite the existence of abbreviations in the dataset.
That is because abbreviation matching can be performed
by third party tools without the need to complicate the
code base.

Table 5 Probability of a candidate entity conditioned on
possible values of the indicator random variables for
each of the three taggers used

ChemxSeer OSCAR4 ChemSpot Probability
Estimate on

Dev

Probability
Estimate on

Train

1 0 0 0.252 0.26159

0 1 0 0.089 0.08507

0 0 1 0.249 0.25588

1 1 0 0.82083 0.81755

1 0 1 0.72799 0.67361

0 1 1 0.55869 0.53267

1 1 1 0.93316 0.93386

Table 6 Performance of the ensemble extractor on the
CEM task at various confidence thresholds

Dataset Threshold Precision Recall F-Measure

Dev 0.01 0.31543 0.8924 0.46611

Dev 0.24 0.67406 0.73650 0.70390

Dev 0.25 0.70871 0.71598 0.71232

Dev 0.5 0.79486 0.67544 0.7303

Dev 0.7 0.87369 0.55663 0.6800

Dev 0.8 0.88315 0.52835 0.66116

Dev 0.9 0.93316 0.30973 0.46509

Train 0.01 0.30711 0.88147 0.45552

Train 0.25 0.66208 0.73126 0.69495

Train 0.26 0.78473 0.66680 0.72098

Train 0.5 0.78473 0.6668 0.72098

Train 0.6 0.86928 0.55312 0.67607

Train 0.7 0.88266 0.52568 0.65893

Train 0.9 0.93386 0.31135 0.467
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The effectiveness of the CRF extractor when multiple
set of features are used is shown in Table 8. When
word2vec features are removed, the extractor’s accuracy
drops the most. Soundex features have relatively small
contribution in the presence of word2vec features. How-
ever, varying the Soundex code length have an effect on
the extractor’s accuracy as a very short code is not

powerful in discriminating chemical entities while a very
long code, 100, is counter productive.
ChemxSeer Tagger 2.0 has room for improvement. By

recalling that the tokenizer had an accuracy of 87%,
which is an upper bound on the attainable recall, and
comparing that with the 78% recall that ChemxSeer
Tagger 2.0 achieved, the tagger can still enhance its per-
formance significantly by identifying the missing 10% of
the total entities.

Conclusion
We introduced an ensemble approach for chemical
entity recognition that employs multiple extractors and
output probabilities that represent the confidence score
for each entity. We showed how these probabilities can
be estimated using the training dataset in an effective
way. In implementing this approach, we use a modified
version of ChemXSeer along with ChemSpot and
OSCAR4. Our approach generates probability values
that can be used for thresholding each prediction. This
aspect can be used to trade-off precision vs. recall. With
a higher threshold for probability, our method extracts
highly-accurate entities whereas for optimizing recall, a
lower threshold on probability can be enforced.
We have also conducted a study about the accuracy of

chemical text tokenizers where it was found that
OSCAR4 tokenizer outperform others on the CHEMD-
NER test set. A new extractor, ChemXSeer Tagger 2.0,
is built as a CRF extractor that utilizes OSCAR4 tokeni-
zer. We introduced a set of novel features, including
word embedding and Soundex that are used in building
the CRF extractor which achieves 83.3% F1 score on the
test se without any post processing or abbreviation
matching. ChemXSeer Tagger 2.0 is designed as an API
and can be used as stand alone program. The source
code is available on Github: https://github.com/Seer-
Labs/chemxseer-tagger
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Figure 1 Precision-Recall curves for CEM task on training
dataset.

Figure 2 Precision-Recall curves for CEM task on development
dataset.

Table 7 Performance of ChemXSeer 2

Run Precision Recall F Score

ChemxSeer Tagger 2.0 0.89569 0.78009 0.83390

Table 8 Performance of ChemXSeer 2

Feature Precision Recall F Score

All 0.89730 0.77646 0.83252

All - NLP 0.89749 0.74151 0.81208

All - Word2Vec 0.88993 0.75393 0.81631

All - Soundex 0.89784 0.77342 0.83100

Soundex 3 0.88937 0.76869 0.82464

Soundex 5 0.89647 0.77606 0.83193

Soundex 7 0.89730 0.77646 0.83252

Soundex 100 0.88868 0.76995 0.82507

Khabsa and Giles Journal of Cheminformatics 2015, 7(Suppl 1):S12
http://www.jcheminf.com/content/7/S1/S12

Page 8 of 9

https://github.com/SeerLabs/chemxseer-tagger
https://github.com/SeerLabs/chemxseer-tagger


Authors’ contributions
First author had more contribution.

Acknowledgements
This work is funded by Dow Chemical and National Science Foundation.
This article has been published as part of Journal of Cheminformatics Volume
7 Supplement 1, 2015: Text mining for chemistry and the CHEMDNER track.
The full contents of the supplement are available online at http://www.
jcheminf.com/supplements/7/S1.

Authors’ details
1Computer Science and Engineering, The Pennsylvania State University,
University Park, PA, USA. 2Information Sciences and Technology, The
Pennsylvania State University, University Park, PA, USA.

Published: 19 January 2015

References
1. Craven M, McCallum A, PiPasquo D, Mitchell T, Freitag D: Learning to

extract symbolic knowledge from the world wide web. Technical report,
DTIC Document 1998.

2. Cohen WW, Singer Y: A simple, fast, and effective rule learner. Proceedings
of the National Conference on Artificial Intelligence John Wiley & Sons Ltd;
1999, 335-342.

3. McCallum A, Freitag D, Pereira FC: Maximum entropy markov models for
information extraction and segmentation. ICML 2000, 591-598.

4. Lafferty J, McCallum A, Pereira FC: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. 2001.

5. Sutton C, McCallum A: An Introduction to Conditional Random Fields for
Relational Learning. Introduction to statistical relational learning. MIT
Press 2006, 2.

6. Corbett P, Murray-Rust P: High-throughput identification of chemistry in
life science texts. Computational Life Sciences II Springer; 2006, 107-118.

7. Sun B, Tan Q, Mitra P, Giles CL: Extraction and search of chemical
formulae in text documents on the web. Proceedings of the 16th
International Conference on World Wide Web ACM 2007, 251-260.

8. Sun B, Mitra P, Giles CL: Mining, indexing, and searching for textual
chemical molecule information on the web. Proceedings of the 17th
International Conference on World Wide Web ACM 2008, 735-744.

9. Sun B, Mitra P, Lee Giles C, Mueller KT: Identifying, indexing, and ranking
chemical formulae and chemical names in digital documents. ACM
Transactions on Information Systems (TOIS) 2011, 29(2):12.

10. Jessop DM, Adams SE, Willighagen EL, Hawizy L, Murray-Rust P: Oscar4: a
flexible architecture for chemical text-mining. Journal of cheminformatics
2011, 3(1):1-12.

11. Rocktäschel T, Weidlich M, Leser U: Chemspot: a hybrid system for
chemical named entity recognition. Bioinformatics 2012, 28(12):1633-1640.

12. Krallinger M, Leitner F, Rabal O, Vazquez M, Oyarzabal J, Valencia A:
CHEMDNER: The drugs and chemical names extraction challenge.
J Cheminform 2015, 7(Suppl 1):S1.

13. Khabsa M, Giles CL: An ensemble information extraction approach to the
biocreative chemdner task. BioCreative Challenge Evaluation Workshop
2013, 2:105.

14. OSCAR 4. [https://bitbucket.org/wwmm/oscar4/wiki/Home], last accessed
9/19/13.

15. ChemSpot. , last accessed 9/17/13.
16. Sohn S, Comeau DC, Kim W, Wilbur WJ: Abbreviation definition

identification based on automatic precision estimates. BMC bioinformatics
2008, 9(1):402.

17. Reflect. [http://reflect.ws/], last accessed 9/19/13.
18. Whatizit. [http://www.ebi.ac.uk/webservices/whatizit/info.jsf], last accessed

9/19/13.
19. MiniChem. , last accessed 9/18/13.
20. Lucene. [http://lucene.apache.org/], last accessed 3/25/14.
21. Wolpert DH: Stacked generalization. Neural networks 1992, 5(2):241-259.
22. Florian R: Named entity recognition as a house of cards: Classifier

stacking. Proceedings of the 6th Conference on Natural Language learning.
Association for Computational Linguistics 2002, 20:1-4.

23. Leaman R, Lu Z: Ncbi at the biocreative iv chemdner task: Recognizing
chemical names in pubmed articles with tmchem. BioCreative Challenge
Evaluation Workshop 2013, 2:34.

24. Yoshioka M, Dieb TM: Ensemble approach to extract chemical named
entity by using results of multiple cner systems with different
characteristic. BioCreative Challenge Evaluation Workshop 2013, 2:162.

25. Huber T, Rocktäschel T, Weidlich M, Thomas P, Leser U: Extended feature
set for chemical named entity recognition and indexing. BioCreative
Challenge Evaluation Workshop 2013, 2:88.

26. Florian R, Ittycheriah A, Jing H, Zhang T: Named entity recognition
through classifier combination. Proceedings of the Seventh Conference on
Natural Language Learning at HLT-NAACL 2003. Association for
Computational Linguistics 2003, 4:168-171.

27. McCallum AK: MALLET: A Machine Learning for Language Toolkit. 2002
[http://mallet.cs.umass.edu].

28. Apache OpenNLP. [http://opennlp.apache.org/], last accessed 3/25/14.
29. Brown PF, Desouza PV, Mercer RL, Pietra VJD, Lai JC: Class-based n-gram

models of natural language. Computational linguistics 1992, 18(4):467-479.
30. Mikolov T, Chen K, Corrado G, Dean J: Efficient estimation of word

representations in vector space. 2013, arXiv preprint arXiv:1301.3781.
31. Soundex. [http://www.archives.gov/research/census/soundex.html], last

accessed 3/25/14.
32. Leaman R, Gonzalez G, et al: Banner: an executable survey of advances in

biomedical named entity recognition. Pacific Symposium on Biocomputing
2008, 13:652-663.

33. Hettne KM, Stierum RH, Schuemie MJ, Hendriksen PJ, Schijvenaars BJ, Van
Mulligen EM, Kleinjans J, Kors JA: A dictionary to identify small molecules
and drugs in free text. Bioinformatics 2009, 25(22):2983-2991.

doi:10.1186/1758-2946-7-S1-S12
Cite this article as: Khabsa and Giles: Chemical entity extraction using
CRF and an ensemble of extractors. Journal of Cheminformatics 2015
7(Suppl 1):S12.

Open access provides opportunities to our 
colleagues in other parts of the globe, by allowing 

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours     you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

Khabsa and Giles Journal of Cheminformatics 2015, 7(Suppl 1):S12
http://www.jcheminf.com/content/7/S1/S12

Page 9 of 9

http://www.jcheminf.com/supplements/7/S1
http://www.jcheminf.com/supplements/7/S1
http://www.ncbi.nlm.nih.gov/pubmed/21214931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21214931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22500000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22500000?dopt=Abstract
https://bitbucket.org/wwmm/oscar4/wiki/Home
http://www.ncbi.nlm.nih.gov/pubmed/18817555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18817555?dopt=Abstract
http://reflect.ws/
http://www.ebi.ac.uk/webservices/whatizit/info.jsf
http://lucene.apache.org/
http://mallet.cs.umass.edu
http://opennlp.apache.org/
http://www.archives.gov/research/census/soundex.html
http://www.ncbi.nlm.nih.gov/pubmed/19759196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759196?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Ensemble extraction - pre competition
	Modified ChemXSeer
	Ensemble extraction

	ChemXSeer Tagger 2.0 - post competition
	Tokenization
	Extractor and features
	Word embeddings
	Soundex features
	General token derived features
	Dictionary look up


	Results
	Competition extractor - ensemble approach
	Post competition - ChemXSeer Tagger 2.0

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Authors’ details
	References

