
Tian et al. Journal of Cheminformatics 2013, 5:5
http://www.jcheminf.com/content/5/1/5
RESEARCH ARTICLE Open Access
Drug-likeness analysis of traditional Chinese
medicines: 2. Characterization of scaffold
architectures for drug-like compounds,
non-drug-like compounds, and natural
compounds from traditional Chinese medicines
Sheng Tian1, Youyong Li1, Junmei Wang3, Xiaojie Xu4, Lei Xu1, Xiaohong Wang1, Lei Chen1 and Tingjun Hou1,2*
Abstract

Background: In order to better understand the structural features of natural compounds from traditional Chinese
medicines, the scaffold architectures of drug-like compounds in MACCS-II Drug Data Report (MDDR), non-drug-like
compounds in Available Chemical Directory (ACD), and natural compounds in Traditional Chinese Medicine
Compound Database (TCMCD) were explored and compared.

Results: First, the different scaffolds were extracted from ACD, MDDR and TCMCD by using three scaffold
representations, including Murcko frameworks, Scaffold Tree, and ring systems with different complexity and side
chains. Then, by examining the accumulative frequency of the scaffolds in each dataset, we observed that the Level
1 scaffolds of the Scaffold Tree offer advantages over the other scaffold architectures to represent the scaffold
diversity of the compound libraries. By comparing the similarity of the scaffold architectures presented in MDDR,
ACD and TCMCD, structural overlaps were observed not only between MDDR and TCMCD but also between MDDR
and ACD. Finally, Tree Maps were used to cluster the Level 1 scaffolds of the Scaffold Tree and visualize the scaffold
space of the three datasets.

Conclusion: The analysis of the scaffold architectures of MDDR, ACD and TCMCD shows that, on average, drug-like
molecules in MDDR have the highest diversity while natural compounds in TCMCD have the highest complexity.
According to the Tree Maps, it can be observed that the Level 1 scaffolds present in MDDR have higher diversity
than those presented in TCMCD and ACD. However, some representative scaffolds in MDDR with high frequency
show structural similarities to those in TCMCD and ACD, suggesting that some scaffolds in TCMCD and ACD may
be potentially drug-like fragments for fragment-based and de novo drug design.
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Introduction
Natural products are generally considered as a rich
source of biologically active substances [1]. Many drugs
approved by the Food and Drug Administration (FDA)
directly come from natural products. In the period of
1981–2002, 5% of the 1031 new chemical entities (NCE)
approved as drugs by the FDA are natural products, and
other 23% are natural-product-derived molecules [2].
Historically, 60% of cancer drugs and 75% of infectious
disease drugs are derived from natural products [2].
Because natural products have been selected during evo-
lution to bind to various proteins during their life-cycle,
they are good starting points for drug discovery [3,4].
Traditional Chinese medicines (TCMs) are primarily
based on a large number of herbal formulations that
are used for the treatment of a wide variety of diseases.
The discovery of hits or leads from natural compounds
in TCMs has become a feasible and popular strategy in
modern drug discovery pipelines [2].
With the rapid development of high-throughput screen-

ing (HTS) and combinatorial synthesis, it becomes possible
to generate and evaluate tens of thousands of compounds
in a very short period of time with relatively low cost.
Unfortunately, the new drugs approved by the FDA did
not soar in recent years and even declined slightly, and
even only one de novo combinatorial compound was
approved in the last 25 years before 2007 [5]. This low suc-
cess rate may be partly caused by low chemotype, limited
scaffold diversity and lack of biological relevant scaffolds of
combinatorial compounds [6]. Therefore, searching and
designing molecule collections with novel scaffolds and
high structural diversity will offer more opportunities for
molecules to become leads, and ultimately to become new
drugs. It is believed that natural compounds are a good
source of novel molecular scaffolds [2,5,7-9] and the scaf-
folds derived from natural compounds have preferable or
privileged scaffold architectures [10]. Since the scaffolds
of natural compounds are potentially valuable, how to
characterize and define the scaffolds that are meaningful
for drug design/discovery is the center question we are
facing now. It is well known that ring systems form the
cornerstone of molecules, and they determine the basic
shapes and flexibilities of molecules [11]. In drug design
process, ring systems are usually used as the core or central
scaffolds to build virtual libraries, and the ring systems in
known active compounds can usually be replaced or modi-
fied to find new active candidates by using the “scaffold
hopping” technique [12].
To data, numerous approaches have been developed to

analyze the scaffold architectures of different compound
libraries [9,11,13-18]. In order to characterize the scaffold
diversity of a compound library, a suitable representation
or definition of scaffolds is required. In 1996, Bemis and
Murcko proposed a method to dissect molecules in CMC
into framework which is the union of ring systems and
linkers in a molecule, side chains and linkers (Figure 1).
The graph theory analysis shows that there were 1179
different frameworks present in 5120 known drugs and
the 32 most frequently occurring frameworks accounted
for 50% of the 5120 known drugs [13]. In 1999, Bemis and
Murcko found that there were 1246 different side chains
in CMC that have 5090 compounds and the average num-
ber of side chains per molecule is 4 [14].
In 2001, Lipkus proposed a simple strategy to organize

chemical rings based on three integer descriptors, and
he found that the distribution of 40,182 different ring
topologies derived from a comprehensive collection of
chemical rings from the CAS registry was not compact
and had many significant voids [17].
In 2001, Lee et al. used a two-step protocol to deter-

mine whether natural products contain appealing novel
scaffold architectures for potential use in combinatorial
chemistry [9]. The ring systems were extracted from nat-
ural products and trade drugs and clustered on the basis
of structural similarity in a Self-Organizing Map (SOM),
which demonstrates that current trade drugs and natural
products have several topological pharmacophore pat-
terns in common. Approximately 35% of the ring sys-
tems in trade drugs were present in natural products,
but only 17% of the ring systems found in natural pro-
ducts can be found in trade drugs.
In 2006, Ertl and coworkers investigated the simple

aromatic ring systems present in a set of 149,437 bio-
active compounds and only 780 unique simple aromatic
scaffolds [11]. Additionally, 216 of these scaffolds were
singletons (present only once in the entire bioactive col-
lection). Moreover, only 10 such scaffolds are present in
more than 1% of bioactive molecules and 64 in more
than 0.1%. Self-organizing map (SOM) was then used to
separate 780 scaffolds present in the bioactive molecules
from 575,776 scaffolds present in a virtual library, and
the results demonstrated that the 780 biologically active
scaffolds are sparsely distributed in the chemical space,
forming only a limited number of small, well-defined
“activity islands”.
In 2005, Koch et al. developed a structural classification

of natural products (SCONP), which arranges the scaffolds
present in natural products (NP) in a tree-like fashion.
The NP Scaffold Tree can be used as a strategic and guid-
ing tool for the selection of underlying frameworks for
NP-inspired compound library development [16]. Simi-
larly, in 2007, Schuffenhauer et al. proposed the Scaffold
Tree (ST) technique to give a hierarchical classification of
chemical scaffolds obtained by pruning all terminal side
chains [18]. The techique iteratively removes ring one
by one according to a set of prioritization rules, and in
the end the substructure with only one ring is obtained.
The hierarchical structure for a molecule is numbered



Figure 1 A molecule depicted by different scaffold representations. The molecule (a) is dissected into (b) Ring Systems: cycles within the
graph representation of the molecules, (c) Linkers: atoms that are on the direct path connecting two ring systems, (d) Side Chains: any non-ring,
non-linker atoms, and (e) Murcko Framework: the union of ring systems and linkers in a molecule; (f) Graph Framework can be obtained by
considering all atoms and bonds in the molecule indentified as carbon and single bond. Different complexity-level ring systems include (g) Ring
Assemblies: contiguous ring systems, (h) Bridge Assemblies: contiguous ring systems that share two or more bonds, and (i) Rings: individual rings;
(j) The different levels of the Scaffold Tree.
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sequentially from Level 0 (one ring substructure) to Level
n (the whole molecule) (Figure 1j), and Level n-1 repre-
sents the Murcko framework (Figure 1e). All-Level struc-
tures for a molecule are then combined into a tree.
Recently, the Scaffold Tree technique has been widely
used to analyze the scaffold diversity of compound librar-
ies [19,20].
In 2010, we applied a brute force approach to enumer-

ate all the possible scaffolds in a molecule for 1240 mar-
keted drugs and 6932 drug candidates entering clinical
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trials. We found that the top 50 scaffolds cover about
52.6% of marketed drugs and 48.6% of drug candidates.
The drug likeness of each scaffold was evaluated using
the ratio of the hit rates in drug data set to that in the
screening data set (a subset of the ZINC database con-
taining 1.95 million entries) [21].
Apparently, many studies discussed above illustrate

that many compound libraries do not have enough scaf-
fold diversity. In previous studies, the scaffold diversity
for natural products has been investigated [9,16]. How-
ever, to our knowledge, the study on the analysis of scaf-
fold architectures and scaffolds for natural compounds
from TCMs has never been reported. It is quite possible
that the novel scaffolds present in natural compounds
from TCMs may serve as good starting points for the
development of natural product-like compound libraries.
Here, the scaffold architectures and scaffold diversity
were investigated for three classes of compounds collec-
tions, including MACCS-II Drug Data Report (MDDR),
Available Chemical Directory (ACD), and Traditional
Chinese Medicine Compound Database (TCMCD). The
new version of the TCMCD database developed in our
group contains 63,759 molecules identified from more
than 5000 herbs used in traditional Chinese medicines
(TCMs) [22]. To our knowledge, the number of molecules
in TCMCD is the largest around the world. Here, we used
three structural partition strategies to represent scaffolds,
including (1) Murcko framework [13], (2) Scaffold Tree
[18], and (3) a scheme based on rings, ring assemblies [23],
bridge assemblies and side chains. Then, Tree Maps were
used to visualize the distribution of molecular compounds
over scaffolds based on the molecular fingerprint similarity
of these scaffolds. The representative scaffolds in each
dataset and the difference of the scaffold diversity between
the studied datasets were highlighted by the Tree Maps.

Methods and materials
Datasets for scaffold analysis
The scaffold architectures of three datasets, including
MDDR, ACD and TCMCD, were explored. The MDDR
database was chosen as representatives for drug-like
compounds, the ACD database as representatives for non-
drug-like compounds, and the TCMCD database as repre-
sentatives for natural compounds from TCMs. The
TCMCD was developed in our group [22,24]. The latest
version of TCMCD has 63,759 organic molecules identified
from more than 5,000 herbs in TCMs. The protocol to
preprocess the three datasets is described in the Additional
file 1. It is well known that too large molecules usually do
not have favorable absorption property, and therefore we
set the cutoff for molecular weight to be 600 [25,26], and
the sub-datasets, namely ACD1, MDDR1 and TCMCD1,
respectively, were extracted by only choosing molecules
with molecular weight less than 600. In total, there are
1,999,530, 123,927, 50,962 entries in ACD1, MDDR1 and
TCMCD1, respectively.
Comparison study showed that the three studied data-

sets have different distributions of molecular weight [27].
In order to remove the influence of molecular size on
scaffold analysis, we constructed two subsets of ACD1
and TCMCD1, which have similar molecular weight
distribution to that of MDDR1. After applying all these
preprocessing steps, we extracted a subset (ACD2) of
123,927 molecules from ACD1 and a subset (TCMCD2)
of 33,961 molecules from TCMCD1, and both subsets
have similar molecular weight (MW< 600) distributions
to that of the MDDR subset (MDDR1). At last, we wanted
to compare the structural differences among MDDR,
ACD and TCMCD more equally and rationally, 33,961
molecules were extracted randomly from MDDR1 and
ACD2, respectively, to construct the subsets MDDR2 and
ACD3. The final three subsets, including TCMCD2,
ACD3 and MDDR2, used for scaffolds analysis have the
same number of molecules (33,961) and almost the same
molecular weight distributions.

Generation of scaffold architectures
The scaffolds for MDDR2, ACD3 and TCMCD2 were
then generated by three scaffold representations. Here,
Murcko frameworks developed by Bemis [13] and Scaffold
Tree developed by Schuffenhauer [18], which are primar-
ily used to characterize cyclic substructures of molecules,
were used. Moreover, we also designed a simple protocol
to identify scaffolds by checking the occurrence of cyclic
substructures, including simple rings, ring assemblies, and
bridge assemblies. Furthermore, the side chains attached
to Murcko frameworks were also used in our analysis.
First, scaffolds were generated using the Scaffold Tree

representation, which is a hierarchical classification of
scaffolds shown in Figure 1j. First, Murcko frameworks
of the studied compounds are generated, and they form
the leaf nodes in hierarchical trees. By an iterative re-
moval of rings according to predefined prioritization
rules that favor the selection of non-scaffold-like frag-
ments and retain the most functionalized ring systems,
each molecule is chopped up into ever smaller pieces
until the remaining fragment that only contains one ring
substructure cannot be made even smaller. Then, for
each molecule, we can get a list of ring systems at differ-
ent levels of Scaffold Tree. The final single ring as the
root node in the tree is named Level 0, and so forth, the
subsequent levels or nodes in the tree are named numer-
ically. Different molecules may have different levels,
depending on the complexity or the number of rings in
the studied molecules. Then the molecules with each
scaffold are counted. The choice of the level for scaffold
analysis is really arbitrary. The scaffolds at Level 0 are
usually too simple to characterize the structural features of
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the studied molecules. When the level of a Scaffold Tree
becomes higher, the scaffolds become more complicated
and even identical to the Murcko framework. In addition,
some compounds with low molecular weight or less mo-
lecular complexity usually do not have Level 3 or above.
According to Langdon’s results [28], Level 1 of the Scaffold
Tree is the best choice for the characterization of scaffold
diversity. Here, considering the balance between molecular
complexity and diversity for the molecules in the three
studied datasets, Level 1 and Level 2 of the Scaffold Tree
were used in our analysis. The Scaffold Tree for each
dataset was generated by using the linear fragmentation
function in the Molecular Operating Environment (MOE)
suite [29]. An SVL (Scientific Vector Language) script was
applied to the SDF file of each dataset. The Level 1 and
Level 2 scaffolds were saved for the further analysis.
Murcko frameworks (Figure 1e), rings (Figure 1i), ring

assemblies (Figure 1g), and bridge assemblies (Figure 1h),
were generated using the Generate Fragments component
in Pipeline Pilot 7.5. Because side chains of some molecules
are also valuable for a variety of purposes, for example,
improving synthetic accessibility, solubility and reducing
metabolism and toxicity of the studied molecules [14], we
generated the side chains of the studied datasets. The
arrays of side chains were generated using the Generate
Fragments component in Pipeline Pilot 7.5.

Scaffold diversity analysis
The scaffold diversity analysis was performed on the
TCMCD2, ACD3 and MDDR2 datasets. For comparing
the scaffold diversity of the studied datasets, duplicated
ring systems and side chains were removed, and the
unique ring systems and side chains were obtained. The
scaffold diversity for each dataset was characterized by
two types of diversity measurements: the distribution of
molecules over the unique scaffolds present in the data-
set and the structural diversity of the scaffolds. In the
current work, the scaffold counts and the cumulative
frequencies of scaffolds are used to measure the distribu-
tion of molecules over the unique scaffolds present in
the dataset, and the Tree Maps can characterize both
the distribution and structural diversity of the scaffolds.
The number of each scaffold architecture, also repre-

sented as scaffold frequency, was counted for Murcko
frameworks, the Level 1 and Level 2 scaffolds, rings, ring
assemblies, bridge assemblies, and side chains in each
dataset. Then, the scaffolds were sorted by the scaffold
frequency from most to least frequent. Finally, the pen-
centage of the cumulative scaffold frequency (CSF) for
each dataset was plotted [28].

Generation of Tree Maps
Unlike the traditional approach to represent tree structures
by a directed graph with the root node at the top and
children nodes below the parent node with lines connect-
ing them, Tree Maps proposed by Shneiderman use a 2D
space-filling approach and use circles or rectangles to
represent designated properties of molecules for clearly
intuitive visualization [30]. Tree maps have been used to
visualize hierarchical clustering by organizing molecular
data on the basis of the similarity between chemical struc-
tures or similarity across a predefined profile of biological
assay values and to prepare visual representations of mo-
lecular structure hierarchies alongside activity information.
Here, we used tree maps to analyze the structural diver-

sity of different scaffold architectures by using the TreeMap
software [31]. The scaffold frequency of the scaffolds can be
represented by the color and area of the circles. The Tree
Maps can highlight both scaffold structural diversity and
the distribution of compounds over scaffolds. First, the
Level 1 scaffolds of MDDR, ACD and TCMCD were clus-
tered using ECFP_6 fingerprints [32]. The reason for using
ECFP_6 fingerprints is that the structural difference be-
tween MDDR and ACD based on ECFP_6 is more obvious
than that based on the other fingerprints according to our
analysis. The Cluster Molecules component in Pipeline Pilot
was used to cluster the scaffold architectures of three data-
bases based on ECFP_6, and the average number of com-
pounds per cluster was set to 50. This protocol randomly
selects a molecule from the data set as the first cluster cen-
ter and then selects the remaining cluster centers to achieve
maximum dissimilarity to the first cluster center and each
other. After the cluster center molecules are assigned, the
ownership of each remaining molecule to which cluster is
then determined based on their similarity to the center
molecule. The method is order dependent, because the ran-
domly selected molecules are dependent on the order of
the molecules entering the component. However, Langdon
and co-workers pointed out that the order dependency of
the Cluster Molecules component did not have major effect
on the clustering results used to visualize the molecular
data sets in the Tree Maps [28]. Therefore, we clustered the
scaffolds for each dataset without repeating the clustering
procedure. After clustering the scaffolds, each scaffold had
a cluster number (1, 2, 3, et al.) to represent the cluster that
the scaffold belongs to, a cluster center number (1 or 0) to
represent if this scaffold is a cluster center or not, a cluster
size to represent the total number of the scaffolds that be-
long to the same cluster, and the value of DistanceToClo-
sest that is the Tanimoto distance between each scaffold
and the cluster center scaffold in the same cluster.

Results and discussions
The analysis of scaffold counts
As discussed above, Murcko frameworks, ring assem-
blies, bridge assemblies, rings, Scaffold Tree can only
characterize molecules with ring systems. For MDDR,
ACD and TCMCD, the percentage of the molecules



Table 2 The number of fragments with Murcko
frameworks, ring assemblies, rings, bridge assemblies
and side chains present in MDDR, ACD and TCMCD

Scaffold
architecture

No. of Scaffolds No. of non-duplicated
Scaffolds

MDDR ACD TCMCD MDDR ACD TCMCD

Murcko
frameworks

33568 33341 32926 21172 13029 10786

Ring assemblies 85904 82352 54742 3394 1568 5957

Rings 101978 115972 121665 484 764 614

Bridge assemblies 387 1538 5381 114 245 971

Side Chains 460178 431939 445889 8735 6332 4897
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which do not have any ring system are 1.19%, 1.84%,
and 3.14%, respectively, indicating that the vast majority
of molecules in the three datasets have ring systems. At
the same time, we observed that the percentage of the
molecules that have Level 1 scaffolds for MDDR, ACD
and TCMCD is 93.58%, 88.05% and 90.46%, respectively,
and the percentage of the molecules that have Level 2
scaffolds for MDDR, ACD and TCMCD is 77.61%,
60.31% and 74.05%, respectively. But the percentage of
molecules that have Level 3 or even higher level scaf-
folds is less than 50%. So, using Level 2 or Level 3 scaf-
folds to characterize the structural features of MDDR,
ACD and TCMCD and to compare the scaffold diversity
among them are appropriate and reasonable.
The numbers of the scaffolds at the different levels of

the Scaffold Tree for MDDR, ACD and TCMCD are
listed in Table 1. Moreover, the numbers of the different
ring systems, including Murcko frameworks, ring assem-
blies, bridge assemblies and rings, and the number of
the side chains of MDDR, ACD and TCMCD are sum-
marized in Table 2. Because the studied datasets have
almost the same molecular weight distribution and the
same number of molecules, the influence of molecular
weight on structural analysis can be effectively removed.
As shown in Table 2, the numbers of the Murcko fra-

meworks for MDDR, ACD and TCMCD are 33,568,
33,341, and 32,926, respectively, which demonstrate that
most molecules in the studied datasets contain ring
systems. However, the numbers of the non-duplicated
Murcko frameworks are 21,172, 13,029, and 10,786,
respectively. As shown in Figure 1, Murcko frameworks
are the scaffold architectures by dissecting the side chains
Table 1 The number of the scaffolds at the different
levels of the Scaffold Tree for MDDR, ACD and TCMCD

Level No. of Scaffolds No. of non-duplicated Scaffolds

MDDR ACD TCMCD MDDR ACD TCMCD

Level 0 33558 33336 32893 1232 673 1047

Level 1 31780 29902 30722 6386 4588 4053

Level 2 26358 20483 25149 13840 7334 6351

Level 3 15749 11928 16848 11117 5641 5810

Level 4 5848 4544 8521 4686 2778 3866

Level 5 1250 1134 2753 1046 752 1563

Level 6 212 171 665 170 131 426

Level 7 53 39 165 26 37 114

Level 8 12 16 20 12 16 18

Level 9 0 5 13 0 5 11

Level 10 0 2 7 0 2 5

Level 11 0 0 3 0 0 3

Level 12 0 0 3 0 0 3

Level 13 0 0 1 0 0 1
(Figure 1d) to get the union of ring systems (Figure 1b)
and linkers (Figure 1c) of the studied molecules, and
therefore they can be considered as the specific molecular
structural signature. The significant large number of the
Murcko frameworks present in MDDR clearly indicates
that the diversity of the Murcko frameworks for MDDR is
the highest (Table 2). Moreover, the number of the non-
duplicated side chains present in MDDR (8735) is also lar-
ger than those present in ACD (6332) and TCMCD (4897).
On average, the diversity of the molecules in MDDR is
highest, which is well consistent with the results reported
by Langdon [28]. Langdon and coworkers found that the
approved drugs in Drugbank have more scaffold diversity
than the other compound collections.
The rings (Figure 1i) generated by dissecting all of conju-

gated ring and bridged ring systems of the entire molecule
usually represent simple ring systems (three-membered,
four-membered rings, et al.). The non-duplicated numbers
of the simple ring scaffolds for MDDR, ACD and TCMCD
are 484, 764 and 614, respectively, indicating that ACD has
more unique simple ring systems. As shown in Table 2, the
number of the unique ring assemblies for TCMCD is 5957,
which is obviously larger than that for MDDR (3394) and
substantially larger than that for ACD (1568). Ring assem-
blies are defined as the remaining fragments when all
non-ring bonds are removed, and they can be used to
characterize the complicated ring systems present in mole-
cules. Therefore, it is obvious that the TCMCD has more
complicated ring systems. Furthermore, the number of the
bridge assemblies for TCMCD (971) is substantially larger
than those for MDDR (114) and ACD (245). According to
the definition shown in Figure 1, bridge assemblies belong
to ring assemblies, and they can characterize any rings that
share more than one bond in common. Therefore, it is pre-
dicted that molecules in TCMCD contain more conjugated
ring systems rather than bridged ring systems, since
TCMCD has more non-duplicated ring assemblies than
ACD and MDDR. In summary, the molecules in TCMCD
have more complicated ring systems than those in MDDR
and ACD.
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Then, we analyzed the scaffolds at different levels of
the Scaffold Tree for the studied datasets (Table 1 and
Figure 2). The numbers of the Level 1 scaffolds for MDDR,
ACD and TCMCD are 31,780, 29,902 and 30,722, respect-
ively, and those of the Level 2 scaffolds are 26,358, 20,483
and 25,149, respectively. With the increase of the level of
Scaffold Tree, the numbers of the scaffolds for the studied
datasets decrease rapidly. When the level of the Scaffold
Tree increases up to Level 6, the numbers of the scaffolds
for MDDR, ACD and TCMCD are 212, 171 and 665,
Figure 2 (a) The numbers of the scaffolds at different levels of the Sc
non-duplicated scaffolds at different levels of the Scaffold Tree for M
respectively. Moreover, the scaffolds cannot be found in
MDDR when the level of the Scaffold Tree increases to
Level 9. As shown in Table 1, most molecules in three
studied datasets contain the scaffolds with two or more
rings connected by the linkers. According to the numbers
of the non-duplicated scaffolds at different levels of the
Scaffold Tree, we found that MDDR has the largest num-
ber of the non-duplicated scaffolds from Level 0 to Level 4.
Especially, the numbers of the scaffolds at Level 2 and
Level 3 in MDDR are 13,840 and 11,117, respectively,
affold Tree for MDDR, ACD and TCMCD; (b) The numbers of the
DDR, ACD and TCMCD.



Figure 3 The percentage of the molecules that contain the top
1000 Murcko frameworks for MDDR, ACD and TCMCD.

Figure 5 The percentage of the molecules that contain the top
1000 Level 2 scaffolds of the Scaffold Tree for MDDR, ACD and
TCMCD.
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which are about twice as many as those in ACD and
TCMCD. However, when the level of Scaffold Tree
increases further to Level 5 and higher, the number of the
non-duplicated scaffolds in TCMCD becomes the largest.
Our observations show that the diversity of simpler ring

systems (from Level 0 to Level 4) with one to five rings in
MDDR is the highest, but that of more complicated ring
systems in TCMCD is the highest. As we discussed above,
based on the number of the non-duplicated Murcko frame-
works, the molecules in MDDR have the highest diversity.
Now, we also know that from Level 0 to Level 4 especially
at the Level 2 and Level 3 scaffolds in MDDR are more di-
verse than those in ACD and TCMCD. Therefore, we can
make the following conclusion: the highest diversity of
MDDR might be determined by the high complexity and
Figure 4 The percentage of the molecules that contain the top
1000 Level 1 scaffolds of the Scaffold Tree for MDDR, ACD and
TCMCD.
diversity of linkers (Figure 1c) between the fragments at
lower levels of Scaffold Tree (three ring systems at Level 2
or four ring systems at Level 3). Finally, as shown in
Figure 2a, one interesting phenomenon was observed: at
almost all different levels of Scaffold Tree, the number of
the unique scaffolds in MDDR is closer to that in TCMCD
rather than that in ACD, suggesting that, on the whole,
MDDR is more similar to TCMCD than ACD.

Cumulative frequencies of the Murcko frameworks and
the scaffolds at Levels 1 and 2 of the Scaffold Tree
As shown in Table 1, more than 88% of the studied com-
pounds have two-ring systems at Level 1 and more than
60% of the studied compounds have three-ring systems
Table 3 The number of the Murcko frameworks in one
dataset that are similar to those in another dataset based
on different similarity cutoff of ECFP_6 fingerprint

Similarity MDDR
in ACD

MDDR
in

TCMCD

ACD in
MDDR

ACD in
TCMCD

TCMCD
in

MDDR

TCMCD
in ACD

=1 1191 570 1210 663 788 1141

≥0.9 1227 590 1258 674 812 1170

≥0.8 1316 644 1363 710 875 1244

≥0.7 1638 769 1620 791 989 1382

≥0.6 2601 1154 2448 1057 1277 1803

≥0.5 5310 2348 4568 1917 2157 2880

≥0.4 10982 5434 8187 4150 4047 4767

≥0.3 17914 12253 11753 8335 6968 7179

≥0.2 20923 19731 12953 12523 9713 9679

≥0.1 21172 21172 13029 13027 10786 10784

≥0 21172 21172 13029 13029 10786 10786



Table 4 The number of the Level 1 scaffolds in one
dataset that are similar to those in another dataset based
on different similarity cutoff of ECFP_6 fingerprint

Similarity MDDR
in ACD

MDDR
in

TCMCD

ACD in
MDDR

ACD in
TCMCD

TCMCD
in

MDDR

TCMCD
in ACD

=1 1319 645 1306 537 715 646

≥0.9 1339 654 1341 542 728 655

≥0.8 1393 679 1405 555 767 697

≥0.7 1525 750 1496 589 872 792

≥0.6 1834 928 1783 697 1016 926

≥0.5 2605 1384 2468 1100 1307 1206

≥0.4 3920 2546 3494 2039 1835 1776

≥0.3 5353 4333 4255 3368 2770 2685

≥0.2 6215 5939 4541 4349 3800 3693

≥0.1 6386 6386 4588 4587 4053 4053

≥0 6386 6386 4588 4588 4053 4053

Figure 7 The number of the Murcko frameworks in MDDR that
are similar to those in ACD based on different minimum
similarity of ECFP_6 fingerprint.
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at Level 2. Therefore, the Level 1 and Level 2 scaffolds
can represent the whole structural features of the stud-
ied molecules.
Here, the cumulative frequencies of the molecules with

the Murcko frameworks, scaffolds at Levels 1 and 2 were
computed. By sorting the frequencies of the scaffolds,
the top 1,000 scaffolds for the Murcko frameworks,
Level 1 or Level 2 were obtained. Then, the cumulative
frequencies of the molecules with the top 1000 scaffolds
in MDDR, ACD and TCMCD for Murcko frameworks,
Level 1 and Level 2 are displayed in Figures 3, 4, and 5.
As shown in Figure 3, the curves of the accumulative
frequencies of the Murcko frameworks for TCMCD and
ACD are steeper than those for MDDR, indicating that
Figure 6 The number of the Murcko frameworks in MDDR that
are similar to those in TCMCD based on different minimum
similarity of ECFP_6 fingerprint.
the most frequently occurring Murcko frameworks in
TCMCD and ACD represent more molecules than those
in MDDR. For example, the top 100 most frequently oc-
curring Murcko frameworks can be found in about
25.91% of molecules in TCMCD and 27.76% of mole-
cules in ACD, but only about 10.57% of molecules in
MDDR. For the top 1000 most frequently occurring
Murcko frameworks, 53%, 52.17% and 25.32% of mole-
cules in TCMCD, ACD and MDDR can be represented.
Our results suggest that more than half of the molecules
in TCMCD and ACD can be represented by the top
1000 Murcko frameworks, but just about a quarter of
the molecules in MDDR can be represented by the top
1000 Murcko assemblies. As we mentioned above, the
Figure 8 The number of the Murcko frameworks in ACD that
are similar to those in TCMCD based on different minimum
similarity of ECFP_6 fingerprint.
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numbers of the unique Murcko frameworks in MDDR,
ACD and TCMCD are 21,172, 13,029, and 10,786, re-
spectively (Table 2). The cumulative scaffold frequency
(CSF) plots for the Mucko framework representation
further confirm that, in general, the molecules in MDDR
have higher diversity than those in TCMCD and ACD.
The CSF plots for Level 1 and Level 2 scaffolds are

displayed in Figures 4 and 5. The tendency of the CSF
curve for Level 2 is similar to that for the Murcko fra-
meworks shown in Figure 5. With the increased number
of the Level 2 scaffolds, the CSFs of the molecules in
TCMCD and ACD increase more rapidly than those in
MDDR. Around 25.87%, 18.81% and 9.88% of molecules
in TCMCD, ACD and MDDR can be represented by the
top 100 Level 2 scaffolds. And around 51.51%, 37.22%
and 26.8% of molecules in TCMCD, ACD and MDDR
can be represented by the top 1,000 Level 2 scaffolds.
However, for the Level 1 scaffold, the CSF curves for the

three studied datasets increase much more steeply (Figure 4)
than those for the Murcko frameworks and Level 2 scaf-
folds. About 24.71%, 17.48% and 16.78% of molecules in
TCMCD, ACD and MDDR can be represented by the top
10 most frequent Level 1 scaffold architectures, and about
Figure 9 Tree Map for the Level 1 scaffolds of MDDR. Scaffolds are rep
in the independent gray circles. The most frequently occurring scaffolds fo
77.85%, 74.31% and 70.12% of molecules in TCMCD,
ACD and MDDR can be represented by the top 1000
Level 1 scaffold architectures. In summary, more than
88% of molecules in MDDR, ACD and TCMCD contain
the Level 1 scaffolds and more than 70% of molecules in
MDDR, ACD and TCMCD can be represented by the top
1000 most frequently occurring Level 1 scaffolds. The top
20 most frequently occurring Level 1 scaffolds among
MDDR, ACD and TCMCD are shown in Additional file 1:
Figure S1. Therefore, using the Level 1 scaffolds to evalu-
ate the structural diversity and visualize distribution of
molecules over scaffolds by Tree Maps are reasonable.

The Similarity among MDDR, ACD and TCMCD
In the structural scaffolds used for the analysis, Murcko
frameworks can be used to represent the overall features
of the studied molecules and the Level 1 scaffolds can be
used to characterize the core ring systems of the studied
molecules. The results shown in the previous two sections
indicate that the numbers of the Murcko frameworks and
Level 1 scaffolds for MDDR, ACD and TCMCD are differ-
ent. Here, based on ECFP_6 fingerprints, we evaluated the
similarity of the Murcko frameworks and Level 1 scaffolds
resented by different colored circles, and similar scaffolds are clustered
r the eight largest clusters are depicted.
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among MDDR, ACD and TCMCD. The numbers of the
similar Murcko frameworks and level 1 scaffolds based on
different cutoffs of similarity are listed in Tables 3 and 4.
As shown in Table 3, when the cutoff was set to the

similarity higher than 0.5, the number of the Murcko
frameworks in MDDR that are similar to those in ACD
is 5310, and that of the Murcko frameworks in ACD that
are similar to those in MDDR is 4568 (Figure 6). There-
fore, about 25.1% (5310/21,172) of the Murcko frame-
works in MDDR have similar Murcko frameworks in
ACD, and 35.1% (4568/13,029) of the Murcko frame-
works in ACD have similar Murcko frameworks in
MDDR. The similar phenomenon could also be observed
for the Level 1 scaffolds in MDDR and ACD (Table 4).
About 40.8% (2605/6386) of the Level 1 scaffolds in
MDDR has similar Level 1 scaffolds in ACD, and 53.8%
(2468/4588) of the Level 1 scaffolds in ACD has similar
Level 1 scaffolds in MDDR.
It is well-known that MDDR and ACD are traditionally

considered as drug-like and non-drug-like compound col-
lections. However, according to our analysis, we still found
obvious scaffold overlaps between them. At this point,
some readers may raise this question: do the ring systems
Figure 10 Tree Map for the Level 1 scaffolds of ACD. The most frequen
(Murcko frameworks and Level 1 scaffolds) of ACD can
be served as promising core ring substructures for drug
design/discovery? Considering the high overlaps of the
scaffolds between MDDR and ACD, it is quite possible
that some ring systems in ACD might provide some
promising substructures for drug discovery.
As shown in Table 3, the number of the Murcko fra-

meworks in MDDR that are similar to those in TCMCD
is 2348, when similarity of 0.5 was used as the cutoff.
Using the same cutoff, the number of the Murcko fra-
meworks in TCMCD that are similar to those in MDDR
is 2157 (Figure 7). Similarly, when using the cutoff of
similarity higher than 0.5, the number of the Level 1
scaffolds in MDDR to those in TCMCD is 1384. And
the number of the Level 1 scaffolds in TCMCD to those
in MDDR is 1307 (Table 4). That is to say, by setting the
cutoff of similarity higher than 0.5, about 20.0% (2157/
10,786) of the Murcko frameworks in TCMCD has simi-
lar Murcko frameworks in MDDR, while only 11.1%
(2348/21,172) of the Murcko frameworks in MDDR has
similar Murcko frameworks in TCMCD; about 32.2%
(1307/4,053) of the Level 1 scaffolds in TCMCD has
similar Level 1 scaffolds in MDDR, while only 21.7%
tly occurring scaffolds for the eight largest clusters are depicted.
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(1384/6,386) of the Level 1 scaffolds in MDDR has simi-
lar Level 1 scaffolds in TCMCD. This observation is not
surprising because according to the discussions shown
above the scaffolds in MDDR have the highest diversity. It
is obvious that there are structural overlaps of scaffolds be-
tween MDDR and TCMCD, but TCMCD still contains
many novel ring systems (Murcko frameworks and Level 1
scaffolds) that cannot be found in MDDR. Moreover, when
Level 1 scaffolds are compared, the percentage of MDDR
scaffolds similar to those in TCMCD (1,384/6386 = 21.7%)
is obviously lower than the percentage of MDDR scaffolds
similar to those in ACD (2605/6386 = 40.8%). In addition,
the percentage of ACD Level 1 scaffolds similar to those in
TCMCD (1100/4588 = 24.0%) is obviously lower than the
percentage of ACD scaffolds similar to those in MDDR
(2468/4588 = 53.8%), suggesting that some Level 1 scaffolds
in TCMCD are quite novel, and they are different from
those in ACD and MDDR. Besides, similar conclusion
can also be obtained by analyzing the similarity of the
Murcko frameworks among the three datasets (Table 3
and Figures 6, 7, and 8). We believe that these novel
ring systems (Murcko framework and Level 1 scaffolds)
in TCMCD may be very potential for fragment-based
drug design.
Figure 11 Tree Map for the Level 1 scaffolds of TCMCD. The most freq
Tree Maps
In the previous sections, the scaffold diversity of MDDR,
ACD, and TCMCD was evaluated based on the distribu-
tion of molecules over scaffolds; moreover, the similarity of
the scaffolds among MDDR, ACD and TCMCD was also
examined. However, we know little about the distribution
and structural diversity of the scaffolds. In order to answer
this question, Tree Maps was used to visualize the struc-
tural diversity of the scaffolds within the overall dataset.
The Level 1 scaffolds for each dataset were clustered by

their fingerprint similarity using the ECFP_6 fingerprints.
The Tree Maps of MDDR, ACD and TCMCD are
depicted in Figures 9, 10, and 11. Each gray circle repre-
sents an independent cluster. The size (big or small circle
with same color) of the circles in each gray circle is pro-
portional to the number of scaffold architectures with
same frequency. The largest circle in each clustering
group (gray circle) has the largest number of scaffolds.
The 2-D structures and the number of the scaffolds for
the eight largest groups with the highest frequency in
MDDR, ACD and TCMCD are depicted in the Tree Maps.
According to our analysis, the numbers of the clusters in
MDDR, ACD and TCMCD are 128, 92 and 82, respect-
ively. The comparison between Figures 9, 10 and 11
uently occurring scaffolds for the eight largest clusters are depicted.
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indicates that the Tree Maps for MDDR have more clus-
ters highlighted by gray circles. That is to say, the Level 1
scaffolds in MDDR have more sparse distributions than
those in ACD and TCMCD, indicating that the Level 1
scaffolds in MDDR have higher structural diversity than
those in TCMCD and ACD.
Finally, we found that the most frequently occur-

ring scaffolds of the clusters for ACD, MDDR and
TCMCD were different in some extent. For exam-
ple, as shown in Figure 11, the scaffold, (3aS,8aR)-3-
methylene-octahydrocyclohepta[b]furan-2-one, is more
complicated than the other scaffolds show in Figures 9
and 10. Certainly, the similarity between the Level 1
scaffold architectures in MDDR and those in ACD can
also be observed. For example, the ring system with the
highest frequency in the biggest gray circle for ACD is
N-phenylbenzamide (Figure 10), which is the same to
one of the most frequently occurring Level 1 scaffold in
MDDR shown in Figure 9. In addition, the ring systems
in MDDR with the highest frequency in the biggest gray
circles is 4-phenyl-1H-imidazole, which is quite similar
to one of the most frequent ring system found in ACD,
3-(4H-1,2,4-triazol-3-yl)pyridine. Moreover, as shown
in Figures 9 and 11, one most frequently occurring
scaffold found in 236 molecules in MDDR (Figure 9) is
similar to some of the most frequently occurring scaf-
folds in TCMCD shown in Figure 11. Based on our
observations, we believe that the scaffolds extracted
from TCMCD can give valuable guidance to develop
new leads or drugs.

Conclusions
We have used different scaffold representations to examine
the structural diversity of MDDR, ACD and TCMCD. Our
analysis shows that the number of the unique Murcko
frameworks for MDDR is much larger than those for ACD
and TCMCD. At the same time, MDDR has the largest
number of the non-duplicated side chains. Therefore, we
believe that the molecular diversity of MDDR is higher
than those of ACD and TCMCD.
The analysis of the ring assemblies and bridge assem-

blies suggests that natural compounds in TCMCD are
more complicated than molecules in ACD and MDDR.
By analyzing the different levels of the Scaffold Tree for
the three datasets, we found that at the lower levels
(from Level 0 to 4) the scaffold diversity for MDDR is
the highest, while at the higher Levels (Level 5 or even
higher) the scaffold diversity for TCMCD is the highest.
Consequently, we realized that the higher molecular
diversity of MDDR may be explained by the complexity
and diversity of the linkers to connect the lower level
ring systems.
By analyzing the cumulative frequency of the Murcko

frameworks, the Level 1 and Level 2 scaffolds, we found
that the top 1000 Level 1 scaffolds can represent most
molecules in the three datasets, which demonstrates that
the Level 1 scaffolds can serve as typical scaffolds to
characterize the core structures present in the studied
molecules in MDDR, ACD and TCMCD.
The similarity analysis for the scaffolds present in the

studied datasets show that there are structural overlaps
of scaffolds between MDDR and TCMCD, but TCMCD
still contains many novel ring systems that cannot be
found in MDDR. Finally, the Level 1 scaffolds for each
dataset were clustered and visualized by Tree Maps. The
results indicate that the distributions of the Level 1 scaf-
folds of MDDR are sparser than those of ACD and
TCMCD, confirming the higher structural diversity of
the scaffolds in MDDR. In addition, some Level 1 scaf-
folds with the highest frequencies of MDDR are similar
to those of TCMCD, indicating that some ring substruc-
tures extracted from TCMCD may be served as valuable
substructure resource for drug discovery.

Additional file

Additional file 1: The protocol to preprocess the three datasets.
Figure S1: The 20 most frequently occurring Level 1 scaffolds and their
frequencies in (a) MDDR; (b) ACD and (c) TCMCD.
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