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Abstract

The highest annual incidence of human tick-borne encephalitis (TBE) in Sweden ever recorded by the Swedish
Institute for Communicable Disease Control (SMI) occurred last year, 2011. The number of TBE cases recorded
during 2012 up to 6th August 2012 indicates that the incidence for 2012 could exceed that of 2011. In this review
of the ecology and epidemiology of TBE in Sweden our main aim is to analyse the possible reasons behind the
gradually increasing incidence of human TBE during the last 20 years. The main TBE virus (TBEV) vector to humans
in Sweden is the nymphal stage of the common tick Ixodes ricinus. The main mode of transmission and
maintenance of TBEV in the tick population is considered to be when infective nymphs co-feed with uninfected
but infectible larvae on rodents. In most locations the roe deer, Capreolus capreolus is the main host for the
reproducing adult /. ricinus ticks. The high number of roe deer for more than three decades has resulted in a very
large tick population. Deer numbers have, however, gradually declined from the early 1990s to the present. This
decline in roe deer numbers most likely made the populations of small rodents, which are reservoir-competent for
TBEV, gradually more important as hosts for the immature ticks. Consequently, the abundance of TBEV-infected ticks
has increased. Two harsh winters in 2009-2011 caused a more abrupt decline in roe deer numbers. This likely
forced a substantial proportion of the "host-seeking” ticks to feed on bank voles (Myodes glareolus), which at that
time suddenly had become very numerous, rather than on roe deer. Thus, the bank vole population peak in 2010
most likely caused many tick larvae to feed on reservoir-competent rodents. This presumably resulted in increased
transmission of TBEV among ticks and therefore increased the density of infected ticks the following year. The
unusually warm, humid weather and the prolonged vegetation period in 2011 permitted nymphs and adult ticks to
quest for hosts nearly all days of that year. These weather conditions stimulated many people to spend time
outdoors in areas where they were at risk of being attacked by infective nymphs. This resulted in at least 284
human cases of overt TBE. The tick season of 2012 also started early with an exceptionally warm March. The
abundance of TBEV-infective “hungry” ticks was presumably still relatively high. Precipitation during June and July
was rich and will lead to a “good mushroom season”. These factors together are likely to result in a TBE incidence
of 2012 similar to or higher than that of 2011.
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Review

Background

In 2011, 284 people in Sweden developed tick-borne en-
cephalitis (TBE). This is the highest TBE incidence for
any single year ever recorded by the Swedish Institute
for Communicable Disease Control, Stockholm, Sweden
(SML Figure 1). Germany, Austria and Finland also
recorded exceptionally high numbers of TBE cases in
2011 [1-3]. Based on the numbers of cases recorded for
the period from 1st January - 6th August (N=97 for
2011 and N =105 for 2012) the annual total TBE inci-
dence for 2012 may exceed that of 2011. In this article
we give an overview of the ecology and epidemiology of
the TBE virus (TBEV) infection in Sweden. In particular,
we analyse how climate change with increasing environ-
mental temperatures and changing tick host abundances
have gradually increased the abundance and enlarged
the geographic range of the tick Ixodes ricinus in Sweden
and how these factors have resulted in gradually increas-
ing numbers of human TBE cases since the 1980s.

TBE was first diagnosed in Sweden in 1954. Holmgren
and Forsgren [4] reported that TBE was concentrated to
the archipelago and coastal areas around Stockholm and
Lake Mailaren; about 85% of 1,116 reported human TBE
cases from 1956 to 1989 were observed in the county of
Stockholm. They also found that the geographical range
was remarkably constant over time and that in some
areas conspicuous clustering was evident [4].

Ticks are generally considered to be the only arthropod
vectors of the TBEV. In Europe the common tick, L ricinus,
is the main vector of the TBEV to humans [5-9]. In recent
decades this tick species has become very abundant in con-
tinental Europe [9], in the UK and on the Scandinavian
Peninsula [10,11]. In nearly all regions of northern Europe
L ricinus accounts for almost all tick infestations on
humans, dogs, cats, horses, cattle and deer [10]. In Sweden
L ricinus is considered to be the only vector species for
TBEV. All TBE viruses from Sweden have been classified as
the European (Western) subtype [11,12], T. Bergstrom,
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Figure 1 Total numbers of reported human TBE cases in
Sweden each year for the 30-year period 1982-2011.
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unpubl. results]. I persulcatus, which is closely related to
L ricinus, has so far only been found once in Sweden, spe-
cifically a nymph on a warbler captured on the island of
Stora Fjaderdgg in the Bothnian Sea in May 1992 [10].
About 100 km east of Stora Fjaderdgg, in the Archipelago
of Kokkola on the west-coast of Finland a permanent
population of I persulcatus was discovered in 2005 [13].
Later, this species was detected in a few other localities in
Finland, where it is often sympatric with L ricinus, and
transmits all three subtypes of TBEV [14]. All three sub-
types also occur in Latvia, Estonia and in Russia [14-17].

Aside from I ricinus and I persulcatus several other
tick species are also competent TBEV vectors [8]. How-
ever, natural transmission cycles depend mainly or only
on the two Ixodes species [8]. The possibility that other
arthropods besides ixodid ticks, e.g. fleas and mites, may
be enzootic TBEV vectors needs further investigations
[18,19]. In the following, we use the terms "tick" and
“ticks” as synonymous with Ixodes ricinus. In some coun-
tries, in addition to tick-borne transmission, humans are
occasionally infected with the virus by consuming
unpasteurized milk or other dairy products from goats,
sheep or cattle [20].

On the Swedish mainland and in much of the rest of
Europe it is predominantly roe deer (Capreolus capreolus),
which are the most important reproductive hosts (= tick
maintenance hosts) [21], which implies that the adult ticks
feed mainly on such mammals. Deer and other medium-
and large-sized mammals are also important meeting and
mating sites for the sexually mature ticks, as well as blood
hosts for the tick larvae and nymphs [10,22].

In some areas other ungulates [10,20,22,23], and on a
few islands, the varying hare (Lepus timidus) [24,25], are
the main maintenance hosts. The roe deer and I ricinus
spend most of their lives in the same vegetation types
[26-28]. These are usually deciduous or mixed woodland
or forest habitats interspersed with elements of open
land. From the 1980s until recently, the roe deer popula-
tion on the Swedish mainland has been exceptionally
high [27,28]; (Figure 2). The large number of roe deer
and their exceptional dispersal potential [27] are pre-
sumably the main factors that contributed to the
increased tick numbers and extended geographic range
of the tick population in Sweden during recent decades
[23]. The relatively new occurrence of ticks in central and
northern Norrland (northern Sweden) is likely a result of
the roe deer’s spread there [23,27,29].

The sharp increase in the number of ticks and the
extension of the tick's geographic range [23] have
increased the risk that tick-borne infections will be
transmitted more frequently to humans, even in areas
where the infections did not previously exist [23,29].
Roe deer can harbour Anaplasma phagocytophilum [30]
and Babesia venatorum [31] and are presumably often
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Figure 2 Total numbers of roe deer shot each year during
1960-2010 in six counties (Stockholms, Uppsala,
Sodermanlands, Ostergétlands, Skane and Vistra Gotalands
lan) with relatively high incidences of human TBE. Hunting data
from Dr Jonas Kindberg, Wildlife Monitoring Unit, Swedish
Association for Hunting and Wildlife Management.

infested with L ricinus that are themselves infected with
Borrelia  burgdorferi s, Anaplasma phagocytophilum,
Rickettsia helvetica, Babesia spp. and the TBE-virus [23].
Therefore, roe deer are likely to play an important role in
the dispersal to new locations of ticks infected with such
pathogens.

Since its first discovery in Sweden, the annual inci-
dence of TBE has steadily increased. In the 1990s, there
were about 60—80 cases/year, except in 1994 when 114
cases were confirmed. Since 2000 there have been >100
cases reported each year (Figure 1). Moreover, the
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“endemic area” expanded from 1987-1991 to 2007-2011
(Figure 3 a-b) with increased incidences recorded par-
ticularly in the south-west-Swedish provinces (landskap)
of Vistergotland, Dalsland and Bohusldn [32,33]. In this
region the first local case was diagnosed in 1997 where
after the incidence has gradually risen to a yearly inci-
dence of 2/100.000 inhabitants in 2011. Also in southern-
most Sweden, in the provinces of Smaland, Blekinge and
Skane (Scania), new localities where people contracted
TBE have been recorded [34]. These provinces are all
located far from the previously “endemic” area around
Stockholm and Lake Mélaren.

In 2007 the first TBE case was recorded from the
province of Dalarna. At that time this was the northern-
most record for Sweden [35]. In the following years, a
few more TBE cases were recorded from Dalarna and
even further to the north. Figure 3 a-b shows the pre-
sumed places of infection of the human TBE cases
recorded by SMI during two 5-year-periods; Figure 3a
(left map) shows the places in Sweden where people
diagnosed with TBE during 1987-1991 presumably had
been infected with the virus. This was the time period
during which the Swedish roe deer population had its
highest recorded peak, with presumably more than 1
million individuals. Figure 3b (central map) shows the
corresponding places where people were TBEV infected
during 2007-2011, i.e. 20 years later. The geographic
range of the area with localities where people had
contracted the virus, was significantly larger and also con-
tained many more TBE cases in 2007-2011 (N =1,073;

contracted the TBE virus infection during the period 1986-2011.

Figure 3 Each black dot on the maps represents a locality where one or more persons are presumed to have contracted the TBE virus
infection. The left map (a) shows the probable places of infection of all domestic TBE cases (n = 236) recorded by SMI during the 5-year period
1987-1991. The central map (b) shows the corresponding data 20 years later, i.e. all domestic TBE cases (n=940) recorded during 2007-2011.
Each black dot on the right map (c) represents a locality where one or more persons (N =2550 human TBE cases) are presumed to have
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mean+SD. = 214.6+439 cases/year) compared to the
period 20 years earlier N =272; mean 54.4 + 13.8 cases/year;
(P =0.0007, t=7.79, d.f. =4.79, Satterthwaite’s method ). Al-
though the TBE endemic area has expanded and I ricinus
now occurs in suitable habitats all over Gotaland, in most
of Svealand and along the coast of Norrland [23], the
majority of the Swedish TBE cases still originate from
the Stockholm area, i.e. eastern south-central Sweden
(Figure 3b-c). In Goétaland, the spread of TBE clearly fol-
lowed an east-to-west expansion over time. The human
cases were initially concentrated to areas near the great
lakes Vittern and Vinern, but soon new hot spots
emerged at several locations along the coast of Bohusldn
and Vistergotland, with a later local spread around these
established sites. In this region the spread of human TBE
consisted of two patterns; one of “leaps” over consider-
able distances from and between the great lakes in a
westward direction towards the Sea of Skagerrak, and the
other one as a progressive expansion of already estab-
lished sites.

The establishment of new TBEV foci far away from
the previously “endemic area” may be due to migratory
TBEV-infected birds carrying the virus to new locations
[36] and to the transportation of TBEV-infected ticks on
birds [37,38]. However, adult L ricinus ticks rarely infest
birds, with the exception of large ground-dwelling birds
such as pheasants (Phasianus colchicus). This behaviour
reduces the efficiency with which birds may directly or
indirectly contribute to the creation of new TBEV foci.
Birds have been considered to be incompetent hosts for
transmission of the TBEV to ticks [8,37,39]. The finding
of TBEV-infected I ricinus larvae on migratory birds
[37], however, suggests that these larvae had been
infected while feeding on their respective avian hosts - a
tree pipit (Anthus trivialis) and a European robin
(Erithacus rubecula). Thus, at least some bird species
may be competent hosts for TBE-virus transmission to
ticks - either by viraemic transmission or by non-
viraemic transmission or by both modes (see the section
below on co-blood feeding on non-viraemic hosts). Later
in this text we argue that migrating roe deer also could
have played and still are playing a significant role in the
spread of TBEV and in the founding of new foci of
TBEV as well as other tick-borne pathogens.

Ixodes ricinus nymphs are the main vectors of TBEV to
humans

The tick’s life cycle consists of three active stages: larva,
nymph and adult. In each active stage the tick generally
ingests blood only once; then moults to begin the next
life stage. Each stage lasts for 1-2 years, sometimes up
to 3 years [40,41]. Based on studies from England and
Ireland [40] and Germany [41] we can estimate that the
temperature-dependent development cycle from egg to

Page 4 of 13

egg-laying female in southern Sweden takes at least
4 years and in coastal Norrland about 6-7 years. The
nymphs of I ricinus are the main vectors of TBEV to
humans [6,7,39,40,42,43]. In L persulcatus, it is the adult
females — not the nymphs — which usually transmit the
infection to humans. Adult females of both species and
transovarially infected larvae can also transmit the virus
to host animals [8,43]. Adult male ticks rarely ingest
host blood and are therefore not important for the direct
transmission of TBEV to humans. However, indirectly
male ticks may be of importance in the epidemiology of
TBEV, since the virus may be transferred from male
ticks to female ticks during copulation via infective male
saliva and/or seminal fluid [44]. The virus remains viru-
lent in the infected tick for at least several months and
presumably for more than a year. Generally, the virus is
transferred transstadially, i.e., from one tick stage to the
next stage, e.g., from nymph to adult.

TBEV transmission to ticks from viraemic small mammals
To comprehend the TBEV transmission cycle, it is fun-
damental to know how the virus usually infects suscep-
tible ticks. This fact can then be used to understand how
the tick's hosts, in combination with temperature and
humidity close above and in the uppermost soil layer,
can affect the number of TBEV-infected ticks.
Transovarial TBEV transmission, which is the transfer
of the virions via the eggs from an infected adult female
tick to her offspring, sometimes occurs but usually at
such a low frequency [8,43] that it cannot explain how
the TBEV infection can persist in a particular focus year
after year [43]. Previously it was thought that the main
mode of transmission of TBEV to ticks was that they be-
came infected by “systemic infection” while blood-
feeding on viraemic rodents [5]. However, the virus is
generally only present for a few days at a sufficiently
high concentration in the blood of infected rodents to
enable the infection of ticks. This may not be enough
time or high enough dose to infect a sufficient number
of ticks to maintain the transmission cycle of TBEV
[8,45-47]. However, recent field and laboratory research
in Germany shows that TBEV in the common vole
Microtus arvalis is detectable in different organs for at
least 3 months, and in the blood for 1 month after infec-
tion [47]. In the same study, ten per cent of all rodents
investigated were positive for TBEV and the bank vole
Myodes glareolus showed a high infection rate in all lo-
calities investigated [47]. If it were proven that the virus
concentration in the blood of these viraemic small mam-
mals is sufficiently high to infect ticks, then TBEV trans-
mission from viraemic small rodents to ticks could be of
great importance in maintaining the virus in nature.
Insectivores and rodents may also act as TBEV reser-
voirs since they may maintain the virus latently during
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the winter. In such TBEV-infected small mammals a vir-
aemia may develop [5]. As noted previously, whether
such a viraemia has a sufficient virus concentration to
be infective for feeding ticks during the following season
needs further investigations.

Large mammals such as deer, goats, sheep and cattle
are, in comparison with small mammals, considered to
be viraemic for a very short period of time [8,20,48]. In
conclusion, the viraemic mode of transmission by ungu-
lates is probably of little importance in the maintenance
of TBEV. Viraemic transmission of TBEV from small
mammals to feeding ticks may, however, be of greater
significance for the maintenance and spread of the virus
in nature than has been generally believed.

Infection of ticks co-blood feeding on non-viraemic hosts
A very important mode of TBEV transfer among ticks
is termed non-viraemic transmission and takes place
when ticks are co-feeding on small rodents, mainly of
the genera Mpyodes and Apodemus [46,49-55]. Here,
virions are transmitted to one or more susceptible
blood-feeding tick(s) - via the tick host’s phagocytic
migratory white blood cells - from one or more infect-
ive ticks that feed close to the susceptible ticks on the
same host animal [55]. Transmission of virions in this
manner usually occurs from nymphs to larvae [46,55].
Typically, the number of larvae is much greater than
that of nymphs [56]. The simultaneously blood-sucking
larvae and nymphs most often feed in groups close to-
gether on the ears or other parts of the head of a rodent
such as a yellow-necked field mouse (Apodemus flavicollis),
wood mouse (A. sylvaticus) or bank vole (Myodes glareolus).
Many of the virus particles are quickly eliminated by the
host’s phagocytic leucocytes [53-55] without any strong
viraemia being developed in the host. Thus, if one or more
tick larvae are attached in the host’s skin adjacent to the
infecting nymph(s) then some of the virus-infected leuco-
cytes may be sucked up by susceptible larvae.

Roe deer, sheep, goats, cattle and other important
mammalian tick hosts and birds have not (yet) been
proven to be competent hosts supporting non-viraemic
transmission between co-feeding ticks [8,46]. Roe deer,
goats, sheep and cattle develop a strong antibody re-
sponse to the TBEV infection [48,57-59]. The presence
of antibodies against TBEV, however, does not preclude
that these large mammals may be competent hosts for
non-viraemic TBEV transmission among co-feeding ticks
as well. This is true particularly in view of the oftentimes
very high tick infestation rates, especially on the ears
and other parts of the head of deer. It is more likely
though that small - and medium-sized, densely infested
tick hosts — such as rodents and hares - are more import-
ant in the non-viraemic pathogen transmission than
larger-sized hosts. Due to the limited space available on

Page 5 of 13

small rodents any tick larvae would be “forced” to feed
very close to potentially infective ticks presumably render-
ing any virus transmission among co-feeding ticks rela-
tively efficient. Investigating the potential role of roe deer,
other cervids and domestic ungulates in the possible
maintenance and spread of the TBEV may be rewarding.

Simultaneously host-seeking larvae and nymphs

In order for nymphs and larvae to be able to attach to the
same host animal, for example a small rodent or shrew, a
prerequisite is that both tick stages are active in the same
time period. A cold winter followed by a relatively rapid
rise in spring temperatures is considered to optimize the
simultaneous activation of larvae and nymphs [39,56,60].
Such a weather situation will enable them to parasitize the
same host individual at the same time in spring. In con-
trast, if spring temperature increases relatively slowly, then
the nymphal activity peak will occur several weeks earlier
than the larval activity peak. This is because the nymphs
become activated to host seeking and will infest hosts at a
lower temperature threshold, around 5-7°C, than the
considerably smaller larvae, which begin questing at about
10°C. In the case of slow warming in spring, nymphs, in
comparison to larvae, will infest hosts earlier. However, in
southern Sweden, nymphs have a seasonal pattern of
questing and infesting small rodents similar to those of
larvae, although the nymphal activity usually starts some-
what earlier in spring [61]. Field studies carried out in
woodland biotopes in central and southern Sweden from
1990 to 2011 confirm that many tick larvae are active
simultaneously with nymphs from June to September
[TGT Jaenson, unpublished data]. Therefore, non-viraemic
transmission between co-feeding subadult ticks on rodents
and possibly on other terrestrial vertebrates may occur in
Sweden even in the summer and early autumn.

Another factor that may influence the proportion of
nymphs that will infest small mammals is the water con-
tent of the air layer close to and in the ground [62,63].
Ticks are highly sensitive to dehydration and therefore
prefer to reside in highly humid environments. This ap-
plies especially to the tiny larvae but also to the nymphs
and to a lesser degree to the somewhat larger adult ticks.
The larvae stay almost exclusively on or just below
ground level. The nymphs also spend proportionally
more time questing on or closer to the ground. When
the saturation deficit of the air increases in dry weather,
the nymphs spend proportionally more time questing on
or closer to the ground. This behaviour increases the
likelihood that the nymphs, just like the larvae will en-
counter and attach to small rodents or shrews. Due to
their proximity to the ground, these mammals are thus
at the same level as ticks during dry weather. In a humid
microclimate, nymphs often climb higher up in the
vegetation. Then the likelihood that they will attach to a
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small mammal is reduced while their potential to attach
to a larger mammal, such as a deer, increases.

The roe deer’s spread northwards promoted the
expansion to the north of the vector and the virus

To understand all fundamental factors that have pro-
moted the tick’s increasing abundance and range expan-
sion as well as the increasing incidence of TBE both
northwards and westwards in Sweden [23], it is import-
ant to know that the adult ticks most frequently feed on
relatively large mammals, e.g. deer, hares, dogs and cats,
and large birds such as pheasants. The roe deer and
other cervids are important blood sources also for the
larvae and nymphs, but are especially important for
the adult female ticks [10,22,23,40,42,64]. Cervids and
some other large mammals are also a meeting and
mating place for the reproducing adult ticks [10]. Evi-
dence for these claims includes the substantial num-
bers of larvae, nymphs and adult ticks of both sexes
commonly found on deer in Sweden during the spring,
summer and autumn [10,22,23,64]. Adult I ricinus are
almost never found on small birds [10,37,38,65] or on
small mammals [10,22,42,61] (Table 1).

In Sweden there is considerably more wildlife today
than 50 years ago [66]. From the 1980s until the winter
of 2009-2010 roe deer were common in almost all of
Sweden [27-29,66] except on some islands where the
mountain hare [24,25] was and still is the main host for
high-density tick populations. The number of roe deer at
present, i.e. August 2012, is rapidly increasing [67]. Add-
itionally, the moose (Alces alces) population in Sweden
has been increasing for several decades [66]. In some
places there are even expanding populations of red deer
(Cervus elaphus) and fallow deer (Dama dama) [66],
which are locally important blood hosts for I ricinus al-
though not yet of the same magnitude as the roe deer.
Other large mammals which are also potential hosts of
adult L ricinus, such as wild boar (Sus scrofa), mouflon
(Ovis musimon) and badger (Meles meles, have increased
their population sizes in Sweden during the last 50 years
as well [66].
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Because the roe deer has been so abundant in the
same habitats that are optimal for ticks, we propose that
the roe deer has played a particularly important role in
the tick's expansion in Sweden. There is probably no
other vertebrate species that has been so important for
the tick’s propagation and range extension on the Swedish
mainland as the roe deer during the past half century. Its
exceptional ability to spread, especially along the north
Swedish river valleys [27], is a factor not previously men-
tioned as being instrumental for the tick's rapid expansion
in the north.

Increasing tick abundance and TBEV prevalence
promoted by higher environmental temperatures

Climate change is a fundamental factor that directly and
indirectly has contributed to the increasing abundance
of the roe deer and thus also to the tick’s increasing
abundance, especially in the north. The trend towards
warmer winters and longer growing seasons with earlier
springs and later autumns has undoubtedly been benefi-
cial for the survival and proliferation of the roe deer and
the tick [23,29].

Based on detailed records on the incidence of TBE in
the Stockholm County for the period from1960 to 1998
Lindgren and Gustafson [68] analysed if there was a
link between climate change and TBE incidence which
increased substantially in the 1980s. They found that
increases in TBE incidence were significantly related to
a combination of two consecutive mild winters, rela-
tively high spring temperatures and a prolonged mild
autumn in the year prior to the incidence year, and
temperatures allowing tick activity early in the inci-
dence year. These results are consistent with those of
Jaenson and co-workers [69] and Jaenson and Lindgren
[29] who showed that the tick is usually abundant in
areas where the vegetation period is at least 180 days
per year. The vegetation period is the number of days
between the end of the first continuous 4-day period
with a 24-h mean temperature >5°C and the beginning
of the last 4-day period with a 24-h mean temperature
>5°C. The tick may be present but is not abundant

Table 1 Infestation of mammals by larvae, nymphs and adult females of Ixodes ricinus

Larvae Nymphs Females L:N:F ratio Range (all tick stages) Number of hosts examined
Myodes glareolus* 34 09 0 3810 1-219 106
Apodemus spp.* 60 1.5 0 40:1:0 4-451 50
Capreolus capreolus* 265 93 30 28103 428-2072 37
Lepus timidus* 630 255 13 2.5:1.0:0.05 458-1725 8
Lepus timidus** 412 53 6 7.8:1:0.1 87-2374 15

Larvae, Mean no. larvae; Nymphs, Mean no. nymphs; Females, Mean no. adult 1. ricinus females; L:N:F, Larvae : Nymphs : Females; *, from provinces of Uppland
and Sodermanland on the Swedish mainland; **, from Gotska Sandon, which is an isolated island in the Baltic Sea.

Data from Talleklint & Jaenson [22].
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when the vegetation period is 160-180 days per year,
and the tick is nearly always absent from areas with
<160 vegetation days/period [69]. Daily mean tempera-
tures >5°C correspond to the threshold temperature
for host-seeking activity of nymphal I ricinus in Sweden
(TGT Jaenson, unpubl. data, [69]). Consequently, the
increasing temperatures with a gradually longer vegeta-
tion period are likely to favour tick activity, tick abun-
dance and the tick’s geographic range. In areas of
southwest Sweden (Halland, Vistergotland, Bohuslén,
Dalsland, Virmland), where summer mean tempera-
tures are lower than in southeastern Sweden (Oland,
Gotland, Smaland, Ostergétland, Sédermanland, Upp-
land) I ricinus was usually relatively rare before the
1990s. In South Sweden, particularly in the southwest
ticks appear to have increased in abundance during the
1990s and become much more common [23]. In the
areas of Sweden where ticks occurred in low-density
populations prior to the 1990s TBE was usually consid-
ered “not endemic” and was only recorded there very
occasionally or not at all. During the late 1990s the in-
cidence of TBE, however, began to increase rapidly in
such previously “non-endemic” areas [32-34]. It is
likely that the TBEV infection is “favoured” by an
abundant vector population, which facilitates increased
transmission of the virus among densely tick-infested
small mammals.

The environmental temperature also has a direct effect
on the invertebrate vector and on the virus within the
vector. The extrinsic incubation period (EIP) is an im-
portant concept in the epidemiology of many mosquito-
borne and other insect-borne arboviruses and micropar-
asites. However, as emphasised by Nuttall and Labuda
[8], since the EIP is unlikely to exceed the comparatively
long moulting period in ixodid ticks it may not be im-
portant for virus transmission by such vectors. Yet, the
temperature influences TBEV development and propaga-
tion in L ricinus: Recently Magnus Johansson’s group at
Sodertorn University, Sweden [70] detected and described
a temperature dependent structural RNA rearrangement
between open and closed conformations that acts as a
temperature-sensitive riboswitch for on/off setting of
TBEV translation in the questing tick in nature. In TBEV-
infected ticks in nature the viral genome usually exists in
a closed form which may — at least partly - explain the
low or undetectable virus levels in host-seeking ticks col-
lected in TBE “risk areas” [70]. For a virus strain isolated
from Tor6 near Stockholm the lower temperature break-
point, 25.4-28.1°C is the most pronounced when RNA
was suggested to unfold [70]. Although this process
remains to be proven for TBEV during natural infection it
is here suggested that a continuous period of several warm
days or a brief period of high temperatures will induce
RNA unfolding and translation and subsequent viral

Page 7 of 13

propagation in the tick. From an evolutionary point of
view it should be advantageous for the virus to be present
as infective virions in a high a concentration in the tick’s
salivary glands, ready to infect a potential host that hap-
pens to come close to the questing, virus-loaded tick. The
emergence of “new high-risk areas for TBE” in southwest
Sweden may thus, at least partly, depend on climate
change with more frequent and longer periods of high
temperatures during the tick season. Such warm periods
are likely to favour development of the TBEV to infective
virions in the vector.

More than one million roe deer in the early 1990s

Cervids are favourite game animals for many hunters
who invest money, time and energy in an attempt to
establish high-density populations. This is accomplished
by several practices, such as winter-feeding the game
animals and hunting foxes, lynx and wolves, as well as
other measures. This "care" primarily aims to provide
rich populations of game animals, specifically various
species of deer. Without winter feeding in the north of
Sweden the roe deer, for example, could probably not
have survived there more than temporarily [27]. Even in
southern and central Sweden, many roe deer died dur-
ing the two cold and snowy winters 2009-2011. Forest
grazing of cattle almost ceased during the latter part of
the1800s. Because cattle formerly competed with deer
for space in woodland and forested areas the abandon-
ment of cattle forest pasture grazing favoured the deer
populations as well as tick populations. Also, the many
clear-cuts of recent forestry as well as the regulation of
deer hunting with hunting-free periods have increased
the roe deer population size [27].

The red fox (Vulpes vulpes) is a major predator on
young deer in southern and central Sweden. However,
during the period from 1972-1975 sarcoptic mange due
to the scabies mite (Sarcoptes scabiei) infested the red
fox population of northern Sweden and the infection
spread rapidly southwards. Within 10 years more than
50% of the red foxes on the Swedish mainland were
obliterated [71]. As a direct consequence, the number of
roe deer increased dramatically in the late 1980s. More-
over, in the early 1990s, the winters were mild with little
snow, further favouring the roe deer’s winter survival as
well as its expansion to the north of Sweden. During
1992-94 there were probably more than 1 million roe
deer in Sweden.

When the fox mange began to disappear during the
late 1980s the number of foxes increased and in the
1990s fox predation on young deer became more intense.
During the 1980s the lynx population had decreased to
about a few hundred individuals. Due to its protection by
law in 1991-1995, their numbers increased, especially
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in Norrland and Svealand. The lynx is now another signifi-
cant factor in the regulation of the Swedish roe deer
population.

Due mainly to predation by fox and lynx the number of
roe deer gradually declined after the population peak in
1990-94. Yet the roe deer population was so numerous
that each year until 2009 hunters managed to shoot
more than 100 000 individual deer and in some years
more than 200 000 deer [27,66]; Dr Jonas Kindberg,
Wildlife Monitoring Unit, The Swedish Association for
Hunting and Wildlife Management, personal communi-
cation]. Since the roe deer was so numerous in the tick’s
primary habitats for at least the last three decades, it
was a readily available mating site for the sexually ma-
ture ticks as well as a food source, especially for the
adult tick females. The result was an increased tick
population level — although in the first years the in-
crease was not so obvious and relatively slow due to the
lengthy life cycle of I ricinus [40,41,72]. As a conse-
quence, tick numbers became very high in optimal tick
biotopes in southern and central Sweden after about a
decade. Ixodes ricinus is now considered to have
reached “pest status” in large areas of Sweden.

The important “public health role” of the red fox are
two-fold. First, it is an important predator of young roe
deer. By killing deer the fox indirectly reduces the number
of ticks produced. Second, the fox is a key small-mammal
predator. Many small mammal species are important
reservoirs for several tick-borne pathogens, e.g, TBEV,
Borrelia afzelii, B. burgdorferi and Rickettsia helvetica.
Thus, the red fox should have a significant role in redu-
cing the density of ticks infected with human pathogens.
Support for this view comes from studies in the US where
increases in Lyme disease have continued over the past
two to three decades, long after the recolonisation of deer,
and coincide with a range-wide decline of the red fox,
likely due to expansion of coyote populations [73]. The
situation in Sweden differs markedly from that in the
US. The Swedish fox population, although subjected to
intense hunting pressure, has regained its former popu-
lation level after the severe scabies epizootic [Dr Jonas
Kindberg, Swedish Hunting Statistics, Wildlife Monitor-
ing Unit, Swedish Association for Hunting and Wildlife
Management].

Cervids incompetent hosts for Borrelia burgdorferi s.|. and
the TBE virus

There are significant relationships between roe deer dens-
ity and abundance of L ricinus [74-79], nymphal abun-
dance and density of Borrelia- infected nymphs [69,77,79]
and between density of Borrelia- infected nymphs and
Lyme borreliosis (LB) incidence in humans [80]. However,
since roe deer are incompetent hosts (= non-reservoir
hosts [21]) for B. burgdorferi s.l. [64,81] and presumably
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also for the TBEV, deer will divert larval ticks from feeding
on reservoir-competent hosts to feeding on deer. This
will result in a negative relationship between the density
of I ricinus nymphs and the density of nymphs infected
with B. burgdorferi s.l. [30,73,77,79]. The relationship
between roe deer density and TBEV infection in ticks
and rodents has recently been investigated in much de-
tail and presented by Annapaola Rizzoli and her scien-
tific team [74-76,82]. In agreement with the relationship
between LB incidence and deer abundance, they found
that deer abundance initially has a positive effect on the
number of ticks feeding on rodents; then deer abun-
dance reaches a threshold value above which the effect
becomes negative since deer appear to divert ticks from
feeding on rodents [76,82]. However, Cagnacci and co-
workers [76] also showed that the prevalence of TBEV
in ticks and rodents had a monotonically negative rela-
tionship with deer abundance. The negative relationship
between deer density and TBEV prevalence is most
likely due to deer being highly “attractive” to the imma-
ture I ricinus ticks but at the same time reservoir-
incompetent for TBEV thereby diverting questing ticks
from TBEV-competent rodents, i.e. what may be termed
the dilution effect [76,82]. In other words, at high deer
abundance a great proportion of the immature tick
population feed on these reservoir-incompetent mam-
mals. This reduces the TBEV transmission intensity
from infective nymphs co-feeding with susceptible lar-
vae on small mammals. In such an ecosystem with
plenty of deer the transmission of TBEV from viraemic
small mammals to immature ticks is also reduced. Re-
duction of the deer population from a high level of
abundance that has resulted in the “production of an
abundant tick population” will induce increased feeding
on small mammals by the immature ticks. This will con-
sequently lead to an increased prevalence of TBEV in-
fection in both ticks and small mammals. In such an
ecosystem the risk for humans contracting the TBEV in-
fection is increased compared to the first example where
the abundance of deer is high.

In Sweden the roe deer population gradually decreased
from a very high level (>1 million in the early 1990s) to
the present, significantly lower, level (about 200,000
deer). At the previous high level the dilution effect by
roe deer is considered to have been remarkable so that,
not only the adult tick females, but for this analysis even
more importantly, a significant proportion of the imma-
ture ticks were feeding on the then easily available deer.
Only a relatively small proportion of the tick population
was feeding on reservoir-competent small mammals.
Thus, the proportion of TBEV-infected ticks in the
South Swedish I ricinus population should have been
relatively small in the early 1990s. With a gradually de-
creasing roe deer population but still a very abundant
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tick population each year after the roe deer population
peak gradually larger proportions of the larval segment
of the tick population were feeding on reservoir-
competent small mammals. The result was an increasing
proportion of TBEV-infected ticks over the period from
the early 1990s to 2012. The abundant tick population
with a gradually increasing prevalence of TBEV-infected
ticks is reflected in the gradually increasing numbers of
TBE cases in the human population (Figure 1).

Many small rodents in 2010 led to many infective

nymphs in 2011

Roe deer numbers have gradually declined since the
early 1990s. Therefore, to support a large tick population
with blood, small mammals have presumably become in-
creasingly more important as a food source for the im-
mature ticks. Roe deer numbers decreased even more
abruptly during and briefly after the two cold and snowy
winters of 2009-2010 and 2010-2011. Apart from the
harsh weather with deep snow causing malnutrition the
decline of the roe deer population was presumably also
due to predation by lynx and fox and also by wolves in
some areas. In the years 2010-2011, there were few or
no roe deer left in some areas, especially in the roe
deer’s northern Swedish range. Thus, the most import-
ant food source for the tick was no longer as readily
available.

The rodent populations, particularly the bank vole
population, vary greatly in numbers from year to year,
especially in areas of Sweden with deep snow cover.
2010 was a peak year, especially for the bank vole [83].
Since roe deer had decreased in numbers, first gradually
and then suddenly, while rodent numbers had increased
in 2010 concomitantly with the sudden decrease of roe
deer, we presume that tick feeding changed abruptly in
2010 to reflect this shift in host density. Thus, a large
proportion of the larval and nymphal segments of the
L ricinus population succeeded in attaching to rodents.
This likely increased the rate of non-viraemic TBEV
transmission from infective nymphs to susceptible tick
larvae and of viraemic transmission [47] from TBEV-
infective rodents to immature ticks. The result of this
was that many tick larvae became TBEV-infected in
2010. Most likely, it was mainly these ticks that in
2011 and 2012 had become nymphs, which managed to
suck blood from people, some of whom became infected
with the TBEV.

People's knowledge and behaviour affect their exposure
to ticks

The degree of contact between TBEV-susceptible people
and TBEV-infective ticks, mainly nymphs, is a main deter-
minant of the proportion of the human population that
will become infected with TBEV. People's susceptibility to
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the infection is of course influenced by immunological
factors including whether or not they have been optimally
vaccinated. However, people’s knowledge about measures
against ticks and tick-transmitted infections may also ex-
plain if people will become infected. Weather and climate
will influence the occurrence and abundance of edible ber-
ries and therefore to a certain extent will dictate how
many people will be available to questing ticks. Likewise,
rainfall during the summer affects the presence of mush-
rooms and thus the number of mushroom pickers from
August to October.

The amount of TBE virions infecting a susceptible
person presumably influences whether the infection will
remain as an asymptomatic infection or progress to an
overt disease [51]. An important lesson would therefore
be that an infective tick, which has the opportunity to
remain attached in the person’s skin for a long time, is
likely to transfer more TBE virions and possibly other
potential pathogens than a tick that is rapidly discovered
and removed. If the tick has already had time to form a
cement plug around its mouthparts in the person’s skin
another important prophylactic measure to avoid a
massive infection dose would be to remove the plug as
soon as possible. The reason is that such a plug formed
by a TBEV-infected tick is likely to contain a relatively
high number of virus particles [51].

A TBEV-infective adult tick female is most probably
more dangerous than a TBEV-infective nymph. The rea-
son is that the larger female potentially carries more
TBE virions (and other pathogens). Fortunately, people
usually detect the hungry female adult tick, with her
colourful red and black body, more readily than the
much less conspicuous hungry nymph. Apart from the
female tick’s conspicuous red body, her length is about
3.5 mm whereas the nymph is greyish and smaller, with
a body length of about 1.5 mm. However, I persulcatus
females attach to people quite often. Therefore, the be-
haviour of this tick species is more dangerous compared
to I ricinus.

Conclusions

An “epidemiological chain of triggering factors”

Due to the large deer population during the 1980s and
1990s the Swedish tick population gradually increased.
At the turn of the century the tick population in Sweden
was presumably larger than ever before. After its peak in
the late 1980s and early 1990s the roe deer population
level declined gradually until it was suddenly reduced
due to the two harsh winters of 2009-2011. During the
gradual decline of the roe deer population a gradually
larger proportion of the tick larvae and nymphs probably
fed on small mammals, which are reservoir-competent
hosts for TBEV. Consequently, from the mid-1990s to
2011 a larger proportion of the tick population became
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infected with TBEV. A reflection of these events is the
gradually greater annual incidences of TBE in the human
population during the same time period. Climate change
and weather events with high temperatures further influ-
enced the infection prevalence in the tick population
and therefore also the annual TBE incidence in humans.
As we have seen, there were many interacting factors
that caused so many people in Sweden to become ill
with TBE in 2011 and 2012. Perhaps the main cause of
this "epidemiological chain of triggers" was the very high
abundance of the tick I ricinus — a consequence of a
large roe deer population from the 1980s and early 1990s.
The severe winter in 2009-2010 was followed by periods
in late spring and summer of relatively high temperatures
[84]. Many larvae and nymphs may therefore have co-fed
on small rodents, some of which may even have been vir-
aemic. In July and the first half of August 2010 the wea-
ther was favourable for larvae and nymphs to co-feed on
small rodents.

The population peak of the bank vole in 2010 coincided
with a significant decline in the number of roe deer with
the result that an unusually large number of tick larvae
presumably co-fed with potentially infective nymphs on
rodents. This led to an exceptionally large number of
larvae having become infected with TBEV that year.
Many of these larvae developed to infective nymphs. In
the hot and humid year 2011, starting at the end of
March 2011 and lasting until the end of December,
these nymphs could blood-feed and infect many people
with TBEV.

The reason why the tick attacks on humans and the
transmission of TBEV to humans was so frequent in 2011
and 2012 was a consequence of (i) the gradual decline of
roe deer numbers from a very high level, (ii) unusually
high number of host-seeking ticks being present and (iii) a
gradually increasing host-shift by immature ticks from roe
deer to small rodents resulting in increasingly greater
prevalence of TBEV infection in the tick population. It
was also due to the fact that (iv) roe deer and also rodents
had decreased in numbers in 2011 and 2012, so that these
potential hosts no longer "competed" with humans as
potential tick hosts to the same extent as in previous
years. Moreover, (v) in 2011 people were more available
as potential hosts for questing ticks since people spent
more time outdoors in the warm and sunny weather
during the unusually early and warm spring and warm
and wet summer, and in the mushroom woodlands dur-
ing the latter part of the year. In 2011 (vi) the vegetation
period was exceptionally long and the weather was often
warm and humid [85], which permitted nymphs and
adult ticks in southern Sweden to begin questing already
in late March and thereafter for most days until the end
of December 2011 (Figure 4). This made contact be-
tween humans and the many nymphs, some of which
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Figure 4 Total number of reported TBE cases in Sweden during
2011 (N =284 cases). The cases are grouped by month of
appearance of the first symptoms compatible with TBE.

were TBEV-infective, unusually frequent. The overall
consequence was that many people were tick-bitten in
2011, a minor proportion of whom became infected
with TBEV and of which 284 persons were recorded as
having fallen ill with TBE.

The present TBE situation in Sweden July 2012

The epidemiological scenario of TBE in Sweden during
the last few years would lead to the projection that many
cases of human TBE in Sweden will also occur this year.
The tick population should have decreased further and
be smaller compared to 2011 due to the fact that the
deer population has not yet "recovered" substantially
after the recent harsh winters. Recent reports, however,
suggest that after a mild winter and heavy summer rains,
which has resulted in lush vegetation, the deer popula-
tion is rapidly increasing. However, the infection preva-
lence in nymphs and adult ticks should still be about as
high as in 2011 because roe deer are still not “diverting”
ticks from feeding on rodents to the same extent as they
did prior to the winters of 2009-2011. In other words,
small rodents, being competent reservoir hosts permit-
ting non-viraemic and viraemic TBEV transmission,
should be significantly more important for TBEV trans-
mission in 2012 than before 2009.

The mean monthly temperature of March 2012 was
among the three warmest March temperatures ever
recorded by the Swedish Meteorological and Hydro-
logical Institute (SMHI) [86]. This is likely to have
permitted immature ticks to feed on and become
TBEV infected from small rodents. Due to high rain-
fall in the summer of 2012 [87,88] it is likely that,
during the “mushroom season” this year, there will be
significant close contact between virus-infected vectors
and mushroom-picking humans potentially leading to
increased virus transmission from infective nymphs to
humans. Data up until 6th August 2012 indicates that
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the TBE incidence in humans will be as high as or
higher than that of 2011.

Endnote

* This is an extended English version of an article pub-
lished in Swedish only as: Jaenson TGT, Hjertqvist M,
Lundkvist A. [Ar 2011 toppar TBE-incidensen. Radjurs-
stammens variation i storlek och védret &r nyckelfaktorer].
Liikartidningen (Journal of the Swedish Medical Associ-
ation) 14th February 2012; 109(7):343-346.
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