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Abstract

Background: Many bacterial genome sequences completed using the Sanger
method may contain assembly errors due in-part to low sequence coverage driven
by cost.

Findings: To illustrate the need for re-sequencing of pre-nextgen genomes and to
validate sequenced genomes, we conducted a series of experiments, using high
coverage sequencing data generated by a Illumina Miseq sequencer to sequence
genomic DNAs of Bacteroides fragilis NCTC 9343, Salmonella enterica subsp. enterica
serovar Paratyphi A str. ATCC 9150, Vibrio cholerae O1 biovar El Tor str. N16961, Bacillus
halodurans C-125 and Caulobacter crescentus CB15, which had previously been
sequenced by the Sanger method during the early 2000’s.

Conclusions: This study revealed a number of discrepancies between the published
assemblies and sequence read alignments for all five bacterial species, suggesting that
the continued use of these error-containing genomes and their genetic information may
contribute to false conclusions and/or incorrect future discoveries when they are used.
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Findings
The completed genome sequences of over 2,000 bacterial species have been published

during the last decade and many of them (we estimate at least 500) were sequenced

exclusively by the Sanger method; however this method was frequently deployed at

low sequence coverage due to cost constraints. Even though the Sanger method assem-

blies targeted high accuracy (99.5%), low coverage might leave assembly errors in the

completed genome sequences, which have been frequently used as references for re-

sequencing projects. At the start of a re-sequencing analysis, it is important to choose

a suitable reference genome sequence to compare against, to better identify high prob-

ability variants. These “variations” are then a foundation for many downstream correla-

tive and functional analyses. Significantly, in the analysis of pathogens such as

Brucella, Salmonella and Vibrio species, the results of variation detection are the basis

for developing assays that are critical to the detection and validation of these

pathogens.

In our previous work [1] with Brucella suis 1330, which was sequenced with the

Sanger method in 2002 [2] and re-sequenced in 2011 using the Illumina GAIIx plat-

form, we identified a number of discrepancies between the published and the new
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assembly. We used a hybrid approach of mapping and assembly with the Illumina se-

quencing data, and identified a total of twelve very high confidence sequence differ-

ences including ten INDELs (insertions or deletions) and two substitutions between the

assemblies. Among them, six INDELs caused frameshifts within protein-coding loci.

The differences were significant enough that the published sequence could lead down-

stream studies into inaccurate reporting and understanding of genomic mutations. An-

other re-sequencing study by Wynne [3] for the genome of Mycobacterium avium

subsp. paratuberculosis K10 also showed differences between its original assembly and

revised assembly which was originally sequenced in 2005 (Sanger method) and later

with the Illumina GAIIx platform in 2010. Importantly, these studies implicate that

other completed bacterial genome assemblies sequenced with the Sanger method may

contain assembly errors resulting in inaccurate variation analyses. It also highlights the

need for re-sequencing efforts using high coverage sequencing data generated by effi-

cient and cost effective next-generation sequencing (NGS) technologies to validate

these genome sequences. Especially for pathogen genomes, accurate references are es-

sential for studying, detecting, and preventing public safety threats. Additionally, bil-

lions of dollars are invested by multiple federal agencies (i.e. CDC, FDA, USDA, and

NIH) and private institutions (i.e. food production facilities, pharmaceutical companies,

diagnostics labs etc.…), annually, to maintain safety from these biological agents; conse-

quently, these efforts are now more frequently reliant upon standardized genomic in-

formation for genetic testing that utilize established markers for pathogen

identification. Inaccurate or incomplete genomic information could contribute to mis-

information to these agencies, impacting human health in addition to their effect on

basic research.
Methods
To provide reliable supporting data for our observations, we sequenced five bacterial

genomes of which sequences had been completely assembled and published in the early

2000’s using the Sanger method. The five bacteria include Bacteroides fragilis NCTC

9343 [4], Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150 [5],

Vibrio cholerae O1 biovar El Tor str. N16961 [6], Bacillus halodurans C-125 [7] and

Caulobacter crescentus CB15 [8]; all of which are important as pathogens or other re-

search targets, and their genome sequences continue to be used as references, some of

these citations are briefly described in Table 1. We used Illumina MiSeq 150 cycle,

paired-end sequencing protocols to sequence their genomic DNAs obtained from

ATCC (http://www.atcc.org). To obtain high sequence coverage for high CG% ge-

nomes, Caulobacter crescentus CB15 (67.2% GCs) and Salmonella enterica ATCC 9150

(52.2% GCs) were sequenced in a lane together and the other three (lower than 50%

GCs) were sequenced in a separate lane together.
Results
Sequencing coverages were: 325X, 63X, 116X, 111X and 152X for C.crescentus CB15, S.

enterica ATCC 9150, B.fragilis NCTC 9343, B.halodurans C-125 and V.cholerae O1

N16961, respectively (Table 2). Using BWA to map the sequence reads to the reference

sequences of the corresponding genomes, we counted the number of loci covered by at

http://www.atcc.org


Table 1 Citations linked to originally sequenced bacterial genomes

Organism Citations associated with originally published genome sequences

Salmonella enterica subsp. Enterica
serovar Paratyphi A 9150

227 Citations

Crump et al., 2010. Global trends in typhoid and paratyphoid Fever.
Clin Infect Dis 50:241–246.

Yang F, et al., 2005. Genome dynamics and diversity of Shigella species,
the etiologic agents of bacillary dysentery. Nucleic acids research
33:6445–6458.

Thomson NR, et., 2008. Comparative genome analysis of Salmonella
Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into
evolutionary and host adaptation pathways. Genome research 18:1624–
1637.

V.cholerae O1 N16961 1290 Citations

Thompson FL, et al., 2004. Biodiversity of vibrios. Microbiology and
molecular biology reviews 68:403–431.

Makino K, et al., 2003. Genome sequence of Vibrio parahaemolyticus: a
pathogenic mechanism distinct from that of V cholerae. The Lancet
361:743–749.

Zhu J, et al., 2002. Quorum-sensing regulators control virulence gene
expression in Vibrio cholerae. Proceedings of the National Academy of
Sciences 99:3129–3134.

Merrell DS et., 2002. Host-induced epidemic spread of the cholera bac-
terium. Nature 417:642–645.

C. crescentus CB15 417 Citations

Hu P, et al., 2005. Whole-genome transcriptional analysis of heavy metal
stresses in Caulobacter crescentus. Journal of bacteriology 187:8437–
8449.

Laub MT, et al., 2002. Genes directly controlled by CtrA, a master
regulator of the Caulobacter cell cycle. Proceedings of the National
Academy of Sciences 99:44632–4637.

Hottes AK, et al., 2005. DnaA coordinates replication initiation and cell
cycle transcription in Caulobacter crescentus. Molecular microbiology
58:1340–1353.

Reisenauer A, et al., 2002. DNA methylation affects the cell cycle
transcription of the CtrA global regulator in Caulobacter. The EMBO
journal 21:4969–4977.

Described are the number of total citations the original publication describing the sequenced genome was cited in and
multiple select articles describing these data in related research.
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least 10 reads of which at least half showed different read sequences from the

references.

From the read alignments, we found 89, 17, 6, 147 and 165 loci of which read sequences

were not consistent with the reference sequences for C.crescentus CB15, S.enterica ATCC

9150, B.fragilis NCTC 9343, B.halodurans C-125 and V.cholerae O1 N16961, respectively.

All five reference sequences appeared to have loci covered by inconsistent read sequences,

and the numbers of inconsistent loci were unexpectedly high for four bacteria, and modest

for B. fragilis NCTC 9343. However, as we have shown in our previous studies of Brucella

[9], not every inconsistent locus could be detected by the first alignment because alignment

programs have limitations in properly aligning reads to loci containing repeat sequences, long

INDELs or other structural differences. To detect structural assembly errors from read align-

ments, we inspected loci where at least 20% of the reads covering them were clipped (par-

tially unaligned) at the same bases. About 4 ~ 20 loci covered by clipped reads were detected

from read alignments of the five reference sequences. More than half of the loci were in the

G/C homopolymer regions which frequently cause sequencing systems to generate incorrect



Table 2 Re-sequenced bacterial genomes from six organisms

Comparison of genomic sequencing quality between sanger & NGS methods

Organism Genome
size

First published
year

Last updated
year

Re-sequenced by
illumina sequencer

Coverage Number of
Inconsistent Loci

Brucelli suis 1330 Chr.1
2.1 M

2002 2011 1559X 12 loci

Chr.2
1.2 M

Caulobacter crescentus
CB15

4.0 M 2001 325X 89 loci

Salmonella enterica ATCC
9150

4.6 M 2004 63X 17 loci

Bacteroides fragilis NCTC
9343

5.2 M 2002 2005 116X 6 loci

Bacillus halodurans C-125 4.2 M 2000 2005 111X 147 loci

Vibrio cholerae O1 N16961 Chr.1
2.9 M

2000 152X 165 loci

Chr.2
1.1 M

The genome sequence of Brucella suis 1330 was re-sequenced using the Illumina GAIIx platform (previously published)
and the additional five genomes were sequenced using Illumina MiSeq platform.
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random sequences, thus unaligned parts of read sequences were not consistent. At other loci,

the unaligned parts of read sequences were consistent and able to generate consensus se-

quences, which are duplications of other loci or do not exist in the reference sequences, indi-

cating potential structural assembly errors (or they may be the results of rapid evolutionary

changes).
Conclusions
The usage of genomic sequencing material derived from Sanger sequencing methods were a

valuable, pioneering tool towards current methods. However, this method is highly error

prone and the continued use of these sequenced genomes to identify anomalous and unique

genomic traits could be additive in error to original findings, unless these sequences are up-

dated. A few, such as Escherichia coli K-12 sub-strain MG1655, have been continuously up-

dated by the original submitters, but many completed sequences contain assembly errors

and lack necessary revisions. Species specific genome sequences are used in a variety of plat-

forms in basic and applied research, including: understanding evolutionary relationships,

mechanisms of microbial virulence and disease pathogenesis, diagnostics, and food and

health safety. As a scientific community, we are able to illustrate the needs and the capability

to rectify these errors by next-gen, re-sequencing as seen in the reanalysis of multiple organ-

isms [1,2]. Now, with advances in NGS technologies which can generate tremendous

amounts of raw sequencing data in a cost and time efficient way, high sequence coverage of

bacterial genomes has been enabled to validate these data and revise single nucleotide or

short INDEL errors. In this small study we have successfully demonstrated that these errors

can be minimized with NGS methods and also propose a concerted initiative to re-sequence

genomes from the ‘Sanger-era’[9]. As concerns for reproducibility in science are ever

increasing- with special emphasis linked to ‘big-data’ and genomics- science must address
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sequenced microbial genomes and establish standards for highlighting older sequenced ma-

terial and flagging these data to be used with caution. This is a contemporary issue, for the

genomes previously measured years ago are still very much in use, a current solution (and in-

vestment to science) is nextgen re-sequencing. By conducting large scale evaluations of gen-

ome sequences published during the early 2000s, as a scientific community we would

safeguard public interests and the integrity of future endeavors from the consequence of

existing errors.
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