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Background: The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to
biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their
commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme profile of a newly
isolated Trichoderma asperellum S4F8 strain with that of Trichoderma reesei Rut C30, cultured on sugarcane bagasse

Results: Comparison of the lignocellulolytic enzyme profiles of S4F8 and Rut C30 showed that S4F8 had
significantly higher hemicellulase and B-glucosidase enzyme activities. Liquid chromatography tandem mass
spectrometry analysis of the two fungal secretomes enabled the detection of 815 proteins in total, with 418 and
397 proteins being specific for S4F8 and Rut C30, respectively, and 174 proteins being common to both strains.
In-depth analysis of the associated biological functions and the representation of glycoside hydrolase family
members within the two secretomes indicated that the S4F8 secretome contained a higher diversity of main and
side chain hemicellulases and 3-glucosidases, and an increased abundance of some of these proteins compared

Conclusions: In SCB SSF, T. asperellum S4F8 produced a more complex lignocellulolytic cocktail, with enhanced
hemicellulose and cellobiose hydrolysis potential, compared with T. reesei Rut C30. This bodes well for the
development of a more cost-effective and efficient lignocellulolytic enzyme cocktail from T. asperellum for
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Background

Lignocellulases (cellulases, hemicellulases, and ligninases) are
the key enzymes involved in lignocellulose depolymerization,
and have a wide array of industrial applications. Perhaps the
most promising is their application in the bioconversion of
lignocellulosic plant material to fermentable monomeric
sugars, an essential step in second-generation bioethanol
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production [1]. Although significant progress has been made
in the enzymatic saccharification of lignocellulosic feedstocks
[2], full commercial-scale implementation is hampered by a
number of factors, including the high cost of the enzymes
required for efficient lignocellulose hydrolysis. One of the
contributing factors is the intrinsic recalcitrance of plant cell
walls, which demand high enzyme loadings for efficient deg-
radation [3]. Multi-faceted approaches to reduce enzyme
production costs and/or improve the efficiency of enzyme
cocktails have therefore received growing attention, and a
number of approaches are in use, including streamlining of
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bioprocess designs, development of cheaper feedstocks for
enzyme production, improving and designing feedstock-
specific cellulase cocktails, and bioengineering microorgan-
isms expressing lignocellulolytic enzymes [4].

Solid-state fermentation (SSF), the culturing of microor-
ganisms on moist solid substrates in order to mimic their
natural physiology and growth environment, is an age-old,
but resurgent culturing method for the production of
lignocellulolytic enzymes [5-9]. The technical and eco-
nomic benefits of SSF over traditional submerged fermen-
tation include superior volumetric enzyme productivity,
simpler fermenter design and downstream processing,
lower aeration demands, no agitation requirements, lower
sterility demands (due to lower water activity) and lower
effluent generation [8,9]. Furthermore, SSF offers a bio-
logical process to convert cheap, under-utilized agro-
industrial wastes (either as carbon/energy source or as an
inert carrier) into high-value end products such as organic
acids, flavour and aroma compounds, secondary metabo-
lites, and industrially relevant enzymes [6].

The production of cellulases and hemicellulases via
SSF has been investigated using different substrates and
microorganisms [5,8]. The choice of appropriate sub-
strate is important for the successful production of fun-
gal enzymes, as complex feedstocks are known to induce
expression of complex lignocellulolytic enzyme cocktails
to ensure complete substrate hydrolysis [10]. Several
Trichoderma species have been successfully cultivated on
various lignocellulosic substrates under SSF conditions,
and their important enzymes characterized, including cel-
lulases from the T. reesei Rut C30 strain (hereafter referred
to as Rut C30) [11-14].

Sugarcane bagasse (SCB), one of the world’s most abun-
dant agricultural wastes, has been utilized in SSF systems
for a variety of applications [15]. These include culturing of
bacteria, yeasts, and filamentous fungi for the production
of citric acid and various glycoside hydrolases, including
endoglucanases, B-glucosidases, a-amylases, and xylanases
[16-19]. Following extraction of the sugar from the cane,
the remaining fibrous material (bagasse), containing
approximately 40-50% cellulose, 25-35% hemicellulose,
7-29% lignin and less than 4% ash, serves as an ideal sub-
strate for growth and induction of lignocellulolytic
enzymes [17-20].

Because of their high secretion capacity and relatively
high specific enzyme activities, several Trichoderma species
[21] and their inexpensive cultivation via SSF on various
agricultural waste products to produce lignocellulases have
previously been investigated [22-24]. Secretome studies to
identify and quantify the major cellulases, hemicellulases,
and accessory enzymes involved in the depolymerization
and degradation of agricultural waste products have also
been conducted [25,26]. Quantitative approaches to inves-
tigate the secretome of Rut C30 identified 350 secretory
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proteins, with the large majority being associated with cel-
lulolytic and proteolytic enzymes [27]. A complementary
study later identified 636 proteins secreted by T. reesei, of
which 354 were quantified [28]. Although T. reesei is cur-
rently the main industrial source of commercial cellulases,
it has a relatively poor repertoire of cellulases compared
with other fungi [29]. The lack of potent hemicellulases
and the low levels of B-glucosidase and other accessory
enzymes in the secretome of industrially important 7.
reesei strains have prompted investigations into other fun-
gal strains and/or enzymes that could potentially replace
and/or supplement the T. reesei cellulases [30].

In the present study, the lignocellulolytic isolate S4FS,
identified as a Trichoderma asperellum strain, was
characterized in terms of its cellulase and hemicellulase
enzymes when cultivated on untreated SCB in a
simulated SSF process. The enzyme characteristics of
T. asperellum S4F8 (hereafter referred to as S4F8) were
compared with those of the benchmark Rut C30 strain,
and comparative secretome analysis was used to differ-
entiate between the enzyme cocktails produced by the
two fungal strains.

Results and discussion

Isolation and identification of fungal isolate S4F8

During an extensive screen for culturable lignocelluloly-
tic soil fungi, S4F8 outperformed other isolates with
regard to growth on synthetic (carboxymethylcellulose
(CMCQ), hydroxyethylcellulose (HEC), Avicel, and beech-
wood xylan (BWX)) and natural (wheat bran, triticale
bran, and SCB) lignocellulosic substrates as the sole car-
bon source (data not shown). These results suggested
that S4F8 most likely produces a well-balanced reper-
toire of core and accessory lignocellulosic enzymes
required to degrade these substrates, and was therefore
chosen for further enzyme characterization.

The 594 bp internal transcribed spacer (ITS) sequence
amplified from isolate S4F8 displayed 100% homology to
the partial ITS 1 and 2 regions of an uncultured Hypo-
creales clone [Genbank EF086981.1]. Five out of five
conserved anchors (oligonucleotide barcodes) for the
genus Hypocrea were identified in S4F8, using the
TrichOKey barcode system [31], which is widely used
for the identification of Trichoderma species originating
from different geographical locations [31,32]. The S4F8
ITS sequence also showed 100% sequence identity to 40
T. asperellum species in the TrichoBLAST database, and
was therefore identified as a T. asperellum strain belong-
ing to the XII Rufa clade, section Pachybasium ‘A.

Strains of T. asperellum, which are frequently isolated
from soil, plant roots and tissues, fungal biomass, and dead
wood, have mostly been studied as mycoparasitic fungi with
application as biocontrol agents [33,34]. In contrast to stud-
ies on Rut C30, studies on the extracellular hydrolytic
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enzymes of 7. asperellum have been limited to the identifi-
cation of proteins linked to its antagonistic interactions
with other fungi and plants [35-41]. Further investigation
was therefore required to characterize the lignocellulolytic
enzymes expressed by 7. asperellum strain S4F8.

Optimization of SSF culture conditions

Given the established success of Rut C30 in SSE, this cultur-
ing system was selected for a comparative study of the
hydrolytic enzymes produced by S4F8 and Rut C30. An ini-
tial screening under different SSF conditions indicated that
the highest enzyme activities of endoxylanase, f-xylosidase,
endoglucanase, cellobiohydrolase I and p-glucosidase for
both S4F8 and Rut C30 were recorded after 3 days of incu-
bation on SCB (data not shown) as opposed to the 7 days
typically reported for fungal SCB SSF [10,42].

The myriad of different conditions reported for
Trichoderma SSF does not allow a proper comparison of
the enzyme levels and activities for the different systems.
Mekala and co-workers reported up to 25.6 filter paper
units (FPU) per gram of dry substrate (gds) for Rut C30 in
SCB SSE, whereas Trichoderma harzianum produced 12.8
U/ml xylanase on 280 g/l substrate after 7 days of incuba-
tion [43]. The latter study indicated that several experi-
mental parameters influenced enzyme yields, including
incubation time, extraction methods, and substrate load-
ing. Other factors that improved cellulase production by
T. reesei during SSF included relative humidity and
temperature [14], continuous light exposure [44], aeration
and higher substrate concentrations [6].

In the present study, S4F8 yielded marginally higher
endoglucanase and [B-xylosidase activities when incubated
in darkness under controlled relative humidity (RH) of
90% (culture condition C) compared with the standard cul-
ture condition A (30°C in darkness without RH control),
whereas exposure to light (culture condition B) had a gen-
erally negative effect on the enzyme activities of endoxyla-
nase and side chain hemicellulases (Table 1). Because none
of the modifications to the standard SSF conditions
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significantly improved the important enzyme activities, the
standard conditions were used in subsequent experiments.

Characterization of lignocellulolytic enzyme activities
produced during SCB SSF

Hemicellulose, like lignin, acts as a physical barrier that
protects cellulose against enzymatic degradation, but this
barrier can be overcome through the synergistic action of
enzyme cocktails with enhanced hemicellulolytic capabil-
ities [45]. The present study found that the S4F8 SSF
extract contained particularly high levels of main chain
hemicellulases, endoxylanase (14.8 U/gds) and B-xylosidase
(4.7/U gds), with a 4-fold and 23-fold higher activity,
respectively, compared with that of Rut C30 (Figure 1). In
terms of side chain hemicellulase enzyme activities, the
SAF8 SSF extract furthermore displayed three-fold to
four-fold higher levels of a-arabinofuranosidase and
a-galactosidase activity. Compared with Rut C30, S4F8
showed comparable cellobiohydrolase I and endoglucanase
activities and a three-fold higher -glucosidase activity. This
enzyme activity profile suggested that culturing S4F8 on
untreated SCB using SSF produced an enzyme cocktail
with enhanced hemicellulose degradation ability compared
with that of Rut C30. As commercial T. reesei cellulase
preparations are typically low in B-glucosidase activity, sup-
plementation with exogenous [-glucosidases, either by
homologous or heterologous expression of [-glucosidase
genes, or co-cultivation of T. reesei with other high
B-glucosidase-producing fungi, is often required for
efficient hydrolysis of complex substrates [46]. Conse-
quently, the enhanced B-glucosidase activity of S4F8 could
render it suitable to meet this requirement.

Protein profiling of T. asperellum S4F8 and T. reesei Rut
C30 secretomes

Proteomics has greatly contributed to the current under-
standing of the enzymes involved in lignocellulosic
hydrolysis, and brought us closer to elucidating the
complete set of enzymes required for effective hydrolysis

Table 1 Enzyme activity profiles for T. asperellum S4F8 cultured under different SCB SSF conditions

SSF culture conditions

Enzyme activity (U/gds)

(3 days)

Cellulases Main chain Side chain hemicellulases
hemicellulases
Endoglucanase Cellobiohydrolase B- Endoxylanase B- a- a-
| Glucosidase Xylosidase Galactosidase Arabinofuranosidase

A: 30°C, without light 140 +0.07° 032 +0.03 1.01 £0.25 14.84 +081  4.78 £0.31 1.16 £0.14 131 +0.08°
(standard conditions)
B: 30°C with light 140 +0.26 0.28 +0.07 0.72 £0.25 1092 £245 446 £0.37 0.90 +0.08 0.99 +0.07
C: standard conditions 1.95 +0.30° 0.34 +0.03 097 +0.23 1461 199 578 £042° 099 +0.15 1.22 #£0.03¢
plus RH of 90%
D: 26°C, without light 1.50 £0.05 0.36 +0.05 1.24 +044 13224200 368 +026° 138 +0.24° 1.06 +0.05

gds, Gram of dry substrate; RH, relative humidity; SSF, solid-state fermentation.

“Mean value of triplicate experiments (n = 3), with standard deviations indicated for each mean value.
Significant difference (P < 0.03) compared with A, B, and D; “A, B, and C; 9B and C; and °B and D.



Marx et al. Biotechnology for Biofuels 2013, 6:172
http://www.biotechnologyforbiofuels.com/content/6/1/172

Page 4 of 13

Side chain a-Arabinofuranosidase

hemicellulases; .
a-Galactosidase

Main chain B-Xylosidase
hemicellulases
Endoxylanase

B-Glucocsidase

Cellulases Cellobiohydrolase 1

Endoglucanase

ZZ T. reesei Rut C30
I T. asperellum S4F8

Figure 1 Comparison of cellulase (red) and hemicellulase (green) activities in sugarcane bagasse (SCB) solid-state fermentation (SSF)
extracts produced by Trichoderma reesei Rut C30 (striped bars) and Trichoderma asperellum S4F8 (solid bars). Filtered SSF extracts from

T. reesei Rut C30 and T. asperellum S4F8 cultured in triplicate under standard SCB SSF conditions for 3 days were subjected to enzyme activity
analysis. Endoglucanase and endoxylanase activities were measured by dinitrosalicyclic acid (DNS) assay, while 3-glucosidase, cellobiohydrolase |,
a-arabinofuranosidase, B-xylosidase, and a-galactosidase activities were determined with the respective p-nitrophenyl substrates. Error bars denote
standard deviations from the mean values of triplicate measurements (n = 3).

6 8 10 12 14 16 18
Enzyme activity (U gds™)

of complex substrates. The first proteomic investigations
into the secretome of T. reesei [25] identified 22 and 36
proteins in strains Rut C30 and CL847, respectively, with
the majority of these proteins being linked to cellulose
and hemicellulose hydrolysis. More recently, the iTRAQ
system has enabled quantitative analysis of the Rut C30
secretome, in which 636 secreted proteins were identi-
fied, with 230 proteins (36%) associated with cellulolytic
and proteolytic enzymes [28].

A proteomic approach using liquid chromatography
tandem mass spectrometry (LC-MS/MS) was used in
this study to quantitatively compare the S4F8 and Rut
C30 secretomes in a SCB SSF process, using a single
time point and temperature. In total, 815 proteins were
identified in the SSF extracts, with 418 and 397 proteins
being specific to the S4F8 and Rut C30 extracts, respect-
ively, and 174 proteins being common to both species
(see Additional file 1: Table S1; see Additional file 2:
Table S2). This high number of detected proteins could
be attributable to the possibly higher induction of a large
subset of enzymes during SCB SSF, and/or the high sen-
sitivity of the LTQ Orbitrap Velos system.

Within the combined S4F8 and Rut C30 secretomes,
N-terminal Sec-dependent secretion signals [47] were
identified in silico for 315 proteins (39% of the total
proteins detected), with 180 and 135 secreted proteins
being predicted for S4F8 and Rut C30, respectively. The
presence of more than 60% of the proteins in the secre-
tomes without predicted secretion signals indicates pos-
sible cell lysis, cell death or non-classic secretory
mechanisms.

The predicted secreted proteins were grouped accord-
ing to their biological function (Figure 2). Within the
combined S4F8 and Rut C30 secretomes, 68 proteins
(23% of total secreted proteins) were identified (false
discovery rate (FDR) <1.0) as having either putative

esterase (5 proteins) or glycoside hydrolase (63 proteins)
activity relevant to lignocellulose degradation. The per-
centage of proteins acting on cellulose and hemicellulose
(relative to the total secreted) was marginally higher in
S4F8 (21%) than in Rut C30 (18%). Similarly, a higher
number of proteins involved in cellulose and hemicellu-
lose degradation were detected in the S4F8 secretome
(18 and 24 proteins, respectively) compared with the Rut
C30 secretome (14 and 18 proteins, respectively). In-
cluded in the enzyme profile of both S4F8 and Rut C30
were expansin-like proteins such as swollenin (>jgi|
Trias1|58369, >jgi|Trias1|57959, >jgi|TrireRUTC30_1|
104220), which play a non-hydrolytic role in the disrup-
tion of lignocellulose (see Additional file 3: Table S3).
This study also identified several substrate binding pro-
teins such as CBM1 cellulose binding domain Cip2
(>jgi| TrireRUTC30_1|125575) and Cip (>jgi|TrireR-
UTC30_1]121449) in the Rut C30 secretome, and
CBM13 (>jgi|Trias1|149192) in the S4F8 secretome. No
extracellular lignin-degrading enzymes such as lignin
peroxidases, manganese peroxidases, or laccases were
detected in the S4F8 and Rut C30 secretomes, including
the two recently predicted T. asperellum extracellular
laccases sensu stricto [48]. However, several predicted
proteins, including metal-containing oxidases and other
oxidoreductases potentially linked to lignin degradation,
were detected in the S4F8 (15 proteins) and Rut C30
(16 proteins) secretomes. In addition to the lignocellulo-
lytic-related enzymes, the S4F8 and Rut C30 secretomes
contained a set of proteases and peptidases (15 proteins
detected in both secretomes), proteins involved in lipid
transport and metabolism (9 for S4F8 and 5 for Rut
C30), pectin degradation (5 for S4F8 and 2 for Rut C30),
chitin degradation (4 for S4F8 and 1 for Rut C30), and
cell wall biosynthesis and morphogenesis (7 for S4F8
and 4 for Rut C30), while the S4F8 secretome contained
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B Hypothetical proteins
B Cellulose hydrolysis

B Proteases/Peptidases
M Lipid transport/metabolism
W Hemicellulose hydrolysis @ Chitin degradation

Figure 2 Grouping of secreted proteins according to biological function for the sugarcane bagasse (SCB) solid-state fermentation (SSF)
secretomes of (A) Trichoderma asperellum S4F8 and (B) Trichoderma reesei Rut C30. Biological function predictions were based on the Joint
Genome Institute (JGI) genome database for T. asperellum CBS 433.97 version 1.0 and T. reesei RUT C-30 version 1.0.

1

1 Oxidases/Reductases m Cell wall biosynthesis/morphogenesis
= Pectin degradation Other
Starch degradation

two proteins involved in starch hydrolysis (none was
found for Rut C30) (Figure 2).

Grouping and distribution analysis of the secreted
proteins according to glycoside hydrolase (GH) fam-
ilies into 34 different GH families (according to the
carbohydrate-active enzyme database, CAZy, www.
cazy.org) further highlighted the diverse enzymatic
profile of the S4F8 and Rut C30 secretomes (Figure 3A,
Table 2). Firstly, not all of the predicted GHs (from the
respective annotated genome sequence databases) were

detected in the S4F8 and Rut C30 secretomes during
SCB SSF; 36% of the total (potential) GH proteins were
found in the S4F8 secretome, as opposed to 25% repre-
sentation in the Rut C30 secretome (tabulated sum-
mary in Figure 3A). It was noteworthy that all the
potential representatives of the GH1 (B-glucosidases),
GHI11 (endoxylanases), GH25 (N,O-diacetylmurami-
dase), GH54 and GH62 (a-L/N-arabinofuranosidases),
and GH74 (xyloglucanases) families were detected in
both strains.

(A)

[ T. asperellum S4F8
T. reesei Rut C30

Number of proteins per GH family

~TGHos jm====
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GH families

and general carbohydrate transport and metabolism are displayed with

includes enzyme identities, see Additional file 4: Figure S1.

Figure 3 Grouping and distribution analysis of glycoside hydrolase (GH) and functional network analysis. (A) Number and distribution of
GHs from each GH family detected in the secretomes of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30. Numbers in brackets
represent the total potential number of GH enzymes per family, based on the annotated genome sequences for T. asperellum CBS 433.97 version
1.0 and T. reesei RUT C-30 version 1.0. (JGI genome database). (B) Functional annotation network analysis of T. asperellum S4F8 and T. reesei Rut
(30 secretomes. Secreted proteins involved in cellulose, hemicellulose, pectin, chitin, starch degradation, cell wall biosynthesis and morphogenesis,

asperellum S4F8, and red nodes representing proteins found in both secretomes. For a detailed version of the functional annotation network that

Carbohydrate
transport

biosynthasis

morphogenesis

=3
GH20

purple nodes representing T. reesei Rut C30, blue nodes representing T.
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Table 2 Summary of glycoside hydrolase (GH) family protein representatives detected in the secretomes of

Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30

GH T. asperellum S4F8 T. reesei Rut C30

Family Protein ID Predicted protein Protein ID Predicted protein

GH1 >jgi[Trias1]|63798 B-Glucosidase >jgi[TrireRUTC30_1]127115 B-Glucosidase
>jgi[Trias1]55643 B-Glucosidase >jgi[TrireRUTC30_1|77989 B-Glucosidase

GH2 >jgi[Trias1]|148204 B-Mannosidase >jgi[TrireRUTC30_1|67432 -Mannosidase
>jgi[Trias1]152923 B-Mannosidase >jgi[TrireRUTC30_1|12549 -Mannosidase

GH3 >jgi[Trias1]|128828 B-Glucosidase >jgi[TrireRUTC30_1|136547 B-Glucosidase
>jgi[Trias1]151383 B-Glucosidase >jgi[TrireRUTC30_1|8750 B-Glucosidase
>jgi[Trias1|203210 B-Glucosidase >jgi[TrireRUTC30_1]125268 B-Glucosidase
>jgi[Trias1]|23916 B-Glucosidase >jgi[TrireRUTC30_1/|25095 B-Glucosidase
>jgi[Trias1]63437 B-Glucosidase
>jgi[Trias1]65584 B-Glucosidase
>jgi[Trias1]62211 B-Xylosidase >jgi[TrireRUTC30_1]140746 B-Xylosidase

GH5 >jgi[Trias1]193120 B-Glucocerebrosidase >jgi[TrireRUTC30_1|11580 Endo-B-1,6-galactanase
>jgi[Trias1|194740 B-Glucocerebrosidase
>jgi[Trias1|150477 B-Mannase
>jgi[Trias1]356270 Endoglucanase 2 >jgi[TrireRUTC30_1|72489 Endoglucanase 2
>jgi[Trias1]61451 Endoglucanase 2

GHé6 >jgi[Trias1]84972 Exoglucanase 2 >jgi[TrireRUTC30_1|122470 Exoglucanase 2

GH7 >jgi[Trias1]46985 Exoglucanase 1 >jgi[TrireRUTC30_1|125125 Exoglucanase 1
>jgi[Trias1]57926 Endoglucanase >jgi[TrireRUTC30_1|5304 Endoglucanase 1

GH10 >jgi[Trias1]53366 Endo-14-B-xylanase 3

GH11 >jgi[Trias1]179571 Endo-1,4-B-xylanase 1 >jgi[TrireRUTC30_1|134945 Endo-1,4-B-xylanase 1
>jgi[Trias1]|244563 Endo-1,4-B-xylanase 1 >jgi[TrireRUTC30_1]124931 Endo-1,4-B-xylanase 2
>jgi[Trias1]83211 Endo-14-B-xylanase 1 >jgi[TrireRUTC30_1/|38418 Endo-1,4-B-xylanase 1
>jgi[Trias1]90115 Endo-1,4-B-xylanase 1

GH12 >jgi[Trias1|177701 Endoglucanase 1

GH15 >jgi[Trias1]135222 Glucoamylase
>jgi[Trias1]|151475 Glucoamylase

GH16 >jgi[Trias1]|198977 Transglycosylase >jgi[TrireRUTC30_1|66752 Glucanosyltransferase
>jgi[Trias1|97006 Glucanosyltransferase

GH17 >jgi[Trias1]62474 Glucan 1,3-B-Glucosidase

GH18 >jgi[Trias1|148765 Chitinase
>jgi[Trias1|57384 Chitinase
>jgi[Trias1]41515 Chitinase

GH20 >jgi[Trias1]157721 B-N-acetylhexosaminidase >jgi[TrireRUTC30_1|99285 3-N-acetylhexosaminidase

GH25 >jgi[Trias1]24131 N,O-diacetylmuramidase >jgi[TrireRUTC30_1/13308 N,O-diacetylmuramidase

GH27 >jgi[Trias1]59499 a-D-Galactosidase >jgi[TrireRUTC30_1|6433 a-D-galactosidase
>jgi[Trias1]47755 a-D-Galactosidase >jgi[TrireRUTC30_1|71638 a-D-galactosidase

GH28 >jgi[Trias1]204961 Endo-polygalacturonase >jgi[TrireRUTC30_1/133383 Endopolygalacturonase
>jgi[Trias1|74014 Exo-polygalacturonase

GH30 >jgi[TrireRUTC30_1|90847 B-Glucocerebrosidase

>jgi[TrireRUTC30_1/93498

{-Glucocerebrosidase
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Table 2 Summary of glycoside hydrolase (GH) family protein representatives detected in the secretomes of

Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 (Continued)

GH31 >jgi[Trias1]132074 a-Glucosidase
>jgi[Trias1]62176 a-Xylosidase >jgi[TrireRUTC30_1|134448 a-Xylosidase

GH35 >jgi[Trias1|51088 B-Galactosidase >jgi[TrireRUTC30_1]101346 B-Galactosidase

GH36 >jgi[Trias1]179128 a-Galactosidase 2 >jgi[TrireRUTC30_1]12566 o-Galactosidase 2

GH43 >jgi[Trias1]56700 Xylosidase

GH47 >jgi[Trias1]233323 a-1,2-Mannosidase

GH54 >jgi[Trias1]152723 a-N-arabinofuranosidase B >jgi[TrireRUTC30_1]102517 a-L-arabinofuranosidase B
>jgi[Trias1]|55003 a-N-arabinofuranosidase B >jgi[TrireRUTC30_1/|72252 a-L-arabinofuranosidase B

GH55 >jgi[Trias1]|127630 Glucan 1,3-B-glucosidase >jgi[TrireRUTC30_1|25104 Glucan 1,3-B-glucosidase

GH61 >jgi[TrireRUTC30_1/|122518 Endoglucanase 7

>jgi[TrireRUTC30_1|139633 Endoglucanase 4

GH62 >jgi[Trias1]|138627 a-L-arabinofuranosidase >jgi[TrireRUTC30_1]118070 a-N-arabinofuranosidase
>jgi[Trias1]53918 a-N-arabinofuranosidase

GH67 >jgi[Trias1|328757 a-Glucuronidase >jgi[TrireRUTC30_1/90302 a-Glucuronidase

GH72 >jgi[Trias1]|140372 B-1,3-Glucanosyltransglycosylase >jgi[TrireRUTC30_1]103899 (3-1,3-Glucanosyltransferase
>jgi[Trias1]|152776 B3-1,3-Glucanosyltransglycosylase >jgi[TrireRUTC30_1/113858 (3-1,3-Glucanosyltransferase
>jgi[Trias1|93680 B-1,3-Glucanosyltransglycosylase

GH74 >jgi[Trias1|54925 Xyloglucanase >jgi[TrireRUTC30_1|111943 Xyloglucanase

GH79 >jgi[Trias1]|191352 Putative glucuronidase

GH92 >jgi[Trias1]135494 a-1,.2-Mannosidase >jgi[TrireRUTC30_1|94562 a-1,2-Mannosidase
>jgi[Trias1|159955 Putative a-1,2-mannosidase
>jgi[Trias1]24699 a-1,2-Mannosidase

GH93 >jgi[Trias1]41471 Putative exo-a-L-1,5-arabinanase

GH95 >jgi[Trias1]|146605 Putative a-fucosidase

Clear differences in the number and nature of GH pro-
teins secreted by S4F8 and Rut C30 were evident, with
S4F8 expressing a larger range of GH families (32 versus 24
GH families in S4F8 and Rut C30, respectively), and more
protein representatives per GH family (Figure 3). More
proteins belonging to GH families 3 (B-glucosidase/
B-xylosidase), 5 (various), 11 (endoxylanase), 16 (transglyco-
sylase and glucanosyltransferase), 28 (polygalacturonase),
31 (a-glucosidase/a-xylosidase), 62 (a-L/N-arabinofuranosi-
dase), 72 (glucanosyltransglycosylase) and 92 (mannosidase)
were detected for S4F8. Representatives of GH families 10
(endoxylanase), 12 (endoglucanase), 15 (starch-related), 17
(glucan 1,3-B-glucosidase), 18 (chitinase), 43 (xylosidase),
47 (a-mannosidase), 79 (glucoronidase), 93 (exo-arabinase)
and 95 (fucosidase) were unique to S4F8, whereas only
representatives of GH families 30 (B-glucocerebrosidase)
and 61 (endoglucanases, recently reclassified as copper-
dependent lytic monooxygenases in Auxiliary Activity (AA)
family 9 of the CAZy database) were unique to Rut C30.

Closer inspection of the secreted proteins detected in
the secretomes revealed that in general, an equivalent
or higher number of the cellulases (exoglucanase,

endoglucanase, and B-glucosidase), main chain hemicel-
lulases (endoxylanase, [-xylosidase), and side chain
hemicellulases (for example, a-galactosidase and «-
arabinofuranosidase) were secreted by S4F8 (Table 2,
Figure 3B; Additional file 4: Figure S1). For example,
eight pB-glucosidases (representing families GH1 and
GH3), five endoxylanases (GH11 and GH10) and three
a/B-xylosidases (GH3 and GH43) were identified for
S4F8, as opposed to six B-glucosidases (GH1 and GH3),
three endoxylanases (GH11), and two o/f-xylosidases
(GH3) in Rut C30.

It has been shown that, depending on the substrate, T.
reesei strains generally produce higher amounts of GH pro-
teins relative to other cellulolytic species such as Aspergillus
fumigatus, Fusarium verticilliodes, Fusarium graminearum,
and Phanerochaete chrysosporium [28,30,49,50]. These typ-
ically include two cellobiohydrolases, eight endoglucanases,
and seven B-glucosidases [51], of which both the cellobio-
hydrolases (>jgi| TrireRUTC30_1|125125 and >jgi| TrireR-
UTC30_1|122470, representing GH6 and GH7), four
endoglucanases  (>jgi| TrireRUTC30_1|5304, >jgi|TrireR-
UTC30_1|139633, >jgi|TrireRUTC30_1|72489, and >jgi|
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TrireRUTC30_1|122518, representing GH5, 7 and 61) and
six B-glucosidases (>jgi| TrireRUTC30_1|25095|, >jgi| Trir-
eRUTC30_1|125268, >jgi| TrireRUTC30_1|136547, and
>jgi| TrireRUTC30_1|8750, representing GH3, and > jgi|
TrireRUTC30_1|127115, and >jgi| TrireRUTC30_1|77989,
representing GH1) were detected in the Rut C30
secretome.

As no information on the typical lignocellulolytic en-
zymes expressed by 7. asperellum has been described pre-
viously, a similar analysis was not possible for strain S4F8.
However, it was apparent from the secretome analysis that
S4F8 secreted a well-balanced cellulolytic complex in SCB
SSE, which included most of the core cellulases typically
associated with lignocellulose hydrolysis. This included two
cellobiohydrolases (>jgi|Trias1|46985, representing GH7
and >jgi| Trias1|84972, representing GH6), four endogluca-
nases (>jgi|Trias1|356270, >jgi|Trias1|61451, >jgi|Triasl|
57926, and >jgi|Trias1|177701, representing GH5, 7 and
12) and eight P-glucosidases (>jgi|Trias1|128828, >jgi|
Trias1|151383, >jgi| Trias1|203210, >jgi| Trias1|23916, >jgil
Trias1|63437, and >jgi|Trias1|65584, representing GHS3,
and >jgi| Trias1|63798 and >jgi| Trias1|55643, representing
GH1).

In general, a diverse spectrum of depolymerization
and accessory enzymes were detected in the two fungal
secretomes, which agrees with the consensus that more
complex substrates, such as untreated SCB, will lead to
the induction of more complex lignocellulolytic cock-
tails. The lignocellulosic enzyme profile secreted by
fungi is known to be dependent on the type and com-
position of the carbon source used, and it is to be
expected that the S4F8 and Rut C30 secretomes will vary
if carbon sources other than SCB are used, as was re-
cently shown in a Penicillium echinulatum secretome
study [10]. Compared with the P. echinulatum secre-
tome on SCB, which contained predominantly cellulo-
lytic enzymes [10], both S4F8 and Rut C30 produced a
more diverse GH profile, with a higher number of -
glucosidases and hemicellulases (both main and side
chain) detected during SSF on SCB.

Interestingly, most of the hydrolytic activities proposed
by a recent hierarchical model for sugarcane cell wall deg-
radation [52] were detected in this study. According to that
model, hydrolysis of the cell walls of untreated sugarcane
require initial attack by pectinases (endo-polygalacturo-
nase, pectin-methyl-esterase, a-arabinofuranosidase, and
[B-galactosidase), together with 1,3-1,4-B-D-glucanases
to hydrolyse B-glucans. To this end, three exo-/endo-
polygalacturonases (GH28: >jgi| Trias1|204961, >jgi| Trias1|
74014, and >jgi| TrireRUTC30_1|133383) were detected in
the in the S4F8 and Rut C30 secretomes, while one pectin-
methyl-esterase (carbohydrate esterase family 8 (CES): >jgil
Trias1|82670) was detected in the S4F8 secretome only.
Various a-arabinofuranosidases (GH54, GH62) and [-
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galactosidases (GH35) relevant to pectin degradation were
also detected in the S4F8 and Rut C30 secretomes.

Proteomic analysis of secretomes can also shed light on
the relative production or secretion levels of a given pro-
tein as measured by its abundance (that is, how many
times a given protein is detected). The relative abundance
of the GH proteins in the respective secretomes (expressed
as fold increase relative to the other strain) (Table 3)
indicated that seven glycoside hydrolases, including
a-D-galactosidase (GH27), a-1,2-mannosidase (GH92),
B-mannosidase (GH2), endo-1,4-B-xylanase (GH11), B-N-
acetylhexosaminidase (GH20), and N, O-diacetylmurami-
dase (GH25), were significantly more abundant in S4F8
than in Rut C30, whereas an o-D-galactosidase (GH27)
and B-glucosidase (GH1) were significantly more abundant
in the Rut C30 secretome.

Conclusion

The hyperproducing and hypersecreting Trichoderma
reesei Rut C30 mutant strain is considered a paradigm
among cellulase-producing T. reesei strains and has
served as the benchmark for industrial cellulase produc-
tion. However, driven by an increased demand for
cheaper and more efficient lignocellulolytic enzyme
cocktails, considerable research effort is focused on the
further improvement of the ‘lignocellulose degradome’
of T. reesei and in finding alternative enzymes that could
potentially replace and/or supplement 7. reesei cocktails
to overcome the remaining challenges for commercially
feasible biomass-to-ethanol conversion processes. The
results presented here indicate that 7. asperellum strain
S4F8, which grew particularly well on SCB, produced a
lignocellulolytic cocktail in an SSF process with hemicel-
lulase and B-glucosidase abilities that exceeded those of
T. reesei Rut C30. We provide the first comprehensive
secretome analysis for a T. asperellum strain, and reveal
that its secretome contains a more complex cocktail of
GH family representatives than 7. reesei Rut C30. Fur-
thermore, the efficacy of untreated SCB in an SSF
process highlights the suitability of this cheap, widely
available agroindustrial waste product as a substrate for
the production of fungal lignocellulolytic enzymes. In
summary, the T. asperellum strain S4F8 has significant
potential for the production of lignocellulolytic enzymes,
and merits further investigation, which could include
in-depth characterization of individual enzymes or
multi-enzyme complexes, the evaluation of other ligno-
cellulosic substrates, optimization of the SSF culture
conditions, and strain improvement.

Methods

Strains, media, and chemicals

The T. reesei Rut C30 (ATCC 56765) strain [53] was ob-
tained from the culture collection of the Department of
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Table 3 Summary of protein abundance differences detected for glycoside hydrolase (GH) proteins common to the
Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 secretomes

Protein IDs SignalP Biological function Fold increase
Increased abundance in T. aperellum S4F8

>jgi[Trias1]83211 / >jgi[TrireRUTC30_1|134945 Yes Endo-14-B-xylanase 1 (GH11) 26
>jgi[Trias1[152923 / >jgi[TrireRUTC30_1]12549 Yes R-Mannosidase (GH2) 3
>jgi[Trias1|157721 / >jgi[TrireRUTC30_1]|99285 Yes B-N-acetylhexosaminidase (GH20) 36
>jgi[Trias1]24131 / >jgi[TrireRUTC30_1|13308 Yes N,O-diacetylmuramidase (GH25) 37
>jgi[Trias1]59499 / >jgi[TrireRUTC30_1[6433 Yes a-D-galactosidase (GH27) 38
>jgi[Trias1]127630 / >jgi[TrireRUTC30_1|25104 Yes Glucan 1,3-B-glucosidase (GH55) 29
>jgi[Trias1]135494 / >jgi[TrireRUTC30_1|94562 Yes a-1,2-Mannosidase (GH92) 34
Increased abundance in T. reesei Rut C30

>jgi[TrireRUTC30_1]127115 / >jgi[TrireRUTC30_1|77989 / >jgi[Trias1|55643 No B-Glucosidase (GH1) 36
>jgi[TrireRUTC30_1|71638 / >jgi[Trias1|47755 Yes a-D-Galactosidase (GH27) 32

Microbiology, Stellenbosch University, South Africa. The
S4F8 strain was isolated from a forest soil sample col-
lected from the Oribi Gorge, KwaZulu-Natal, South
Africa.

Strains were maintained on malt extract agar (MEA;
Sigma Aldrich, Seelze, Germany) or potato dextrose agar
(PDA; Merck KGaA, Darmstadt, Germany) at 30°C and
stored on MEA slants at room temperature. When
required, strains were cultured in yeast peptone dextrose
(YPD) broth (Merck, KGaA). All chemicals, media com-
ponents, and supplements were analytical grade.

Isolation of lignocellulolytic fungi

To select for fungi capable of growth on cellulosic sub-
strates, 1 g soil sample was resuspended in 10 ml physio-
logical salt solution (8.5 g/l NaCl), and plated onto agar
plates containing synthetic medium (1.76 g/l yeast nitro-
gen base, 5 g/l ammonium sulfate) with either 10 g/l
HEC or CMC as sole carbon source. Degradation of
amorphous cellulose was confirmed by the presence of
clear halos around the colonies following Congo Red
staining [54].

Molecular identification
Isolate S4F8 was inoculated at 10* spores/ml into YPD
broth and incubated for 5 days at 30°C with constant
agitation (100 rpm). Total genomic DNA was isolated
using the ZR Fungal/Bacterial DNA Miniprep™™ kit
(Zymo Research Corp., Orange, CA, USA). Amplifica-
tion of the ITS regions (ITS1 and 2) of the nuclear ribo-
somal RNA gene was performed using primers ITS1
(5'-TCCGTAGGTGAACCTTGCGG-3") and ITS4 (5'-
TCCTCCGCTTATTGATATGC-3"). with total genomic
DNA as template [55].

The 25 ul PCR reaction mix contained approximately
100 ng genomic DNA, 0.2 umol/l of each primer,
10 pmol/l deoxynucleotides, and 1 U ExTaq (TaKara Bio

Inc., Otsu Shiga, Japan). The PCR reaction was carried
out in a GeneAmp PCR System 2400 (Perkin Elmer),
using 30 cycles of denaturation at 94°C for 1 minute, an-
nealing at 58°C for 1 minute, and extension at 72°C for
1 minute, with a final extension step at 72° for 7 minutes.
PCR products were visualized by electrophoresis in 0.8%
(w/v) agarose (Sigma Aldrich) gels at 80 V and the
approximately 600 bp amplicon was excised and
gel-purified using the Zymoclean™™ Gel DNA Recovery
Kit (Zymo Research Corp.). The fragment was cloned
using the InsTAclone™ PCR Cloning Kit (Fermentas,
Maryland, USA) and transformed into Escherichia coli
DHb5a.

Sequencing of triplicate clones was carried out with an
Applied Biosystems 3130x] Genetic Analyzer (Central
Analytical Facility, Stellenbosch, South Africa). Sequence
alignment and analysis were performed with DNAMAN
software (Lynnon Corporation, Canada) and the final
consensus sequence subjected to a similarity search
using the BLASTn algorithm (http://blast.ncbi.nlm.nih.
gov). The TrichOKey2 oligonucleotide DNA BarCode
system [31] and TrichoBLAST (http://www.isth.info/
tools/blast/index.php) were used for final identification.

Solid-state fermentation
A flow diagram for the cultivation of the fungi, enzyme
assays, and proteomic analysis is shown in Figure 4. The
fungal strains were cultured on MEA, and allowed to
sporulate. A quantity (5 g) of dry, untreated SCB (TSB
Sugar RSA, Mpumalanga, South Africa) was dispensed
into 250 ml Erlenmeyer flasks, 10 ml of a mineral salt
solution (6 g/l Na,HPOy, 3 g/l NaH,PO,, 1 g/l KCI, and
0.1 g/l MgSO,7H,0, adjusted to pH 7.0 with concen-
trated HCI) was added, and the mixture was sterilized by
autoclaving for 15 minutes at 121°C.

For enzyme activity profiles and secretome analysis,
suspensions of 7. reesei Rut C30 and 7. asperellum SAF8
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Figure 4 Schematic representation of the experimental design
used to compare extracellular proteins of Trichoderma
asperellum S4F8 and Trichoderma reesei Rut C30 on sugarcane
bagasse (SCB) during solid-state fermentation (SSF).

spores in physiological salt solution were inoculated in
triplicate onto sterile SCB at approximately 2 x 10
spores per gds. After 3 days of incubation under stand-
ard SSF conditions (30°C in darkness without humidity
control; culture condition A), 100 ml of 0.05 mol/l
citrate-phosphate buffer (pH 7.0) was added to the flasks
and incubated with the bagasse/fungus mixture for
30 minutes with agitation at 200 rpm [56]. The super-
natant containing the secretome extracts was filtered
through several layers of Miracloth (Merck) and either
used directly for enzyme assays, or lyophilized (Virtis
Freeze Dryer 6 K) for secretome analysis. Modifications
to the standard SSF culture conditions to optimize
lignocellulosic enzyme production included incubating
SSE cultures in constant fluorescent light (culture
condition B), in darkness at a controlled RH of 90%
using a Hotpack CO, incubator (culture condition C), or
in darkness at 26°C (culture condition D).

Enzyme assays

Endoglucanase and endoxylanase activities were quantified
using a scaled-down dinitrosalicyclic acid (DNS) assay with
10 g/l low-viscosity CMC and BWX, respectively, in
0.05 mol/l citrate buffer pH 5.0 at 50°C [57,58]. The
B-glucosidase, cellobiohydrolase I, a-arabinofuranosidase,
[-xylosidase and a-galactosidase activities were determined
with the respective p-nitrophenyl-D-f-glucopyranoside
(pPNPGlu), p-nitrophenyl-D-p-cellobiose (pNPC), p-nitro-
phenyl-L-a-arabinofuranoside (pNPAra), p-nitrophenyl-
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B-D-xylopyranoside (pNPX) and p-nitrophenyl-a-D-galac-
toside (pNPGal) substrates. The corresponding standard
curves were prepared with 0.2-10 pmol/l glucose or xylose,
and 0.4 to 0.8 mg/ml p-nitrophenyl. Enzyme activities are
represented as the mean values of triplicate experiments,
and expressed in units per gram dry SCB, with one unit
defined as the amount of enzyme required to release
1 pumol of product per minute from the appropriate sub-
strate under assay conditions. Statistical inferences were
calculated using one way ANOVA (SigmaPlot version 11;
Systat Software Inc., Germany).

SDS-PAGE analysis

Lyophilized secretome extracts were reconstituted with
deionized water, protein concentrations were determined
with the detergent compatible (DC) Lowry protein assay
kit (BioRad, Melville, NY, USA), and 20 ug samples were
loaded in triplicate into a 10% SDS-polyacrylamide gel for
electrophoresis. Protein profiles were visualized by over-
night staining with 5 g/l Coomassie Blue G-250 (Merck),
followed by destaining with 100 ml/I acetic acid [59].

In-gel trypsin digestion

Triplicate lanes from the SDS-PAGE gel were divided
into three fractions for analysis by MS. Each fraction
was diced into smaller pieces (1 mm x 1 mm) to simplify
subsequent sample preparation. The collection of
smaller pieces from each fraction was washed twice with
water followed by 50% (v/v) acetonitrile for 10 minutes.
The acetonitrile was replaced with 50 mmol/l ammo-
nium bicarbonate and the pieces incubated for 10
minutes; this was repeated two more times. All the gel
pieces were then incubated in 100% acetonitrile until
they turned white, after which they were vacuum-dried.
Proteins were reduced with 10 mmol/l DTT for 1 hour
at 57°C. This was followed by brief washing steps with
50 mmol/l ammonium bicarbonate followed by 50%
acetonitrile, before proteins were alkylated with
55 mmol/l iodoacetamide for 1 hour in the dark. The gel
pieces were washed with 50 mmol/l ammonium bicar-
bonate for 10 minutes, followed by 50% acetonitrile for
20 minutes, before being vacuum-dried. The gel pieces
were digested with 100 pl of a 10 ng/pl trypsin solution
at 37°C overnight. The resulting peptides were extracted
twice with 70% acetonitrile in 0.1% formic acid for 30
minutes followed by 100% acetonitrile for 30 minutes.
The resulting peptides were desalted using Stage tips
[60]. Dried peptides from each fraction were dissolved in
5% acetonitrile in 0.1% formic acid, from which 10 pl
injections were prepared for nano-LC chromatography.

Mass spectrometry
All experiments were performed on a Thermo Scientific
EASY-nLC II connected to a LTQ Orbitrap Velos
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Mass Spectrometer (Thermo Scientific, Bremen, Germany)
equipped with a nano-electrospray source. For liquid chro-
matography, separation was performed on an EASY
Column (2 c¢m, ID 100 pm, 5 pm, C18) pre-column,
followed by a XBridge BEH130 NanoEase column (15 cm,
ID 75 pm, 3.5 pm, C18) with a flow rate of 300 nl/min. The
gradient used was 5 to 17% B in 5 minutes, 17 to 25% B in
90 minute, 25 to 60% B in 10 minutes, 60 to 80% B in 5
minutes, and kept at 80% B for 10 minutes. Solvent A was
aqueous solution in 0.1% formic acid, and solvent B was
100% acetonitrile in 0.1% formic acid.

The mass spectrometer was operated in data-dependent
mode to automatically switch between Orbitrap-MS and
LTQ-MS/MS acquisition. Data were acquired using the
Xcalibur software package. The precursor ion scan MS
spectra (m/z 400 to 2000) were acquired in the Orbitrap
with resolution R = 60 000 with 1 x 10° accumulated ions.
The 20 most intense ions were isolated and fragmented in
a linear ion trap (1.5 x 10* accumulated ions) using
collision-induced dissociation. The lock mass option
(polydimethylcyclosiloxane; m/z  445.120025) enabled
accurate mass measurement in both the MS and MS/MS
modes. In data-dependent LC-MS/MS experiments,
dynamic exclusion was used with an exclusion duration of
60 seconds. MS conditions were 1.8 kV with a capillary
temperature of 250°C, and no sheath and auxiliary gas
flow. For MS/MS, the ion selection threshold was 500
counts, activation Q-value was 0.25 and activation time
was 10 milliseconds.

Eighteen raw files were processed using MaxQuant
1.2.2.5 [61] for protein identification and label-free
quantification, using the Joint Genome Institute (JGI)
database for Trichoderma asperellum CBS 433.97 ver-
sion 1.0 (http://genome.jgi.doe.gov/Triasl/Triasl.home.
html) and Trichoderma reesei RUT C-30 version
1.0. (http://genome.jgi.doe.gov/TrireRUTC30_1/TrireR-
UTC30_1.home.html). Carbamidomethyl cysteine was
set as the fixed modification, with oxidized methionine,
acetylation (N-term), deamidation (NQ) and Pyr-Q (GIln
to 2-pyrrolidone-5-carboxylic acid-Glu) and Pyr-E (Glu
to 2-pyrrolidone-5-carboxylic acid-Glu) as the variable
modification. The precursor mass tolerance was set to
20 ppm, and the fragment mass tolerance to 0.8 Da.
Two missed tryptic cleavages were allowed, with a min-
imal peptide length of six amino acids. Proteins that
were identified were reported as single groups. Only
proteins containing at least one unique peptide were
considered. The criteria that were applied included a
peptide and protein FDR of 1% (0.01), and a posterior
error probability of 0.01. These extremely strict parame-
ters guaranteed that proteins would be identified with
high confidence.

Proteins that were differentially expressed between 7.
asperellum SAF8 and T. reesei Rut C30 were determined
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using Maxquant LFQ intensity values as a parameter for
protein abundance [62]. Subsequent statistical analysis
was performed using Perseus. Proteins with a fold regu-
lation of at least two and P-value of at least 0.05 were
accepted. Proteins identified in only one species were
required to be identified with at least two unique pep-
tides to ensure abundance differences were real and not
due to non-identification of parent ions by the MS
analysis. SignalP (www.cbs.dtu.dk/services/SignalP) was
used to identify possible secretion signals.

Proteome network analysis

Each secreted protein in the Rut C30 and S4F8 secre-
tomes was annotated according to broad functional
categories and their specific enzymatic activity or
molecular function (see Additional file 3: Table S3). In
addition, proteins known to be members of a specific
GH family were annotated as such. A custom-built Perl
program was written in order to create a network in
which the broad functional categories and the proteins
were nodes and edges were created between the categor-
ies and the proteins assigned to them. The program also
created a second network, in which the GH families and
the proteins were nodes, and edges were created be-
tween GH family nodes and the proteins assigned to
them. The union of these two networks was taken and a
complete breadth-first search performed, starting from
all GH family nodes. The nodes and edges selected by
the breadth-first search were used to create a new net-
work, which was visualized with Cytoscape [63]. A
spring-embedded layout was used on the network and
nodes were further manually arranged for better
visualization. A Perl program was also used to create
network annotations in order to control both node label
size and node colour (purple if from 7. reesei Rut C30,
blue if from T. asperellum S4F8. and red if the protein
was found in both secretomes). Node label positions
were further adjusted manually.

Additional files

<
Additional file 1: Table S1. All peptides detected with posterior error
probability (PEP) < 0.01 and at least one unique peptide in secretomes of
Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 grown in
sugarcane bagasse (SCB) solid-state fermentation (SSF). Raw data from
liquid chromatography tandem mass spectrometry analysis.

Additional file 2: Table S2. All the proteins detected with posterior
error probability (PEP) < 0.01 in SCB SSF secretomes of Trichoderma
asperellum S4F8 and Trichoderma reesei Rut C30 grown in sugarcane
bagasse (SCB) solid-state fermentation (SSF). Raw data from liquid
chromatography tandem mass spectrometry analysis.

Additional file 3: Table S3. Grouping of secreted proteins for the SCB
SSF secretomes of Trichoderma asperellum S4F8 and Trichoderma reesei
Rut C30 for functional annotation network analysis. Raw data from
functional annotation network analysis.
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Additional file 4: Figure S1. Functional annotation network analysis of
proteins involved in cellulose, hemicellulose, pectin, chitin, and starch
degradation, cell wall biosynthesis and morphogenesis and general
carbohydrate transport and metabolism detected in the Trichoderma
asperellum S4F8 and Trichoderma reesei Rut C30 secretomes. Functional
annotation network analysis with enzyme identities included.
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