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Abstract

Background: The alternative quantum mechanical description of total energy given by Bohmian theory was
merged with the concept of the golden ratio and its appearance as the Heisenberg imbalance to provide a new
density-based description of the valence atomic state and reactivity charge with the aim of clarifying their features
with respect to the so-called DFT ground state and critical charge, respectively.

Results: The results, based on the so-called double variational algorithm for chemical spaces of reactivity, are
fundamental and, among other issues regarding chemical bonding, solve the existing paradox of using a cubic
parabola to describe a quadratic charge dependency.

Conclusions: Overall, the paper provides a qualitative-quantitative explanation of chemical reactivity based on
more than half of an electronic pair in bonding, and provide new, more realistic values for the so-called “universal”
electronegativity and chemical hardness of atomic systems engaged in reactivity (analogous to the
atoms-in-molecules framework).

Keywords: Electronegativity, Chemical hardness, Bohmian mechanics, Heisenberg imbalance equation, Slater
electronic density
Introduction
Recently, the crucial problem regarding whether chem-
ical phenomena are reducible to physical ones has had an
increasingly strong impact on the current course of con-
ceptual and theoretical chemistry. For instance, the fact
that elements arrange themselves in atomic number (Z)
triads in approximately 50% of the periodic system seems
to escape custom ordering quantifications [1,2]. The same
applies to the following: the fascinating golden ratio (τ)
limit for the periodicity of nuclei beyond any physical
first-principle constants, which provides specific periodic
laws for the chemical realm [3-6]; the fact that atoms
have no definite atomic radii in the sense of a quantum
operator, and even the Aufbau principle, which, although
chemically workable, seems to violate the Pauli Exclusion
Principle [7]; at the molecular level, the well-celebrated
reaction coordinate, which, although formally defined in
the projective energy space, does not constitute a variable
to drive optimization in the course of chemical reactions,
Correspondence: mv_putz@yahoo.com
Laboratory of Computational and Structural Physical Chemistry, Biology-
Chemistry Department, West University of Timişoara, Pestalozzi Street No.16,
Timişoara RO-300115, Romania

© 2012 Putz; licensee Chemistry Central Ltd. T
Commons Attribution License (http://creative
reproduction in any medium, provided the or
appearing merely as a consequence of such reactions [8];
the problem of atoms in molecules [9], i.e., how much of
the free atoms enter molecules and how much indepen-
dency the atoms preserve in bonding; and chemical
bonding itself, which ultimately appears to be reinter-
preted as a special case of bosonic condensation with the
aid of bondons – the quantum bosons of chemical bond-
ing, which, without being elementary, imbue chemical
compounds with a specific reality [10,11].
In the same context, the specific measure of chemical

reactivity, electronegativity (χ), which lacks a definite
quantum operator but retains an observable character
through its formal identity with the macroscopic chem-
ical potential χ=-μ [12,13], was tasked with carrying
quantum information within the entanglement environ-
ment of Bohmian mechanics [14-17] and has thus far
been identified with the square root of the so-called
quantum potential χ = VQ

1/2 [6].
However, the striking difference between an atom as a

physical entity, with an equal number of electrons and
protons (thus in equilibrium), and the same atom as a
chemical object, with incomplete occupancy in its per-
iphery quantum shells (thus attaining equilibrium by
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changing accepting or releasing electrons), is closely
related to the electronegativity phenomenology in model-
ing chemical reactivity. Moreover, this difference triggers
perhaps the most important debate in conceptual chem-
istry: the ground vs. valence state definition of an atom.
The difficulty may be immediately revealed by consider-

ing the variation in the total energy (of the ground and/or
valence state – see below for an explanation of their dif-
ference) around the physical equilibrium (neutral atom)
attained between the release (by ionization, I) and receipt
(through affinity, A) of electrons toward chemical equi-
librium (in molecules, chemical bonding). Accordingly,
the curve passing through these points apparently only
behaves as shown in Figure 1(a), while in all systems
(with numerical I and A), the obtained interpolating curve
presents a minimum toward accepting electrons (see
Figure 1(b)), thus confirming the electronegativity concept
as a chemical reality, although with a predicted fractional
charge (for example, the critical charge N*) on an atom at
chemical equilibrium (i.e., not reducible/comprehensible
to/by an ordinary physical description of atoms).
However, the physical-to-chemical paradox continues

in an even more exciting fashion as follows. When, in
light of the above discussion, electronegativity is recog-
nized with the two-point limits shown in Figure 1(b),
namely [13,18]

χ ¼ I . . .Nreact ∈ �1; 0½ Þ
A . . .Nreact ∈ 0;þ1ð �

�
ð1Þ

the limits represent tangents to a curve that does not
describe chemical equilibrium but an excited state driven
by the parabolic form

EDFT ¼ �χN þ ηN2 ð2Þ
Figure 1 The two energy curves (thick lines) for the quantum atom in
critical ground state.
which happens to correspond to the celebrated den-
sity functional theory (DFT) working energy expression
[13,19-21] written in terms of electronegativity and chem-
ical hardness, respectively defined as follows [13,22-25]:

χDFT ¼ � ∂E
∂N

� �
V rð Þ

ð3Þ

ηDFT ¼ � 1
2

∂χ
∂N

� �
V rð Þ

¼ 1
2

∂2E
∂N2

� �
V rð Þ

ð4Þ

The point is that curve (2) is not chemically minimized,
although it is very often assumed to be in the DFT
invoked by the chemical reactivity literature [13,26-29];
however, the curve cannot be considered indicative of a
sort of ground state (neither reactive nor critical states of
Figure 1). Additionally, by comparing the curves of
Figure 1 (a) and (b), the curve of eq. (2) occurs above both
the reactive and critical curves of Figure 1; it thus should
represent the chemical valence state with which to oper-
ate. Therefore, much caution should be taken when work-
ing with eq. (2) in assessing the properties of atoms,
molecules, atoms in molecules, etc. Nevertheless, this is
another case of chemistry not being reducible to physics
and should be treated accordingly. It is worth noting that
Parr, the “father” of eq. (2) and a true pioneer of concep-
tual density functional theory [30,31], had tried to solve
this dichotomy by taking the “valence as the ground state
of an atom in a perturbed environment”. This statement is
not entirely valid because perturbation is not variation
such that it may be corrected by applying the variational
principle to eq. (2), for example. In fact, using such
variation should be considered a double variational tech-
nique that is necessary to arrive at the celebrated
(a) the apparent or reactive ground state and (b) the shifted or
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chemical reactivity principles of electronegativity and
chemical hardness, as recently shown [32].
The current line of work takes a step forward by

employing the double variation of the parabolic energy
curve of type (2) to provide the quantum (DFT) valence
charge of an atom (say, N**) and to compare it either
quantitatively and qualitatively with the chemical critical
charge N*. The goal of these efforts is to gain new
insight into the valence state and chemical reactivity at
the quantum level. To this end, the relation of Bohmian
mechanics to the concept of the golden ratio will be
essential and will be introduced in the following.
The consequences of the joint consideration of Bohmian

mechanics and the golden ratio for the main atomic sys-
tems will be explored, and the quantum chemical valence
state will be accordingly described alongside the so-called
universal electronegativity and chemical hardness, refining
the work of Parr and Bartolotti [33] as well as generalizing
the previous Bohmian-Boeyens approach [3,4].

Background methods
Two apparently disjoint theories of matter will be
employed to characterize the quantum valence of an
atom: Bohmian mechanics – furnishing the main equa-
tion for total energy – and the fundamental quantum
mechanics through the Heisenberg combined with de
Broglie principles providing the wave-particle indeter-
minacy framework in which the golden ration depend-
ency of Z/N naturally appears as quantifying the valence
states of atoms considered the “ground state” of the
atomic chemical reactivity.

Bohmian mechanics
Because of the need to reduce Copenhagen’s indeter-
minacy for quantum phenomena, i.e., by associating it
the quantum description of “Newtonian” forms of motion,
though by preserving probability densities, quantum
averages, etc., the so-called “minimalist” quantum theory
may be formulated following the Bohm quantum mech-
anical program as follows.
One begins with the general eikonal wave-function

form [14]

ψ r; tð Þ ¼ R rð Þ exp i
ℏ
S r; tð Þ

� �
ð5Þ

which represents the mid-way between wave and particle
mechanics because it contains both information regard-
ing Hamilton-Jacobi theory and the Wentzel-Kramers-
Brillouin (WKB) approximation [34] through the principal
phase function S(r,t) while preserving the amplitude
relationship with the systems’ quantum density:

ρ rð Þ ¼ ψ2 rð Þ ¼ R2 rð Þ ð6Þ
In this framework, the Schrödinger equation,
iℏ
∂
∂t

ψ r; tð Þ ¼ � ℏ2

2m
∇2

rψ r; tð Þ þ V rð Þψ r; tð Þ ð7Þ

decomposes into real and imaginary parts. The real part
can be expressed as follows:

∂S r; tð Þ
∂t

þ ∇rS r; tð Þð Þ2
2m

� ℏ2

2m
∇2

r R rð Þ
R rð Þ þ V rð Þ ¼ 0 ð8Þ

representing a continuous “fluid” of particles driven by
the “guidance” momentum:

mv ¼ p ¼ ∇rS r; tð Þ ð9Þ
moving under a joint external potential V(r) as well as
under the so-called quantum potential influence:

VQ rð Þ ¼ � ℏ2

2m
∇2

r R rð Þ
R rð Þ ð10Þ

The consequences are nevertheless huge. For example,
this methodology allows for the interpretation of the tra-
jectories orthogonal to constant surfaces, by cancelling
the Laplacian of the wave fronts ∇ r

2S(r, t) = 0, which are
obtained from eqs. (8) and (9) as the quantum equation
of motion:

∂p
∂t

¼ �∇r VQ rð Þ þ V rð Þ� � ð11Þ

Equation (11) resembles the classical Newtonian
acceleration-force relationship only in a formal way; in
fact, it generalizes it: it prescribes acceleration motion
even in the absence of an external classical potential.
This is essential in explaining why the inter-quark forces
increase with the increase in inter-quark distances, no
matter how great a separation is considered (a specific
quantum effect), due to the presence of a quantum po-
tential that does not fall off with distance as V does. It
also nicely explains the observed interference patterns in
double-slit experiments in the absence of classical forces.
Alike, eq. (11) also appears suited for modeling chemical
reactivity for the valence atoms as free particles in a vir-
tually infinite potential environment to characterize their
reactive behavior. In this regard, it is worth considering
for such atoms the uniform motion by having ∂ p/∂ t = 0
through the time-constant associated wavefront condition
and action S(r=cnst.,t)=cnst. (equivalent with Lagrangean
constancy), in all given chemical space-points (atomic
basins within molecule complex) [35]. This picture is also
equivalently to have

∂S r; tð Þ
∂t

¼ 0 ð12Þ
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applied to eq. (8). By doing so, one obtains

∇rS r; tð Þð Þ2
2m

¼ � � ℏ2

2m
∇2

r R rð Þ
R rð Þ þ V rð Þ

" #
ð13Þ

which can be rearranged as follows:

T ¼ �VQ � V rð Þ ð14Þ

such that the total energy of a the valence system is now
entirely driven by the quantum potential:

EQ ¼ T þ V rð Þ ¼ �VQ ð15Þ

At this point, one can see that when turning to elec-
tronegativity and combining eq. (15) with DFT definition
(3), one obtains a generalization of the previous Boeyens
formulation [6]:

χQ�DFT ¼ ∂VQ

∂N

� �
V rð Þ

ð16Þ

which is the variation in the quantum potential with
electron exchange under a constant classical or external
potential.
However, for a quantum characterization of the valence

state, we are interested in how the energy described by
eq. (15) varies under a quantum potential (10)

EQ a:u:ð Þ ¼ ∇2
r R rð Þ
2R rð Þ ¼ ∇2

rρ
1=2 rð Þ

2ρ1=2 rð Þ
¼ 1

4
∇2

rρ rð Þ
ρ rð Þ � 1

8
∇rρ rð Þ½ �2
ρ2 rð Þ ð17Þ

when the above relations (6) and (10) are substituted into
eq. (15).
It is worth noting that although we obtained the total

energy (17) in the Bohmian mechanics context, it show-
cases a clear electronic density dependency, not under a
density functional (as DFT would require) but merely
as a spatial function, which is a direct reflection of the
entanglement behavior of Bohmian theory through the
involvement of a quantum potential. However, in most
cases, and especially for atomic systems, eq. (17) will
yield numerical values under custom density function
realizations.

Golden ratio imbalance for valence states of atoms
Atomic stability and periodicity remain major issues in
the structural theories of matter; fortunately, they both
have been largely solved by wave-particle (W/P) comple-
mentarily quantum behavior; phenomenologically, such
relationship can be expressed as “WAVE ⊗ PARTICLE =
constant”, while it may be quantized (by Planck’s con-
stant h) in the light of Heisenberg principle as [36]

WAVE⊗PARTICLE ¼ nW=Ph ð18aÞ

Remarkably, when fixing the particle’s observable
property, say O, while letting wave information to vary,
say ΔO, equation (18a) takes the workable form

ΔO� O ¼ nOh ð18bÞ
having as the preeminent realization the Bohr-de Broglie
formulation a, leading with the first rationalization of the
atomic periodicity [37]. However, when about the atomic
chemical reactivity a similar analysis may be provided in
terms of the number of electrons to atomic number
ratio (N/Z): one may fix the observable (“particle”) char-
acter of the reactive atomic system by the ratio itself

O ¼ N
Z

ð19aÞ

while modeling its evolving (“wave”) character by the
natural variation of the previous ratio in terms of
exchanged electrons respecting the neutral state:

ΔO ¼ ΔN
Z

¼ N � Z
Z

ð19bÞ

When combining eqs. (19a) and (19b) into eq. (18b)
on the lowest quantized state (nO=1), the “ground state”
of atomic reactivity that is the atom in its valence state
so to speak, and within atomic units’ formulation (i.e. by
putting h=1, since the actual reactivity quantification
involves only numbers with no dimension), one has the so
called Heisenberg imbalance equation for valence atoms

N � Z
Z

� N
Z

¼ 1 ð20aÞ

that can be rewritten as

Z2 þ NZ � N2 ¼ 0 ð20bÞ

Eq. (20b) has the elementary acceptable solution

Z ¼ �N þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ 4N2

p

2
¼ Nτ ð21aÞ

which establishes, the direct “chemical” connection be-
tween the number of electrons and the atomic charge by
means of the golden ratio

τ ¼ �1þ ffiffiffi
5

p

2
¼ 0:6180 ð21bÞ

generalizing the “physical” connection between nuclear
(cosmic) synthesis at high pressure and atomic stability



Putz Chemistry Central Journal 2012, 6:135 Page 5 of 16
http://journal.chemistrycentral.com/content/6/1/135
in the gas phase (Z=N); one has therefore the actual
physical-to-chemical electronic charge – atomic number
relationships

Z
N

¼ 1 . . .STABLE PHYSICALð ÞATOM
τ . . .REACTIVE CHEMICALð ÞATOM

�
ð22Þ

Worth remarking the results of type (20) and (22), here
based on chemical reactivity specialization of Heisenberg
type equations (18a) and/or (18b), were previously
obtained at the level of neutron-protonic imbalance, in-
side the atomic nuclei, based on well-founded empirical
observations [6]. The present golden ratio appearance is
ultimately sustained also by the deviation from the N=Z
condition for so-called “quark atoms” (as another way
in considering the atoms in a quantum valence state),
earlier identified as true matter’s entities responsible for
matter’s reactivity at the atomic level [38].
Therefore the atomic structure branching (22) can be

regarded as the present golden ratio extension to valence
atom and as such employed; actually, its consequences
regarding the characterization of the quantum valence
states of atoms within the Bohmian quantum potential
are the main aims of the present endeavor and will be
discussed next.

Atomic implementation and discussion
On Slater density for valence atoms
Density is considered a “goldmine” in current computa-
tional and conceptual quantum chemistry due to its link
with observable quantities, energy density functionals in
particular, as celebrated by DFT [13,20,39,40]. However,
to quantitatively approach the chemical phenomenology
presented in Figure 1, involving the ionization-to-affinity
atomic description, the general Slater [33] density (in-
volving the orbital parameter ξ dependency) will be here
employed for the first trial on modeling the combined
Bohmian and gold-ratio features of valence atom; it
assumes the general (trough still crude) working form:

ρ r; ξð Þ ¼ ρ0 exp �2ξ r½ � ð23aÞ

For the reactivity at the valence atomic level, or for
some outer shell (n) considered at the atomic frontier,
one may assume almost electronic free motion or at
least electronic motion under almost vanishing nuclear
potential V(r); this way the density (23a), while entering
the quantum potential (10) recovers the negative kinetic
energy by the virial identity (14). Analytically, since eqs.
(6), (10) and (23a), one has ∇ r

2ρ1/2 = ξ2ρ1/2 and the actual
valence atomic virial realization looks like

VQ rð Þ ¼ �ℏ2ξ2

2m
. . . ¼ �T ¼ � p2

2m
ð24Þ
Equation (24) leaves with the identity:

ℏξ ¼ p ð25aÞ
that may be further rewritten with the help of the atomic
Bohr-de Broglie relationship (see the note a) to provide
the atomic frontier radii shell-dependency

rfrontier ¼ n
ξ

ð25bÞ

Remarkably, the same result is obtained when employing
a far more reach atomic shell structure description, namely
when starting with the full atomic radial Schrödinger
density [25]

ρn r; ξð Þ ¼ 4πr2
2ξð Þ2nþ1

2nð Þ! r2n�2 exp �2ξ r½ � ð26Þ

and imposing the null-gradient condition [41], ∇rρn(r, ξ) =
0, in accordance with the celebrated Bader condition of
electronic flux of atoms-in-molecules [9,42], to yield:

rmax ¼ n
ξ

ð25cÞ

The identity between eqs. (25b) and (25c) gives suffi-
cient support to the present Slater density approach
eq. (23a) in modeling the valence atoms or the atoms
at their frontiers approaching reactivity (i.e. atoms-in-
molecules complexes by chemical reactions).

Quantum chemical bonding and reactivity indices
Once convinced by the usefulness of the Slater density
form (23a) for the present valence atomic analysis, one
will next employ it under the so called Parr-Bartolotti
form [33]

ρ r; ξð Þ ¼ N
ξ3

π
exp �2ξ r½ � ð23bÞ

such that to obey the N-normalization condition, as
required by DFT [43-47],

Z1
0

4π r2ρ r; ξð Þdr ¼ N ð27Þ

by applying the Slater integral recipe

Z1
0

xn exp �αxð Þdx ¼ n!
α nþ1

ð28Þ

It nevertheless showcases the parametric ξ dependency
that can be smeared out by considering the variational
procedure

∂E ξ½ �
∂ξ

¼ 0 ð29Þ
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upon applying the total atomic energy

E ξ½ � ¼ T ξ½ � þ Vee ξ½ � þ Vne ξ½ � ð30Þ
where the components are individually evaluated within
a radial atomic framework with the respective results for
[21,48]

� kinetic energy

T ξ½ � ¼
Z1
0

4π r2 � 1
2

1
r2

∂
∂r

r2
∂
∂r

� �� 	
þ ξ

2r

� 

ρ r; ξð Þdr

¼ N
ξ2

2
ð31aÞ
� nucleus-electronic interaction

Vne ξ½ � ¼ �
Z1
0

4π r2
ρ r; ξð Þ

r
dr ¼ �Nξ ð31bÞ
� inter-electronic interaction (see also Appendix)

Vee ξ½ � ¼ N � 1
2N

∬
ρ 1ð Þρ 2ð Þ

r12
dv 1ð Þdv 2ð Þ

¼ N2 � N
� � 5

16
ξ ð31cÞ

With these results, the optimum atomic parameter is
quantified by the electronic number as follows:

ξ ¼ 21� 5N
16

ð32Þ

which immediately releases the working electronic
density

ρ0 r; ξð Þ ¼ N
π

21� 5N
16

� �3

exp � 21� 5N
16

2r

� 	
ð33Þ

Having the completely analytical density in terms of
number of reactive electrons as in eq. (33), worth point-
ing here on the so called sign problem relating with its
variation, e.g., its gradient, the gradient of its square
root, etc.. Although this problem usually arises in density
functional theory when specific energy functionals are
considered in gradient forms, see for instance ref. [49],
there is quite instructive discussing the present behavior
and its consequences.
For instance, one can adapt either eqs. (25b) or (25c)

through considering the present form (32) for the orbital
exponent to be

r
n
¼ 16

21� 5Nbonding
ð25dÞ
Here, one combines the frontier and maximum atomic
radii with atoms-in-molecules phenomenology, as above
indicated, to arrive to the present identification for the
number of valence electrons possible to be involved in
the same chemical bonding state as being Nbonding in
(25d). Accordingly, the Figure 2 reveals interesting fea-
tures of the present Slater-Parr-Bartolotti atomic density
with quantum potential:

� the fact that the (covalent) bond length is
proportional to the atomic radii and in inverse
correlation with bonding order is well known [50],
and this it is also nicely reflected in eq. (25d);
however, changing the sign to negative radii as
surpassing the threshold 21/5 and fixing in fact the
limit Nbonding=4, is consistent with maximum bond
order met in Nature; it is also not surprising this
self-released limit connects with golden ratio by the
golden-spiral optimization of bond-order [51]; more
subtle, it connects also with the 4π symmetry of two
spherical valence atoms making a chemical bond
(Figure 2, inset): such “spinning” reminds of the
graviton symmetry [52] (the highest spherical
symmetry in Nature, with spin equal 2) and justifies
the recent treatments of chemical bonding by means
of the quasi-particles known as bondons [10,53], as
well as the use of the 4D complex projective
geometry in modeling the chemical space as a non-
Euclidian one, eventually with a time-space metrics
including specific “gravitational effects” describing
the bonding [51];

� the “gap” between the atomic systems contributing
2 to 3 electrons to produce chemical bond is about
double of the golden ratio, r=nð ÞNbonding¼3 �
r=nð ÞNbonding¼2 ffi 2τ ; therefore, this gap marks the
passage from the space occupied by a pair of
electrons and that required when the third electron
is added on the same bonding state: it means that
the third electron practically needs one golden
measure (τ) to (covalently) share with each of the
existing pairing electrons, while increasing the
bond order to the level of three; it is therefore a
space representation of the Pauli exclusion principle
itself, an idea also earlier found in relation with
dimensionless representation of a diatomic
bonding energy (2τ) at its equilibrium bonding
distance τ [54]; when the fourth electron is
coming into the previous system, in order the
maximum fourth order of bonding to be reach
the chemical bonding space is inflating about
five times more, yet forbidding further forced
incoming electrons into the same space of
bonding state as the bonding radius becomes
negative in sign.



Figure 2 Representation of the bonding length as a function of bonding electrons from valence atoms in molecule(s), based on eq.
(25d), while marking the double golden ratio 2τ gap between the bonding lengths of the second and third bonding order, as well as
the forbidden chemical bonding region for Nbonding ≥21/5 for the electrons participating in the same bonding. Further connection of
chemical bonding and the 4D space to model it is suggested by the inset picture illustrating the 2-fold (4π) spinning symmetry of the adduct
atom respecting the bonding direction, after [51].
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Having revealed the chemical bonding information car-
ried by the density (33) when considered for combined
valence atoms-in-molecules, it is next employed on ener-
getically describing the atomic reactivity as a propensity
for allowing electronic exchanging and bonding. As such,
it leaves the total quantum (Bohmian) energy in (17) with
the compact form

EQ1 a:u:ð Þ ¼ 25
512

N2 � 105
256

N þ 441
512

¼ 1
512

21� 5Nð Þ2 ð34aÞ

Note that the actual working total energy is not that
obtained by replacing the density (33) in eqs. (31a)-(31c)
and then in total energy (30) because here the double-
variational procedure was considered; that is, the first
optimization condition was considered as in eq. (29), and
the resulting (optimum) density (33) was then employed
in the quantum energy (17), which in turn was obtained
by applying the variational eq. (12) to the perceived phase
transition in the Bohm eikonal wave-function (5). To
emphasize the accuracy of eq. (17) over that of (30) with
density (33), when one considers the last case, eq. (30)
yields the following non-quadratic form for energy:

E1 a:u:ð Þ ¼ � 25
512

N3 þ 105
256

N2 � 441
512

N

¼ � N
512

21� 5Nð Þ2 ð34bÞ
which is not appropriate for describing the valence state
of an atom, as eq. (2) prescribes, despite being similar in
form to the Bohmian-based result of eq. (34a). Thus, the
previous limitation of the Parr-Bartolotti conclusion [33]
and the paradox raised in describing the valence (para-
bolically) state with the optimized atomic density (33) are
here solved by the double (or the orthogonal) variational
implementation, as recently proved to be customary for
chemical spaces [32]. In the light of this remark one may
explain also the sign difference between the “physical”
energy (34b) and that obtained for the “chemical” situ-
ation (34a): through simple variational procedure for
“physical” energy (30) the result (34b) is inherently nega-
tive – modeling systems stability in agreement with the
upper branch of eq. (22), whereas the double variational
algorithm employing optimized density (33) into the
Bohmian shaped energy (17) it produces the positive out-
put (34a) associated with activation energy characteristic
for chemical reactivity corresponding to the lower branch
of eq. (22).
Therefore, to be accurate, one should consider the

quantum potential related optimized energy (34a) instead
of simply the orbital optimized one of eq. (34b). There-
fore, assuming that eq. (34a) appropriately describes the
atomic valence state in DFT (see the upper/reactive
curve in Figure 1b), the next task is to search for the
quantum valence charge for which the valence energy
approaches its optimum value (or the “ground state” of



Table 1 Synopsis of the critical charges in the physical
ground state (N*) as well as for chemical reactive
(valence) state (N**) for atoms of the first four periods of
the periodic table of elements, as computed from the
minimum point of associated interpolations of ionization
and electronic affinities [33] and of eq. (38), respectively

Atom Z I[eV] A[eV] N* N**

H 1 13.595 0.7542 0.558735 0.607681

Li 3 5.390 0.620 0.629979 0.516636

B 5 8.296 0.278 0.534672 0.830952

C 6 11.256 1.268 0.626952 0.387488

O 8 13.614 1.462 0.620309 0.375636

F 9 17.42 3.399 0.742422 0.823043

Na 11 5.138 0.546 0.618902 0.648699

Al 13 5.984 0.442 0.579755 0.402127

Si 14 8.149 1.385 0.70476 0.757049

P 15 10.484 0.7464 0.576651 0.0995049

S 16 10.357 2.0772 0.750876 0.430724

Cl 17 13.01 3.615 0.884779 0.751744

K 19 4.339 0.5012 0.630596 0.366618

V 23 6.74 0.526 0.584648 0.505999

Cr 24 6.763 0.667 0.609416 0.774976

Fe 26 7.90 0.164 0.5212 0.296616

Co 27 7.86 0.662 0.59197 0.549908

Ni 28 7.633 1.157 0.67866 0.798551

Cu 29 7.724 1.226 0.688673 0.0427917

Se 34 9.75 2.0206 0.761417 0.205262

Br 35 11.84 3.364 0.896885 0.427249

Rb 37 4.176 0.4860 0.631707 0.861904

Zr 40 6.84 0.427 0.566584 0.492423

Nb 41 6.88 0.894 0.649348 0.697305

Mo 42 7.10 0.747 0.617582 0.899704

Rh 45 7.46 1.138 0.680006 0.492856

Pd 46 8.33 0.558 0.571796 0.686153

Ag 47 7.574 1.303 0.707782 0.87736

Sn 50 7.342 1.25 0.705187 0.439089

Sb 51 8.639 1.05 0.638358 0.622567

Te 52 9.01 1.9708 0.779975 0.804255

I 53 10.454 3.061 0.91404 0.984204
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the atomic chemical-reactivity, i.e. the previously golden-
ratio quantification of the valence atomic state); to this
aim, at this point, one can employ the golden ratio rela-
tionship (21a) and first rewrite eq. (34a) as

EQ1 a:u:ð Þ ¼ 52

512
6:80τ � Nð Þ2 ð35Þ

which is minimized at the value

N ¼ 6:80τ ð36Þ

However, one must again apply the double-variational
procedure, now in terms of number of electrons, i.e.,
reconsidering eq. (36) with the golden ratio at the react-
ive (chemical) electronic level of eq. (22) such that a sec-
ond equation is formed

N ¼ 6:80
Z
N

ð37Þ

with the positive solution

NREACT≡N�� ¼ 2:60768
ffiffiffiffi
Z

p
ð38Þ

This expression avails of the significance of the max-
imum number of electrons, for a given atom, possibly
engaged in a reactive environment by either (or both)
accepting or (and) ceding electrons to or from its
valence state, see Table 1.
The result of this process is different from the expected

physical result (NSTABIL=Z) according to the upper
branch of eq. (22), which is higher than the physical one
until reaching the carbon system (ZINTRCHANGE=6.8),
while continuing below it thereafter (see Figure 3).
The above interchange (effective) atomic number

through which the chemical (reactive) state is associated
with lower charge respecting the physical state may be
also be found at the energetic level based on quantum
equation (34a), as specialized for the two branches of
Figure 3 for the N(Z) dependence. Thus, the chemical
(reactive) state takes the analytic form

EQ1 NREACT → 2:60768
ffiffiffiffi
Z

p
 �
¼ 0:861328� 1:06956

ffiffiffiffi
Z

p
þ 0:332031Z ð39Þ

and interchanges with the ground state EQ1(NSTABLE→Z)
at the points {3.5,6.8}, as observed also from Figure 4;
however, the interchanging point beyond which all
chemical atomic systems are more stable in the chem-
ical or reactive state than in the physical ground state
is consistently recovered.
Nevertheless, the energetic analysis also reveals the
atomic systems Be, B and C to be situated over the cor-
responding physical stable states; this may explain why
boron and carbon present special chemical phenomen-
ology (e.g., triple electronic bonds and nanosystems with
long C-bindings, respectively), which is not entirely
explained by ordinary physical atomic paradigms [55-60].
The energetic discourse may be complete with the

electronegativity and chemical hardness evaluations by



Figure 3 The comparative shapes of the valence electrons to
be engaged in chemical reactivity (continuous curve)
computed using eq. (38) based on the combined optimal Bohm
total energy (35) with the golden ratio imbalance of eq. (22),
respecting the stable physical case (dot-dashed curve), and of
their differences (dashed curve); all originate at the 0th atom
(the neutron, Z=0).
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applying the DFT definitions (3) and (4) to physical and
chemical energies, respectively. In the first case, expres-
sion (34b) is applied to provide the following so-called
“universal” forms of Parr and Bartolotti [33]:

χPB1 ¼ � ∂E1

∂N

� �
N¼1

¼ 3
16

a:u:ð Þ ¼ 5:1 eVð Þ ð40Þ

ηPB1 ¼
1
2

∂2E1
∂N2

� �
N¼1

¼ 135
512

a:u:ð Þ ¼ 7:17 eVð Þ ð41Þ

The result, nevertheless, appears to be an unusually
higher increase in chemical hardness than in electro-
negativity, which certainly cannot be used to model a
reactive-engaged tendency because it is more stable (by
chemical hardness) than reactive (by electronegativity); it
is, however, consistent with the physical stability of the
system, provided by the single variational procedure
through which eq. (34b) was produced.
Instead, to chemically model reactivity, the double

variation procedure is applied and eq. (34a) is substi-
tuted into eqs. (3) and (4), though by considering also
the double reactive procedure for charge as well, i.e., by
considering eq. (38) with the golden ratio information of
(22) to respectively yield the results

χPB2 ¼ � ∂EQ1
∂N

� �
N¼2:60768

ffiffiffi
Z

p

 !
Z¼τN

 !
N¼1

¼ 0:209963 a:u:ð Þ ¼ 5:713 eVð Þ ð42Þ

ηPB2 ¼
1
2

∂2EQ1
∂N2

� �
¼ 25

512
a:u:ð Þ ¼ 1:3286 eVð Þ ð43Þ
Remarkably, the actual electronegativity of (42) obtained
by the quantum Bohm and golden ratio double pro-
cedure yields sensible results similar to those of the
single variational approach (40); however, the chemical
hardness of (43) is approximately 5-fold lower than its
“stable” counterpart (41), affirming therefore the mani-
festly reactive framework it produces – one described by
a quadratic equation (34a) instead of a cubic one (34b).

Charge waves in gauge chemical reactivity
Finally, one considers the chemical reactivity discussion
as based on the gauge reaction that equilibrates the
chemical bond by symmetrical bond polarities [25]

A� þ Bþ ¼ A� B ¼ Aþ þ B� ð44aÞ
such that the reactive electrons are varied on the
reunited intervals of eq. (1); such analysis was previously
employed to fundament systematic electronegativity and
chemical hardness definitions by the averaging (through
the integration) factor

0:5 ¼ 1Zþ1

�1

dN

ð44bÞ

along the reaction path accounting for the acidic (electron
accepting, 0 ≤ N ≤ +1) and basic (electron donating,
–1 ≤ N ≤ 0) chemical behaviors.
In this scaled (gauge) context of reactivity, the fore-

going discussion is dedicated to investigating the link be-
tween the critical ground state charge (N*) and the valence
or reactive state (N**). While the first appears as a conse-
quence of naturally fitting the three points in Figure 1 (the
ionization, neutral and affinity states), with the effect of
biasing the minimum of the energetic curve in Figure 1b
with respect to the apparent Parr-DFT curve in Figure 1a,
and is thus derived graphically (see Figure 5), the valence
charge is based on the combined quantum energy and
golden ratio information in eq. (38). Both are reported
for the indicated number of atomic systems of the peri-
odic table of elements in Table 1. One notes, for instance,
that while the critical ground state charge N* always lies
in the range [0.5,1], the valence charge N** may span the
interval [0,1]; one may interpret such behavior as being
associated with the difference between the fraction ½ and
integer “1” in driving the principles of chemical reactivity
and the electrophilicity equalization principle in particu-
lar, when the “quantum transition” 1/2→1 is required in
the energy exchange of chemical systems for it to be valid
for both electronegativity and chemical reactivity prin-
ciples [61]; nevertheless such scaling it is equivalent with
above acidic-basic gauge averaging of eq. (44b). This
way, the valence charge problem may be extended to the



Figure 4 The same comparative shapes shown in Figure 3, here at the level of energy (34a) specialized for the reactive and the stable
N(Z) dependencies of Figure 3; the various plots successively display increasingly large atomic Z-ranges to better emphasize the
chemical vs. physical behavior (see text).
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Figure 5 A graphical interpolation for selected elements of Table 1 in terms of their ionization, neutral and affinity states, aiming to
determine the critical (displaced) charge of the DFT ground state, as prescribed by Figure 1b.
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interval [0,2], at its turn seen as a gauge transformation
of the chemical reactivity charge domain [−1, +1], where
one reencounters the challenging problem of whether
the “One electron is less than half what an electron pair
is” [62], the response to which is generally complex but
may here be approached through the following steps.
First, by employing the data presented in Table 1, one

constructs the so-called “continuous” ground and
valence charge states by appropriately fitting over the
first four periods of elements, here restrained to 10th-
order polynomials. This is performed by interpolating
every three points of the 32 elements presented in
Table 1, although by spanning the atomic number range
Z ∈ [1, 53], thus yielding (see also the allied representa-
tions of Figure 6):
NC� ¼ 0:677771� 0:193006Z þ 0:104303Z2

� 0:0242757Z3 þ 0:00302359Z4

� 0:000220204Z5 þ 9:79371⋅10�6Z6

� 2:6894⋅10�7Z7 þ 4:4448⋅10�9Z8

� 4:05002⋅10�11Z9 þ 1:56254⋅10�13Z10 ð45aÞ

NC�� ¼ 0:768074� 0:224502Z þ 0:076654Z2

� 0:0107337Z3 þ 0:000667575Z4

� 0:000012746Z5 � 6:0246⋅10�7Z6

þ 4:01411⋅10�8Z7 � 9:49568⋅10�10Z8

þ 1:05449⋅10�11Z9 � 4:58533⋅10�14Z10

ð45bÞ



Figure 6 The critical ground state and valence charge points for the elements of Table 1 and their 10th-order continuous
interpolations according to eqs. (45a) and (45b).
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Equations (45a) and (45b) are then combined into a
sort of special charge wave function based on their dif-
ference on the golden ratio scale (see Figure 6 for graph-
ical representation)

ΨZ ¼ τ NC�
Z � NC��

Z

� � ð46Þ

with the peculiar property that its square-integrated
form over the Z-range of interpolation gives

Z53
1

ΨZj j2dZ ¼ 0:667233 ≈ τ ð47Þ
The result (47) has the following conceptual fundamen-
tal quantitative interpretation: the difference between the
ground and valence optimum charges is regulated by the
golden ratio scale, or in other terms,

Z53
1

NC�
Z � NC��

Z

� �2
dZ ≈

1
τ
¼ 1þ τ ð48Þ

such that it provides a sort of normalization corrected by
the golden ratio value; it also fulfills the interesting rela-
tionship:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ53
1

NC�
Z � NC��

Z

� �2
dZ

vuuut ≈2τ ð49Þ

In any case, the present analysis provides the qualita-
tive result that the difference between the critical ground
state and optimal valence charges is more than half of
an electronic pair, giving rise to the significant notion
that chemical reactivity is not necessarily governed by a
pair of electrons but governed by no less than half of a
pair and is related to the golden ratio (τ > 0.5).
However, fractional values in general and those related

to the golden ratio particular, may be interpreted as a
Figure 7 The linear and quadratic charge “wave function” of eq. (46).
consistent manifestation of the quantum mechanical (i.e.,
wave functional) approach of chemical phenomena, here
at the reactivity level. Moreover, the quadratic critical
charge function (46), as shown in Figure 7, clearly reveals
that a higher contribution to electronic pair chemistry
is given by the third period of elements and by the
third and fourth transitional elements in particular, a
result that nicely agrees with the geometrical interpret-
ation of the chemical bond, particularly the crystal lig-
and field paradigm of inorganic chemistry [9].
Also a local analysis of the type of charge that is

dominant in atomic stability, i.e., the critical physical
ground state or the chemical valence reactive state
based on eqs. (45a) and (45b), respectively, may be of
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considerable utility in refined inorganic chemistry
structure-reactivity analysis. To the same extent, it
depends on the degree of the polynomials used to
interpolate the critical and valence charges over the con-
cerned systems; however, through the present endeavor,
we may assert that the analysis should be of the type
(48), which in turn remains a sort of integral version of
the imbalance equation (20a), in this case for the
ground-valence charge gap states of a chemical system.
Conclusions
Aiming to hint at the solution to the current debate
regarding the physical vs. chemical definition of an
atom and as a special stage of a larger project regard-
ing quantum chemical orthogonal spaces, the present
work addresses the challenging problem of defining
and characterizing valence states with respect to the
ground state within conceptual density functional the-
ory. We are aware of the earlier warnings raised by Parr
and Bartolotti and others [18,33,63] regarding the limits
of density functional theory and of the total energy of
atomic systems combined with a Slater-based working
density to provide a quadratic form in terms of system
charge, as required by the general theory of chemical re-
activity of atoms and molecules in terms of electronega-
tivity and chemical hardness. Fortunately, we discovered
that the Bohmian form of the total energy of such atomic
systems provides, instead, the correct behavior, although
it is only density-function-dependent and not a func-
tional expression. Moreover, this finding was reached
through the so-called double variational procedure,
which, as emphasized earlier, was likely to reproduce
the chemical reactivity principles of electronegativity and
chemical hardness in an analytical manner; however,
such a double analytical variational approach is consist-
ent with the recent advanced chemical orthogonal spaces
approaches of chemical phenomenology [64] as being at
least complementary to the physical description of many-
electronic systems when they are engaging in reactivity
or equilibrium as the atoms-in-molecules Bader theory
prescribes [9,42]. With the present Bohmian approach,
the total energy is in fact identified with the quantum
potential, thus inherently possessing non-locality and
appropriate reactivity features, which are manifested
even over long distances [10,11,53]; this also generalizes
the previous Boeyens electronegativity formulation of
electronegativity [5,6] from the direct relationship be-
tween a quantum potential and its charge derivative. The
double algorithm was also implemented to discriminate
the valence from the ground state charges, this time by
using the golden ratio imbalance equation as provided by
adaption of the Heisenberg type relationship to chemical
reactivity for atoms. This corresponds to an analytical
unfolding of the physical and chemical imbalance of the
electronic charge stability of atomic systems, paralleling
the deviation from the equal electron-to-proton occu-
pancy in physical systems toward electron deficiency in
the valence states of chemical systems. This dichotomy
was implemented by the golden ratio presented in eq.
(22). As a consequence, the difference between valence
and ground state charge systems is naturally revealed
and allows for the explanation of chemical reactivity and
bonding in terms of fractional electron pairs, althrough
driven by the golden ratio under the so-called physical-
to-chemical charge difference wave function and asso-
ciated normalizations, all of which represent elaborated
or integral forms of the basic imbalance atomic equation.
The present results are based on 10th-order polynomial
fitted over 32 elements from the first 54 elements of the
first four periods of periodic table of elements and can be
further pursued by performing such systematic interpola-
tions that preserve the golden ratio relationships, as
advanced herein; they may also provide a comprehensive
picture of how valence electrons may always be pro-
jected/equalized/transposed into ground state electrons
within the perspective of further modeling chemical reac-
tions when chemical reactivity negotiates the physical
molecular stabilization of atoms in molecules.
Endnotes
a For circular orbits, the lowest ones in each atomic

shells – including the valence ones, one has ΔO=Δr=2πr,
with r the orbital radii thereof, while O=p is the fixed
particle’s momentum on that orbit; therefore, when
combined into eq. (18b) they provide the celebrated
Bohr-de Broglie relationship rp=nħ solving the atomic
spectra of Hydrogen atom in principal quantum num-
bers (n).
Appendix: Semi-classical inter-electronic energy
For the inter-electronic interaction, see Figure 8; in
evaluating Vee[ξ] of eq. (31c), the two-electronic density
is approximated by the Coulombic two mono-electronic
density product, thus neglecting the second-order density
matrix effects associated with the exchange-correlation
density.
However, for the analytical evaluation of the electron–

electron repulsion energy using the density (23b), much
care must be taken. For instance, one has to use the
electrostatic Gauss theorem, which states that the clas-
sical electrostatic potential outside a uniform spherical
shell of charge is just what it would be if that charge
were localized at the center of the shell and that the po-
tential everywhere inside such a shell is that at the sur-
face, [21,48] see Figure 8. Therefore, the electronic
repulsion energy becomes



Figure 8 Representation of the space regions of the 1st and 2nd

electrons, their potential influences and reciprocal interaction
[21,48].
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Vee ξ½ � ¼ N � 1
2N

∬
ρ 1ð Þρ 2ð Þ

r12
dv 1ð Þdv 2ð Þ

¼ N � 1
2N

Z1
0

4π r21N
ξ3

π
exp �2ξ r1ð Þdr1

�
Z

ρ 2ð Þ
r12

dv 2ð Þ
� 	

¼ N � 1
2N

Z1
0

4 r21Nξ3 exp �2ξ r1ð Þdr1

� 4πN
ξ3

π

Zr1
0

r22 exp �2ξ r2ð Þ
r1

dr2

2
4

8<
:

þ
Z1
r1

r22 exp �2ξ r2ð Þ
r2

dr2

3
5
9=
;

¼ N � 1
2N

N216ξ6
Z1
0

r21 exp �2ξ r1ð Þdr1

�
Zr2→1

r2→r1

1
r1
≡
1
r2

� �
r22 exp �2ξ r2ð Þdr2

2
4

8<
:

þ
Z1
r1

r2 exp �2ξ r2ð Þdr2
3
5
9=
;

¼ N � 1
2N

N232ξ6
Z1
0

r21 exp �2ξ r1ð Þdr1

�
Z1
r1

r2 exp �2ξ r2ð Þdr2
2
4

3
5

¼ N � 1
2N

N2 32ξ
6

2ξð Þ5
Z1
0

2ξ r1ð Þ2 exp �2ξ r1ð Þd 2ξ r1ð Þ

�
Z1

2ξ r1

2ξ r2 exp �2ξ r2ð Þd 2ξ r2ð Þ

2
64

3
75
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2N

N2ξ

Z1
0

s2 exp �sð Þ
Z1
s

t exp �tð Þdt
2
4

3
5ds

¼ N � 1
2N

N2ξ

Z1
0

s2 exp �sð Þ 1þ sð Þ exp �sð Þ½ �ds

¼ N � 1
2N

N2ξ
2!

23
þ 3!

24

� �
ðA1Þ

which recovers the expression presented by eq. (31c),
when the Slater integral type of Eq. (28) is also employed.
Note that the electron–electron repulsion term was
written by also considering the Fermi-Amaldi (N-1)/N
factor [13], which ensures the correct self-interaction be-
havior: when only one electron is considered, the self-
interaction energy must be zero,Vee (N→1)→0.
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