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Abstract

designs for ethanol production in E. coli.

Background: Elementary mode (EM) analysis is ideally suited for metabolic engineering as it allows for an unbiased
decomposition of metabolic networks in biologically meaningful pathways. Recently, constrained minimal cut sets
(cMCS) have been introduced to derive optimal design strategies for strain improvement by using the full potential of
EM analysis. However, this approach does not allow for the inclusion of regulatory information.

Results: Here we present an alternative, novel and simple method for the prediction of cMCS, which allows to
account for boolean transcriptional regulation. We use binary linear programming and show that the design of a
regulated, optimal metabolic network of minimal functionality can be formulated as a standard optimization problem,
where EM and regulation show up as constraints. We validated our tool by optimizing ethanol production in E. coli.
Our study showed that up to 70% of the predicted cMCS contained non-enzymatic, non-annotated reactions, which
are difficult to engineer. These cMCS are automatically excluded by our approach utilizing simple weight functions.
Finally, due to efficient preprocessing, the binary program remains computationally feasible.

Conclusions: We used integer programming to predict efficient deletion strategies to metabolically engineer a
production organism. Our formulation utilizes the full potential of cMCS but adds additional flexibility to the design
process. In particular our method allows to integrate regulatory information into the metabolic design process and
explicitly favors experimentally feasible deletions. Our method remains manageable even if millions or potentially
billions of EM enter the analysis. We demonstrated that our approach is able to correctly predict the most efficient

Keywords: Metabolic engineering, Elementary modes, Minimal cut sets, Integer programming, Strain optimization,
Ethanol production, Minimal functionality, Gene regulation

Background

Arguably the most successful methods in computer aided
strain design are based on constraint-based modeling [1].
These methods allow to predict phenotypes by calculating
steady state flux distributions through a metabolic net-
work (typically using some kind of flux balance analysis
[2]). Various algorithms allow searching for combinato-
rial gene deletion strategies to optimize the production
efficiency of strains [3-6]. These methods utilize an opti-
mization principle, which has been shown to give accurate
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predictions in wild type strains. Typically, evolutionary
rationalized objectives like maximization of biomass or
minimization of metabolic adjustments are used to pre-
dict changes in the flux distribution. However, these
objectives become more problematic with an increasing
number of gene deletions as the engineered strains have
no time to adapt and thus are far from an evolutionary
optimum [7].

An alternative way of predicting optimal strain design
is to use elementary mode analysis (EMA) [8-13]. EMA
allows decomposing a complex metabolic network into
unique and biologically meaningful pathways, called ele-
mentary modes (EM) [14,15]. An EM is a minimal, and
indivisible set of reactions that operates under steady state
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conditions, while obeying all (ir-)reversibility constraints
on the reactions. EM are minimal in the sense that knock-
ing out any one of their contributing reaction will exclude
the whole mode from carrying any steady state flux. The
entire set of EM, however, describes the full metabolic
potential of a cell in an unbiased way. By iteratively delet-
ing EM with unwanted properties a metabolic network of
minimal functionality (NMF) can be generated [12]. This
procedure, however, does not necessarily return the NMF
with the minimum number of deletions.

A rigorous formulation — constrained minimal cut sets
(cMCS) - for generating NMF has recently been put
forward [16]. It relies on the concept of minimal cut
sets (MCS). These are (minimal) sets of deletions, which
block undesirable network functionality, like the secretion
of unwanted by-products. cMCS allow to keep desir-
able network properties while simultaneously disabling
unwanted functionality [16]. Thus cMCS are ideally suited
to design NMF. Moreover, with ¢cMCS it is possible not
only to derive the minimal necessary number of metabolic
interventions but also to exhaustively predict all possible
combinations of deletions resulting in identical NMF.

Here we present an alternative formulation to predict
the optimal engineering strategy for the design of MNF.
We formulate an optimization problem and show that
¢MCS can be easily calculated by binary linear program-
ming (BLP) for which commercial and non-commercial
solvers are readily available. The scope of our approach is
similar to the algorithm presented by [16] but it is more
flexible and — most importantly — it allows to include
regulatory information in the design process of rational
engineering strategies. Static gene regulatory rules can be
considered as long as they are formulated in boolean logic
terms.

Theory
Definitions
We consider the standard steady-state problem of a
metabolic network with m internal metabolites and #
reactions, i.e. §-¥ = 0. Here, S denotes the m x # stoichio-
metric matrix of the network, and v the n-dimensional
flux vector through the network.

Let e be an EM flux vector [14,15] fulfilling the steady
state condition, and e = e(#) its binary representation,

1ifé; #0

bl | = 1,..., . 1
0ife, =g’ = Leeom )

ei = e(e) =

e; indicates whether reaction i is part of the EM e. That
is, e, = 1 if and only if a reaction is carrying flux either
in forward or backward direction. Similar to equation (1)
let v denote the binary representation of any valid flux
distribution ¥. Then the product

Page 2 of 12

n n
elv<ele=) e =) e =l @)
i=1 i=1

indicates if e is part of v as the equality only holds when all
“active” reactions in e are also carrying flux in v.
Finally, we group all g binary EM of § into three matrices

G:=(e...,e)", (3a)
H:=(e41,---, er+s)T; (3b)
K:=(erts+1,---» 3r+s+t)T~ (3c)

where g = r+s-+t, as all EM are in one of the three matri-
ces. The “goal matrix’; G, contains all desirable EM, which
define the minimal properties of the NMF and must there-
fore be kept. The “kill matrix’, K, consists of the unwanted
EM, which must not be part of the final flux space and
have to be deleted from the network. Finally, the helper
matrix, H holds all remaining EM. These modes do not
affect the primary design criterion, and therefore may or
may not be present in the final design.

In the notation of Hidicke and Klamt [16], our kill
matrix K is their set of target modes T. Our G is a sub-
set of their set of desired modes D. We collect all other
modes in H, while they split these EM between the sets of
desired modes, D, and the sets of neutral modes. In their
formulation Hédicke and Klamt [16] aim to keep at least
desired EM out of all modes in D. These “surviving” EM
build our G. If, however, |D| = n then D = G and hence,
both definitions are identical.

Minimum number of deletions, A nin

By setting up a BLP problem, equation (2) may be used to
predict the minimal set of knockouts to stop any given set
of EM, i.e. the K-matrix, contributing to the steady state
flux distribution

max ||| (4a)

st.  Gx=|g| (4b)

Hx < |h| (4c)

Kx <|k|—-1 (4d)

X = (‘xI) cee 1xn)T; Xi € {0, l}Vl, (43)

We used Ig| = (lell,....lleIDT, 1Al = (lersalls- .,
ller+sIDT, and [k] = (lley4ss1ll, - -, lerts+el])T to denote
the vector of norms of each row of the matrix G, H, and
K, respectively. 1 = (1,..., 1) represents a vector of ones.

The solution vector x, is the binary representation of all
reactions participating in the designed NMF. Equation (4)
is indeed a BLP problem as x is binary and [|x|| = >/ ; «;
is linear.
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In equation (4) we used a matrix formulation, which is
shorthand for the optimization problem in terms of all g =
r + s + t binary EM vectors e;,

max ||x||
st. elx= |leg]| e{l r}
1 e el & s
er§||eh||, he{r+1,...,r+s}

ezxf llexll —1, kef{r+s+1,...,r+s+t}

Here we used indices g, /1, k as a reminder that these EM
vectors are the rows of the matrices G, H, and K, respec-
tively. Note that each EM acts as a constraint for the
optimization problem.

To understand equation (4) we recall that the binary
solution vector x indicates whether a reaction i can carry
flux (x; = 1) or needs to be deleted (x; = 0). Thus max-
imizing the norm of &, corresponds to minimizing the
number of knockouts. The constraint (4b) requires that
any solution includes all desired EM as — according to
equation (2) — only then the product el-Tx is limited by the
norm of e;. Similar, equation (4d) demands that its solu-
tions are at least one active reaction short, i.e. has more
zeros than any EM in K. As already one single knock-
out in an EM kills it, these modes will not contribute to
the desired design. Finally, constraint (4c) states that the
EM of H may be included in the solution. In fact, the
inequality (4c) does not constrain the system in any way.
Equation (4c) is merely included for the sake of accounting
completely for all EM in the network.

The minimal number of deletions can then be deter-
mined easily by counting the number of zeros in the
calculated solution ,

Ampin = 1 — ||x]]. (5)

Predicting all optimal sets of deletions
Equation (4) may either have no or a finite number of
solutions. In the first case, no knockout strategy accom-
modates all constraints. However, if the constraints are
relaxed, i.e. EM are shifted from G to either H or K [the
limit being G = (e1)T, H = 0,and K = (ey, ..., e,) ], itis
always possible to find at least one solution.

Alternate optimal solutions may be found by suc-
cessively excluding already existing solutions x%) of
equation (4) by adding [17,18],

Y xi—Y x<|B -1, (62)
ieB ieN
B={(ix/ =1}, N={ix) =0} (6b)

Note that repeatedly applying equation (6) will not only
generate all sets of different minimal knockouts but also
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enumerate all other solutions sorted by the number of
deletions.

The final sequence contains all possible solutions. It also
contains “inefficient” or non-minimal solutions. Consider
a series of two reactions, A — B,B — C. To suppress
the production of C, the knocking out of either reaction
suffices. Knocking out both is admissible, although ineffi-
cient. To avoid calculating non-minimal solutions we split
equation (6) into two constraints,

Y x<IBl-1, (7a)
ieB
Y x>l (7b)
ieN
In matrix notation these constraints read
[T < [laV]| -1 (8a)
[1—-2D1Tx> 1. (8b)

The first excludes already existing solutions, /), the sec-
ond ensures that all solutions will be minimal. In other
words, no supersets of already determined solutions will
be calculated.

It is possible to influence the succession of solutions by
adding weights w; to the objective function. Rather than
maximizing ||#|| in equation (4a) we may use

max ||wa| l, 9)

with wl = (wy,...,w,). This allows to easily distinguish
chemical from genetic interventions. If uptake reactions
are assigned a small and all other reactions a large weight,
our algorithm will favor deletions in the uptake reactions
as they contribute little to the objective function. Deleting
uptake reactions can simply be achieved by removing the
substrate from the culture medium. We give guidelines for
the choice of reaction weights in the example below.

lllustrative example

To illustrate our algorithm we will use the toy network
shown in Figure 1. The complete set of EM and their
binary representation are listed in Table 1, and illustrated
in Figure 2.

Suppose we use A as feed stock and want to engineer
the conversion of A into P. Our aim is to maximize the uti-
lization of A for the efficient production of P. According
to Table 1, é;r is the only mode which maximizes utiliza-
tion of A, while efficiently producing P. Hence the goal
matrix G is simply given by e;. ég, and ég inefficiently syn-
thesize P. &, &s, and &; sub-optimally utilize A. These
modes need to be deleted and therefore populate K. The
remaining EM do not utilize A. It is irrelevant whether
or not those modes are present in the final design as they
will have no negative impact. Thus the full BLP problem
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gene-enzyme-reaction mapping is available.

O ————-GRSb

Figure 1 lllustrative example network. lllustrative example network containing the metabolites A to E, P, Q and S, the reactions R1 to R12, and the
genes GR1, GR2, GR5a, GR5b, GR7a, GR7b, GR8, GR10, and GR11. All reactions are irreversible, except for R7. Transition from E to C is defined as the
forward direction of R7. Small numbers in the edges of reactions indicate stoichiometric coefficients, if they are different from one. All metabolites
inside the shaded area are considered internal and are subject to the steady state condition. Gene-enzyme-reaction mapping is indicated by dashed
lines. Reaction R5 is catalyzed by an enzyme complex encoded by gene GR5a and GR5b. Reaction R7 is catalyzed by two enzymes encoded by GR7a
or GR7b. The reaction R10 is catalyzed by GR10. However, activity of R10 is inhibited if GR1 is expressed. For the reaction R3, R4, R6, R9 and R12 no

is defined by the matrices and vectors listed in Table 1.
Explicitly, equation (4) reads

12
max Z Xi
i=1
subject to
X1+ x4 +x7 +x8 +x12 =

X3 +x4 +x3 <

X3 + X4 + X5 + X9 + X11

IA

X¥3 + X4 + X6 + X7 + X9 + X10

IA

X1 + x4 + x5 + %7 + %8 + %9 + x11 + X12

X1 + X4 + X6 + X9 + X10 + X12

IA

X1 + X2 + x4 + X8

IA

X1 + Xp + X4 + X5 + X9 + X711

IA IA
O Ul W Ul N oy Ul WL

X1 + X2 + X4 + X6 + %7 + X9 + X10

IA

The BLP returns the solution (given in vector notation),

sV =(101111110111)T.

R2-R9 is the smallest possible MCS to achieve the
design criterion. With the solution ) at hand we use
equation (6b) to get the set of indices for the undeleted
and deleted reactions, B = {1,3,4,5,6,7,8,10,11, 12},
and, N = {2,9}, respectively. By adding the constraint
equation (7),

X1 + X3 + X4 + x5 + X6 + X7 +xg +x10 + %11 +X12 < 9,
X +x9 > 1,

to the equations above and resolving the problem, an alter-
native MCS may be calculated. An overview of all MCS is
given in Table 2.

The calculated solutions do not take gene-enzyme-
reaction mapping into account. As indicated in Figure 1,
implementing the smallest MCS (R2 and R9) is infeasible,
due to missing genetic information for R9. To account for
biological feasibility we reevaluate the BLP problem using
the weight function,

wy =(0101019919921991199).

Here we assigned small weights (0.1) to uptake reactions
(R1 to R3), which are easy to “delete” by removing the



Table 1 list of all EM for Figure 1

EM flux vector, &;

Binary representation, e;, of EM flux vector, &;

Rl R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 RI12 Rl R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 RI12 |le]]

EM1 10 00 00 10 00 00 10 10 00 00 00 10 G= 1 0 0 1 0 0 1 1 0 0 0 1 5 = |g|
EM2 10 00 00 05 10 00 10 00 05 00 10 10 1 0 0 1 1 0 1 1 1 0 1 1 8

EM3 10 00 00 05 00 10 00 00 05 10 00 10 1 0 0 1 0 1 0 0 1 1 0 1 6

EM4 05 10 00 10 00 00 00 10 00 00 00 00 K= 1 1 0 1 0 0 0 1 0 0 0 0 4 = |k|
EM5 05 10 00 05 10 00 00 00 05 00 10 00 1 1 0 1 1 0 0 o 1 0 1 0 6

EM6 05 10 00 05 00 10 -10 00 05 10 00 00 1 1 0 1 0 1 1 0 1 1 0 0 7

EM7 00 00 10 10 00 00 00 10 00 00 00 00 0 0 1 1 0 0 0 1 0 0 0 0 3

EM8 00 00 10 05 10 00 00 00 05 00 10 00 H= 0 0 1 1 1 0 0 0 1 0 1 0 5 = |hl
EM9 00 00 10 05 00 10 -10 00 05 10 00 00 0 0 1 1 0 1 1 0 1 1 0 0 6

List of all EM flux vectors, &, and their binary representation, e;, for the toy network illustrated in Figure 1. EM are sorted by decreasing order of substrate utilization of A. The matrices and vectors G, H, K, and |g|, | A|, | k|,

respectively, are defined as used in the illustrative example of section “lIllustrative example”.
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Figure 2 lllustration of all EM for the example network in Figure 1. The EM are also listed in Table 1.

corresponding substrate from the growth medium. Reac-
tions with missing genetic information (R4, R6, R9, R12)
received high weights (99), which made them “harder” to
delete. Note that R3 is also lacking genetic information.
Since it is an easily “deletable” uptake reaction, R3 was
weighted with 0.1 rather than 99. We associated R7 with a
weight of two as this reaction is catalyzed by two indepen-
dent enzymes. On the other hand, R5 retained its weight
of one as the reaction is catalyzed by a single enzyme com-
plex encoded by two genes. The sequence of all possible
MCS is listed in Table 2. Note that by using weight func-
tions, experimentally implementable engineering strate-
gies are predicted first. All other solutions are predicted,
too. However, the weight function is able to account for
experimental difficulties in implementing a reaction dele-
tion in vivo.

In general, we assign reaction weights according to the
number of independent enzymes or enzyme complexes
catalyzing a reaction in parallel. Uptake reactions, how-
ever, should be favored over genetic deletions. Therefore

the sum of all weights for uptake reactions should be
smaller than the smallest weight of the non-uptake reac-
tions. On the other hand the weight for a “non-deletable”
reaction (i.e. a reaction without genetic information)

Table 2 List of all MCS for Figure 1

w1 w2

i minimal cut set fi minimal cut set fi

1 R2 R9 9.0 R2 RS R10 3012 %
2 R2 R5 R6 8.0 R2 R10 R11 301.2 *
3 R2 R5 R10 8.0 * R2 R9 204.2

4 R2 R6 R11 8.0 R2 R5 R6 203.2

5 R2 RIO RIT 80 * R2 R6 R11 2032

List of all MCS for the most efficient production of P from A in the network
Figure 1. Two different weight vectors wereused, w' 1 =(111111111111),
andw', =(0.10.10.1991992 1991 199). MCS are sorted in decreasing order
of the objective function f; = w'; x, j = {1,2} as calculated by our algorithm.
(The sequence of MCS with equal objective value may differ depending on the
BLP algorithm.) * marks MCS for which full genetic information is available.
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should be larger than the sum of all other “deletable”
reactions.

Including regulation
In the following we demonstrate the inclusion of boolean
regulation by way of example. Typically, regulatory infor-
mation is represented in logic statements [19] which may
readily be added to equation (4). In Figure 1 we illus-
trate typical gene-enzyme-reaction mappings, like reac-
tions catalyzed by single enzymes (G R), by multiple
enzymes in parallel [(Ga OR Gb)—R], or by single enzyme
complexes [(Ga AND Gb)—R]. As demonstrated, these
interactions may be incorporated in weight functions. By
adding appropriate constraints, BLP also allows the inte-
gration of inhibitions, like (NOT G)—R; [Ga AND (NOT
Gb)]—~R. For example a single gene-enzyme-reaction
mapping, G—R, is easily converted into the BLP con-
straint, G — R = 0. Similarly, the negation (NOT G)—R
transforms into G + R = 1. In Table 3 we summarize
other interactions along with their constraint based for-
mulation. An extension to more interaction partners is
straight forward. More specifically, we list the regulatory
constraints for the network in Figure 1 in Table 4.

Adding the regulatory constraints in Table 4 we maxi-
mize the BLP problem equation (4) using ||w§x|| +|lyl| as
objective. Here

T
y= (9192 Y54 Y56 ¥7a Y76 ¥8 Y10 ¥11)

denotes the binary vector of the involved genes. Note that
integrating regulation into our algorithm only requires
additional constraints and an extended objective function.
This is in contrast to the original cMCS-method [16].
c¢MCS requires an independent, separate preprocessing
step first to identify and remove all EM, which are in con-
tradiction to regulatory constraints. Only then, cMCS can
be applied. BLP, however, allows simultaneously integrat-
ing stoichiometric and regulatory constraints in a unified

Page 7 of 12

framework. Moreover, BLP allows to fully consider recon-
structed transcriptional regulatory networks.

Note that by using ||ng|| + ||y|| as objective, we opti-
mize for the combined effect of both, reactions and genes.
Thus our objective predicts interventions with the small-
est overall impact first. Again, it is possible to influence
the succession of solutions by using weight functions for
genes as well. However, this has not been investigated.

In Table 5 we collect all MCS to the regulatory BLP
problem for the network in Figure 1. Note that the MCS
1 and 2 do not differ in terms of reactions but in terms
of the deleted genes. All feasible MCS require two dele-
tions at the genetic level, but three reaction deletions.
The third reaction (R10) is suppressed due to GR1, rather
than deleted. According to the design criterion GR1 is
expressed in all desired EM. Thus all solutions to the BLP
problem will necessarily be characterized by a down regu-
lated R10. This reduces the total number of different MCS
(in terms of reactions) from five to three (compare Table 2
and Table 5). Note that the MCS R2-R5-R6 and R2-R6-R11
of Table 2 are not MCS for the regulated system. As in the
regulated system R10 is always suppressed, deletion of R6
becomes redundant. For the regulated network R2-R5-R6
and R2-R6-R11 are only cut sets, rather than MCS.

Optimizing metabolic functionality

All solutions to equation (4) and (6) are characterized
by the smallest possible number of knockouts. However,
their metabolic functionality may differ. This can be the
case if H # 0, as individual EM from the helper matrix
may be added or removed. With all optimal solutions at
hand it is easy to pick those which additionally optimize
the number of “surviving” EM. That is, we may look for
solutions with the smallest/largest set of EM contributing
to the metabolic functionality. However, for these ques-
tions it is not necessary to fully enumerate all solutions of
equation (4). The answer is accessible by BLP as well.

Table 3 Truth table for the conversion of regulatory functions into constraints for BLP

Function / constraint

G, Gp R (Ga ORGb)—~R/ [(NOT Ga) ORGb ]—R/ (Ga AND Gb)—R/ [ (NOT Ga) AND Gb ]—~R/
-1<G;+Gp,—2R=0 0<Gs+Gp,—2R=<1 0<G,+Gp,—-2R=<1 -1=<-G,+G,—2R=<0

0 0 0 0 * 0 0

0 0 1 * -2 * *

0 1 0 * * 1 *

0 1 1 -1 1 * -1

1 0 0 * 1 1 -1

1 0 1 0 * * *

1 1 0 * * * 0

1 1 1 0 -2 0 *

“Marks values outside the constraint range.
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Table 4 Regulatory constraints in Figure 1 for use in BLP

y1—=x1= 0 Ysa+ysp — 25 < 1

—y1 +y10 — 210 = —1 Y7a+ Yy —2x7 = —1

—yi+yi0—2x0= 0 Y7a+Yym—2x7 < 0

Yo—X) = 0 Yg —Xg = 0

Ysa+Yysp —2x5 = 0 yn—xi1= 0

Regulatory constraints for use in BLP for the metabolic network in Figure 1. Here
x;, and y; denote reactions and genes, respectively.

Let

ple)=[les C=lilei=1},

ieC

(10)

be the product of all reactions contributing to an EM.
p(e) = 0 if any reaction contributing to the EM e;
is knocked out, and 1 otherwise. Thus p(e) indicates
whether an EM contributes to the final steady state. Opti-
mizing the number of surviving EM means we maximize
(minimize) the number of participating EM,

min/max Zp(ei), i={r+1,...,r+s}. (11)

12

Here i runs over all EM which may contribute to the
steady state, i.e. over all modes stored in H. Although
pi = p(e;) is a product of binary variables, it is convertible
into BLP using standard transformation rules [20] yielding

min/max  ||p|| (12a)
st. Hx>p.x|h| (12b)

Hx <p+|hl -1 (12¢)
P=@r1-oprs)’s €{0,1)Vi (12d)

equation (4b) to equation (4e), (12e)

where we used the MATLAB notation for array multi-
plication “.x” to denote the element-wise product of the
vectors p and |h|.

Table 5 List of all MCS for the regulatory BLP in Figure 1

i Gene deletion Reaction deletion fi

1 GR2 GR5a R2 R5 R10 308.2 *
2 GR2 GR5b R2 R5 R10 308.2 *
3 GR2 GR11 R2 R10 R11 3082 *
4 GR2 R2 R9 R10 211.2

List of all MCS for the regulatory BLP. MCS are sorted in decreasing order of the
objective function f; = w', x + ||y?|| as calculated by our algorithm. (The
sequence of MCS with equal objective value may differ depending on the BLP
algorithm.) * marks MCS for which full genetic information is available. MCS are
splitin the gene deletion part and the reaction deletion part. Note that the first
three MCS require deletions of two genes. The corresponding reaction deletions
are a consequence of those deletions. MCS 4 however, is not fully annotated
(noticeable in the drop of f;), and would require the deletions of genes and
reactions (GR2 and R9).

Page 8 of 12

Suppose that the kill matrix K and H contain all EM of
a metabolic system, i.e. G = 0. Then equation (12) allows
to determine the maximum number of surviving EM. It is
interesting to connect this result to the original formula-
tion of the cMCS approach [16]. In their paper the authors
define an intervention problem “by a set T of target modes
and a set D of desired modes of which at least # must not
be hit by a cMCS” [16]. Here, their T corresponds to our
K, while the row vectors of H will in general be a super-
set of D. However, for any T equation (12) gives an upper
bound to the preserved number 7 of desired EM, which is
an important parameter in the cMCS-formulation.

Result

Realistic example

In analogy to [16] we validated our approach by predicting
MCS for the efficient production of ethanol in E. coli using
data presented by [12]. There, the authors used a small-
scale metabolic model under anaerobic conditions, cal-
culated all its 5,010 EM, optimized for the most efficient
production of ethanol from glucose, and came up with a
strain design where seven reactions were removed from
the network. They found that only twelve EM contributed
to the optimal design. All of them produced ethanol and
four EM were also growth coupled. (The full model used
by [12] is listed in the Additional file 1: Table S1.)

Using our algorithm we were able to design a cell with
identical functional capabilities, but with fewer knock-
outs. In fact, the minimally necessary number of reaction
deletions was six [consistent with identical findings in
[16]]. In our simulation G consisted of the twelve opti-
mal EM identified by [12], H = 0, and K contained the
remaining 4,998 EM. In less than 25 sec computation time
we found 1,048 MCS of which 252 required exactly seven
deletions. One of these MCS was the solution given by
[12]. Again, our findings are identical with [16]. However,
note that 71% of these 1,048 MCS, are not deletable due
to missing annotations or are in principle undeletable. We
used the gene-enzyme-reaction mapping as given by [12],
who annotated only enzymatic reactions, but no trans-
porters. Here, we consider all non-annotated reactions in
the model of [12] as “undeletable”. Most of these non-
annotated reactions are transport reactions. Some of them
may merely miss an annotation, and — in principle — could
be deleted. Others however, are diffusion transporters and
cannot be blocked. For simplicity, we do not distinguish
between these two types and considered both as undelat-
able. In contrast however, we do consider uptake reactions
as deletable — independent of any possible annotation —
as these transporters are simply “deletable” by removing
the substrate form the medium.

By using a weight function (one possible function is
given in the Additional file 1: Table S2) our algorithm
is able to predict biologically feasible deletions first. In
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fact, the in vivo implementation of the smallest, fully
annotated, biologically feasible MCS requires seven gene
deletions. We found eight alternate MCS. In comparison,
the experimentally implemented strain by [12] had eight
knockouts.

To test the robustness of the alternate optimal solu-
tions against variation in the weight vector, we randomly
changed each weight in the range between + 20% and
repeated our calculation 1,000 times. Every time we
found the same eight solutions with seven deletions. To
further test the stability of our predictions, we incre-
mentally changed each weight in such a way that after
150 steps all weights are one and thus recover the situ-
ation without weights (see the Additional file 1: Figure
S1). Even with this procedure we find stable predictions
over a wide range of different weights. (For details on the
procedure and specific results we refer to the Additional
file 1: section “Robustness of optimal solutions against
variations in the weight vector” and Additional file 1:
Figure S1.)

However, even with a weight function it is possible to
fully enumerate all solutions.

To test wether our algorithm is able to handle larger
system we repeated the analysis with the full model used
by [12], that is, without restricting the model to glucose
uptake under anaerobic conditions first. The complete
model contained 429,276 EM — including the elementary
futile cycle succinate dehydrogenase and its reverse reac-
tion fumarate reductase (reactions R_-TCA10 and R TCA7
in the model). This cycle was disregarded in the following
analysis.

Again, we used the same twelve EM (identified by Trinh
et. al. [12] and defined above) as design criterion. (That
is, the goal matrix G consisted of the twelve optimal EM,
H = 0, and K contained the remaining EM.) Without any
weight function and additional constraints, at least eleven
reaction deletions are required to reach the design goal.
In total we found 55,488 MCS, 1.440 of which require
the minimal number of eleven reaction deletions. (For the
sake of completeness we listed the maximal number of
MCS as function of deletions in the Additional file 1: Table
S3.) Note, however, that these deletions are knockouts of
reactions without regard to biological feasibility. In fact
we found that none of those 1.440 MCS are fully anno-
tated. Furthermore, only 27.7% of all 55,488 MCS are fully
annotated, enzymatic reactions. In all other MCS at least
one reaction was a transport reaction, for which genetic
information was lacking. In order to calculate biologically
feasible solutions first we included the weight function
given in the Additional file 1: Table S2.

Using the weight function listed in the Additional file 1:
Table S2, at least twelve reaction deletions were required
to reach the design goal. Out of these twelve dele-
tions five are uptake reactions (L-arabinose, D-galactose,
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D-mannose, D-xylose, and oxygen). Removing these sub-
strates from the growth medium recovers the initial model
discussed above: anaerobic growth with glucose as the
sole carbon source. We found eight equivalent solutions.
Those solutions are exactly the solutions predicted for the
anaerobic model above.

In their paper [12] the authors noted that six out of
the twelve EM in the optimal design are inactive. Those
six, inactive EM use the pyruvate dehydroganese com-
plex (reaction R_.GG13) which is down regulated under
anaerobic conditions (reaction R_.TRA11l = 0) [12,21].
Additionally the repression of the glyoxylate shunt (reac-
tion R_.GLB1) during growth on glucose (reaction R_.GG1)
[22,23] has not been considered in the above analy-
sis. With our algorithm, however, it is possible to sim-
ply include these regulatory information in the form of
two additional constraints, R.GG1 + R.GLB1 < 1, and
R_TRA11l 4+ R_.GG13 < 1. Note however, an analysis
which combines the regulatory information with the pre-
vious design goals (i.e. those twelve desired EM) does not
yield a solution as the desired design and the regulatory
constraints are inconsistent.

We repeated the analysis, included weights and regula-
tory constraints, and used the six potentially active EM
as goal matrix. We predicted 13 deletions. Two of which
(R_.GLB1 and R_GG13) are, however, no deletions, but in
fact the result of the regulation. As expected, we found
that all MCS were characterized by a down-regulation of
R_GLB1 and R_.GG13.

Discussion

Elementary mode analysis has been identified as a promis-
ing tool for metabolic engineering. However, the analy-
sis of millions or billions of EM still poses difficulties.
Recently [16] introduced the concept of cMCS, which
allows calculating all optimal metabolic engineering
strategies. Here we showed that equivalent results can be
obtained by simple integer programming.

We partitioned EM into three categories: goal modes,
kill modes, and helper modes. The first group contains
the desired functionality. All modes in this group will also
be present in the final NMF. Kill modes, on the other
hand, are all those modes which will definitely get deleted
from the network. The third and final group collects all
other modes, which may or may not be present in the
final design. With respect to the design criterion this last
group of modes neither contributes to nor counteracts the
design goal. We then reformulated the problem of cal-
culating MCS to generate NMF as a linear optimization
problem. Our approach is very intuitive and structurally
reminiscent to ordinary flux balance analysis. The matrix
of EM replaces the stoichiometric matrix. Constraints are
not set by the mass-balance but by design requirements.
More specifically, binarized EM show up as constraints
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on the admissible flux space. By optimizing the admissible
flux space, maximal or minimal intervention strategies
(with respect to the number of deletions) can be predicted.

In the case of optimal ethanol production we demon-
strated that BLP is able to give identical results as com-
pared to cMCS [16]. In fact, in a special case our method
is formally equivalent to cMCS (see section “Defini-
tions”). Moreover, by optimizing metabolic functionality
BLP allows to calculate an upper bound for the maximum
number of persevered EM, which is an important param-
eter in the cMCS-formulation. The two methods differ
in that BLP uses a fixed set of desirable EM — the goal
matrix G —, while in cMCS EM are chosen automatically
form a pool of desirable EM, D, such that at least # modes
survive. However, if the surviving modes are known an
identical BLP problem can be set up.

The major advantage of our reformulation is its easy
integration of (binary) transcriptional regulation. Regu-
latory information may simply be included as additional
constraints. We have shown that our formulation allows a
regulatory coupling between reactions and between genes
and reactions alike. In Table 4 and in Table 3, we listed
several examples for simple regulatory interactions. How-
ever, these expressions are easily expandable to more
complex functions. The mapping between genes, pro-
teins and reactions, as well as transcriptional regulation
can be included as long as they are formulated as static
boolean constraint. At least for well studied organisms like
E. coli and S. cerevisiae curated transcriptional regulatory
networks are readily available [24]. However, dynamic reg-
ulations or cyclic causalities pose immense difficulties and
cannot be represented in our approach.

Additionally the BLP formulation offers more flexibility
in the way solutions are predicted. By using weights in the
objective function it is possible to account for experimen-
tal difficulties in the implementation of the strain. This
allows to prioritize biologically feasible MCS over infea-
sible ones and - in contrast to other, optimized based
methods [9] — does not effect the ability to calculate the
complete set. Taking biological feasibility into account
seems advantageous as in our example we have demon-
strated that due to the lacking gene-enzyme-reaction
mapping roughly 70% of the predicted solutions would
require the deletion of at least one non-enzymatic reac-
tion. Due to the combinatorial explosion of the number
of EM [25], we expect that the percentage of unrealizable
solutions is increasing further with augmenting system
size. Obviously, sorting of solutions with respect to biolog-
ical feasibility can be done in a separate post-processing
step, too. However, in our implementation we get the sort-
ing for “free’, i.e. without any additional computational
steps. At least in the case of E. coli we demonstrated
that our predictions are robust against variations in the
weights. In particular we found that our choice of weights
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is very conservative and far from the limits detected in the
robustness analysis (see the Additional file 1: Figure S1).
It may be possible to integrate a weighting function in the
algorithm presented by [16] as well. However, it has not
been demonstrated yet.

Part of the flexibility of our approach is its ability to opti-
mize metabolic functionality. This can be easily demon-
strated in a simple example as illustrated in Figure 3. The
network consists of three EM. Lets suppose that R1-R2-R3
is the only desirable EM (G = R1-R2-R3, H = R5-R4-R3,
and K = R1-R6-R4-R3). A NMF can be easily generated
by either knocking out either R4 or R6. The metabolic
functionality of the resulting networks, however, differs
significantly. By deleting R4 the only “surviving” mode is
the desired goal mode. Thus the network is in fact a NMF,
as no other functionality is available. On the other hand,
by deleting R6 the network still has the desired prop-
erties, but retains additional functionality (conversion of
C to B) without compromising the original design cri-
terion. Alternatively we may define a kill-matrix K and
calculate the resulting network of minimal or maximal
functionality. BLP is able to predict solutions with the
smallest/largest set of EM contributing to the metabolic
functionality and distinguish between those two extremes
without enumerating the full solution space. This feature
therefore opens a way to include secondary objectives in
the design process.

An integer programming problem sits at the heart of
our algorithm. Integer programs are inherently difficult
to solve [20]. Nevertheless efficient commercial and
non-commercial solvers are available. Still the question
remains if BLP is fit for solving even larger problems
than the one presented. Even with current technologies
a complete EMA can only be done for small-scale prob-
lems, typically involving about 100 reactions. These 100
reactions transform into 100 binary variables in the BLP
problem. Their handling is easy [20]. On the other hand,
the number of EM in metabolic networks explodes combi-
natorially with the system size [25], which translates into
millions and even billions of constraints for BLP. These
constraints are highly redundant and can be efficiently
compressed using various preprocessing techniques typ-
ically already included in available solvers (or various
preprocessing methods see [20,26]). For instance, the ini-
tial BLP problem to predict the smallest MCS in the full E.
coli model [12] (see above) contained 429,276 constraints
for 71 variables. After preprocessing we transformed the
problem into 28 constraints for 34 variables, which dra-
matically improved the computational performance (data
not shown). The compression is also beneficial in the con-
text of the original formulation of cMCS. The problem
may be set up as integer program first, followed by stan-
dard preprocessing. The reduced problem may then be
solved by the adapted Berge algorithm presented by [16].
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Figure 3 lllustrative toy network. lllustrative toy network containing the metabolites A to C, and the reactions R1 to Ré. All reactions are
irreversible. The area inside the dashed box indicates the “cell interior”. The network consists of three EM: R1-R2-R3, R1-R6-R4-R3, and R5-R4-R3.

We tested various off-the-shelf software packages to
solve the BLP problem. The implementation of our algo-
rithm merely required setting up the input parameters
for those solvers. We found that our approach is compu-
tationally modest and scalable. In fact, we were able to
successfully repeat the analysis for the much larger core
metabolic network of [24] with its 271 million EM on
a standard personal computer. We used the single most
efficient EM for the production of ethanol form glucose
as design criterion (all other modes were killed). In 122
sec our algorithm found all 2,304 MCS with the mini-
mum number of 26 deletions. (The total program runtime,
which included reading all EM from disk and calculating
the MCS, was 10 min 30 sec.) The problem here, and with
c¢MCS in general, is not the handling of millions of EM
(although data handling required 80% of the total run-
time), but to calculate these modes in the first place [16].
However, promising results on efficiently enumerating the
full set of EM have recently been published [27,28].

Conclusion

In summary, we have demonstrated an efficient and easy
to implement method to rationally predict engineering
strategies for the improvement of production hosts. Opti-
mal pathways were identified using elementary mode
analysis. Based on integer/binary programming we were
then able to predict all minimal intervention strategies to
design a strain with desirable metabolic capabilities. Our
method is based on the concept of constrained minimal
cut sets, but offers much more flexibility in the predic-
tion of engineering targets, including most prominently
the possibility of easily integrating gene regulation.

Methods

We used efmtool [28] to calculate the complete set of
EM for a network and Gurobi Optimizer 5.0, http://www.
gurobi.com/ for solving the BLP problem. efmtool is open

source and freely available; Gurobi offers a free academic
license.

Additional file

Additional file 1: Supplementary material. A pdf containing all
additional data, figures and tables.
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