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Abstract

Background: Every phenotypic trait can be viewed as a “system” in which a group of interconnected components
function synergistically to yield a unified whole. Once a system's components and their interactions have been
delineated according to biological principles, we can manipulate and engineer functionally relevant components to
produce a desirable system phenotype.

Results: We describe a conceptual framework for mapping quantitative trait loci (QTLs) that control complex traits
by treating trait formation as a dynamic system. This framework, called systems mapping, incorporates a system of

partitioning to leaves, stem, and roots.

physiological and pathological states.

differential equations that quantifies how alterations of different components lead to the global change of trait
development and function through genes, and provides a quantitative and testable platform for assessing the
interplay between gene action and development. We applied systems mapping to analyze biomass growth data in
a mapping population of soybeans and identified specific loci that are responsible for the dynamics of biomass

Conclusions: We show that systems mapping implemented by design principles of biological systems is quite
versatile for deciphering the genetic machineries for size-shape, structural-functional, sink-source and pleiotropic
relationships underlying plant physiology and development. Systems mapping should enable geneticists to shed
light on the genetic complexity of any biological system in plants and other organisms and predict its

Background

Predicting the phenotype from the genotype of complex
organisms is one of the most important and challenging
questions we face in modern biology and medicine [1].
Genetic mapping, dissecting a phenotypic trait to its
underlying quantitative trait loci (QTLs) through the
use of molecular markers, has proven powerful for
establishing genotype-phenotype relationships and pre-
dicting phenotypes of individual organisms based on
their QTL genotypes responsible for the trait [2]. The
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success of this prediction depends on how well we can
map the underlying QTLs and characterize complex
interactions of these QTLs with each other and with
environmental factors. Powerful statistical models have
been developed in the past two decades to detect QTLs
and study their biological function in a diverse array of
phenotypic traits [3-9]. Worldwide, a substantial effort
has been made resulting in the collection of a large
amount of data aimed at the identification of QTLs
[10-15]. Unfortunately, despite hundreds of thousands of
QTLs detected in a diversity of organisms, only a few of
them have been isolated by positional cloning (see
[16-18]), leaving it unsolved how to construct a geno-
type-phenotype relationship map using genetic mapping.

The most likely reason for this result may arise from a
possibility that the QTLs detected by stringent statistical
tests are not biologically relevant. Existing strategies for
QTL mapping were built on testing for a direct
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association between genotype and end-point phenotype.
Although such strategies are simple and have been
widely accepted, they neglect the biological processes
involved in trait development [14]. To attempt to fill
this gap, a statistical model, called functional mapping
[19-21], has been developed to study the interplay
between genetics and the developmental process of a
phenotypic trait by integrating mathematical models and
computational algorithms. If a trait is understood as a
“system” that is composed of many underlying biological
components [22-24], we should be in a better position
to comprehend the process and behavior of trait forma-
tion based on interactive relationships among different
components. Through mapping and using those QTLs
that govern design principles of a biological system, a
new trait that is able to maximize resource-use effi-
ciency can be generated and engineered.

As one important strategy for plants to respond to
variation in the availability of resources in their environ-
ment, biomass allocation has been extensively used to
study the relationship between structure and function in
modern ecology [25-28]. The concept of biomass alloca-
tion has now been increasingly integrated with plant
management and breeding, aimed to direct a maximum
amount of biomass to the target of harvest (leaves, stem,
roots, or fruits) [29-31]. If the whole-plant biomass is
considered as a target trait, we need to understand how
different organs of a plant coordinate and interact to
optimize the capture of nutrients, light, water, and car-
bon dioxide in a manner that maximizes plant growth
rate through a specific developmental program because
plant biomass growth is not simply the addition of bio-
mass to various organs. Many theories and models have
been proposed to predict the pattern of biomass parti-
tioning in a response to changing environment. Chen
and Reynolds [27] used coordination theory to model
the dynamic allocation of carbon to different organs
during growth in relation to carbon and water/nitrogen
supply by a group of differential equations. Compared
to the conventional optimization model in the context
of maximizing the relative growth rate of a plant, the
coordination model does not require an unrealistic
capacity the plant possesses for knowing beforehand the
environmental conditions it will experience during the
growth period. Here, we integrate the coordination and
optimization model to study the pattern of biomass par-
titioning by incorporating the allometric scaling theory
into a system of differential equations.

In a series of allometric studies by West et al. [32-34],
a power relationship that universally exists between
parts and the whole can be explained by two fundamen-
tal design principles in biophysics and biochemistry; i.e.,
all organisms tend to maximize their metabolic capacity
by increasing surface areas for energy and material
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production as well as internal efficiency through redu-
cing distances and the time to transport water, nutri-
ents, and carbon. The integration of this optimization
theory expressed in terms of allometric scaling with the
coordination theory leads to a tripled group of ordinary
differential equations (ODEs) to specify the coordination
of the leaf, stem, and root biomass for a plant:

dML - OlLWﬁL _ )/LML
dt
dMg
= agWhs (1)
dt s
dMp
P ar WP — ypMp

where M;, Mg, and Mpare the biomasses of the leaves
(L), the stem (S), and the roots (R), respectively, with
whole-plant biomass W = M;+ Mg+ Mpg; o and f3 are
the constant and exponent power of an organ biomass
scaling as whole-plant biomass [32,33]; and 7 is the rate
of eliminating ageing leaves and roots. The complex
interactions between different parts of a plant that
underlie design principles of plant biomass growth can
be modeled and studied by estimating and testing the
ODE parameters (¢, B, A1, ®s, Bs, &r, Br, Ag). For
example, plants are equipped with a capacity to optimize
their fitness under low nutrient availability by shifting
the partitioning of carbohydrates to processes associated
with nutrient uptake at a cost of carbon acquisition
[29]. These parameters can be used to quantify and pre-
dict such regulation between different plant parts in
response to environmental and developmental changes.

In this article, we put forward a conceptual framework
to incorporate the design principles of trait formation
and development into a statistical framework for QTL
mapping. Complementary to our previous functional
mapping [19-21], we name this new mapping framework
“systems mapping” in light of its systems dissection and
modeling of phenotypic formation. A group of ODEs
like (1) or other types of differential equations is used to
quantify the phenotypic system. Much work in solving
ODEs has focused on the simulation and analysis of the
behavior of state variables for a dynamic system, but the
estimation of ODE parameters that define the system
based on the measurement of state variables at multiple
time points is relatively a new area. Yet, in the recent
years, many statisticians have made great attempts to
develop statistical approaches for estimating ODE para-
meters by modeling the structure of measurement errors
[35-42]. We implemented Ramsay et al.’s [41] penalized
spline method for estimating constant dynamic para-
meters in our genetic mapping. The problem for sys-
tems mapping with ODE models is different from those
considered in current literature. First, systems mapping
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is constructed within a mixture-based framework
because QTL genotypes that define the DE models are
missing. Second, systems mapping incorporates genoty-
pic data which are categorical or binary. These two
characteristics determine the high complexity of our sta-
tistical model and computational algorithm used for sys-
tems mapping.

Results

QTL detection

We develop a new model for QTL mapping by treating
trait formation as a dynamic system and further incor-
porating the design principles of the biological system
into a statistical mapping framework (see Methods).
The new model, named systems mapping in light of its
systems feature of phenotypic description, was used to
map QTLs for biomass partitioning in a mapping popu-
lation of soybeans composed of 184 recombinant inbred
lines (RIL) derived from two cultivars, Kefeng No. 1 and
Nannong 1138-2. For an RIL population, there are two
homozygous genotypes, one composed of the Kefeng
No. 1 alleles and the other composed of the Nannong
1138-2 alleles. Figure 1 illustrates the growth trajectories
of leaf, stem and root biomass for individual RILs. By
using the system of ODEs (1) to fit growth trajectories
of leaf, stem and root biomass over time, we obtained a
mean curve for each trait. It can be seen that growth
trajectories can be well modeled by three interconnect-
ing ODEs (1) derived from coordination theory [27] and
allometric scaling [32-34]. The model-fitted curves of
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leaf (Figure 1A) and root biomass trajectories (Figure
1C) delineate reasonably the decay of leaf and root bio-
mass at a late stage of development due to senescence.
As expected, stem biomass growth does not experience
such a decay (Figure 1B) although growth at the late
stage tends to be stationary.

By scanning the genetic linkage map composed of 950
molecular markers located in 25 linkage groups, we
detected two significant QTLs, one named as biomassl
that resides between markers GMKF167a and
GMKF167b and the second as biomass2 that resides
between markers sat.274 and BE801128 (Additional file
1, Figure S1). Using the maximum likelihood estimates
of the curve parameters in ODE (1) whose standard
errors were obtained by the parameter bootstrap [43]
(Table 1), we drew the growth trajectories of leaf, stem
and root biomass for two different genotypes at each
QTL (Figure 2). The genetic effects of the QTLs dis-
played different temporal patterns for three organs. The
QTLs were expressed more rapidly with time for the
stem than for the leaves and roots. At biomassi, the
alleles from parent Nannong 1138-2 increase leaf and
stem biomass growth (Figure 2A and 2B), whereas the
alleles from parent Kefeng No. 1 increase root biomass
growth (Figure 2C). This could be interpreted as the
Nannong 1138-2 allele favoring carbon allocation to the
shoots at the expense of the roots but the Kefeng Nol
allele favoring carbon allocation to the roots at the
expense of the shoots. Likewise, the biomass2 alleles
from Nannong 1138-2 favor carbon allocation to the

Biomass

fitted using a system of ODEs (1).

Figure 1 Growth trajectories of leaf (A), stem (B) and root biomass (C) measured at multiple time points in a growing season of
soybeans. Each grey line presents the growth trajectory of one of 184 RILs, whereas black lines are the mean growth trajectories of all RILs

Time
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Table 1 The maximum likelihood point estimates (PEs) of ODE parameters and standard errors (SEs) of the estimates

for the QTLs detected
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QTL Model Genotype Estimate o B " Qs Bs g Br YR
1 M1 QQ PE 2.09 0.16 043 0.93 0.07 1.52 0.66 291
SE 0.02 1e-3 3e-3 0.01 2e-4 0.01 6e-3 0.02
qq PE 253 0.11 036 092 0.04 157 054 3.90
SE 0.01 4e-4 2e-3 0.01 le-4 0.01 5e-3 0.01
MO PE 230 013 039 092 0.05 156 0.60 3.37
SE 0.07 2e-3 0.01 0.02 4e-4 0.05 0.02 0.08
2 M1 QQ PE 1.89 0.14 044 1.04 0.07 11 0.56 1.85
SE 0.04 Te-3 0.01 0.01 le-4 0.01 5e-3 0.01
qq PE 255 0.10 031 0.98 0.04 111 051 218
SE 0.04 le-3 0.01 0.01 4e-4 0.01 5e-3 0.02
MO PE 225 0.12 037 1.03 0.05 112 0.55 2.06
SE 0.08 3e-3 0.02 0.02 6e-4 0.02 0.01 0.05

Model M1 assumes two different genotypes at a QTL (under the H;), whereas Model MO assumes a single genotype (under the Ho).

Note: QTL 1 is one between markers GMKF167a and GMKF167b on linkage group 12. QTL 2 is one between markers sat.274 and BE801128 on linkage group 24.
The alleles of genotype QQ are derived from Kefeng No. 1 and those of genotype gq derived from Nannong 1138-2.

leaves (Figure 2D) and those from Kefeng No. 1 favor
carbon allocation to the roots, but the alleles at this
QTL inherited from parent Kefeng No. 1 favor carbon
allocation to the stem, which is different from the beha-
vior of QTL biomassi. Note that leaf and root biomass
growth tend to decay at the late stage for almost all
RILs. But the genotypes at the QTLs detected do not
reflect this trend (Figure 2), although they display much
reduced rates of growth at the late stage. We explained
this to be due to some other QTLs that have not been
detected with the current linkage map.

The functional relationships among leaf, stem and root
biomass were determined by the QTLs detected (Fig-
ure 3). For biomassl, two genotypes are not only dif-
ferent in whole-plant biomass trajectory, but also
display pronounced discrepancies in biomass growth
trajectories of individual organs (Figure 3A and 3B).
This means that this QTL affects the dynamics of both
plant size and biomass partitioning. The genotype
composed of the Kefeng No. 1 alleles has a smaller
slope of biomass growth, leading to smaller whole-
plant biomass at late stages of development, than that
composed of the Nannong 1138-2 alleles, but the for-
mer has larger root biomass over the entire period of
growth at the expense of the shoots than the latter.
For biomass2, two genotypes are similar in total plant
size during growth, but they have a marked distinction
in biomass partitioning (Figure 3C and 3D). It appears
that this QTL affects plant growth trajectories through
altering biomass partitioning rather than total amount
of biomass. At this QTL, the genotype with the Kefeng
No. 1 alleles has a dominant main stem and heavy
roots, whereas the genotype with the Nannong 1138-2
alleles carries dense leaves.

Figure 4 shows the dynamic pattern of biomass parti-
tioning to different organs. In general, the stem receives
increasing allocation with time, whereas the partitioning
to the leaves and roots decreases with time. Both QTLs
detected, biomass1 and biomass2, control the degree of
such time-dependent increase or decrease. For example,
at biomassl, the Kefeng No. 1 genotype always exhibits
a larger degree of increasing biomass partitioning to the
stem but a larger degree of decreasing biomass parti-
tioning to the leaves and roots than the Nannong 1138-
2 genotype (Figure 4A vs. 4B). QTL biomass2 has a
similar pattern of biomass partitioning for the stem and
leaves, although it displays a stronger effect than does
QTL biomassl. At QTL biomass2, there is a larger
degree of decreasing biomass partitioning to the roots
for the Nannong 1138-2 genotype than the Kefeng
No. 1 genotype (Figure 4C vs. 4D).

Simulation

By analyzing a real data set for soybean mapping, sys-
tems mapping produces the identification of two signifi-
cant QTLs that control the dynamic formation of
whole-plant biomass through developmental regulation
of different organs, stem, leaves, and roots. To validate
the new model, we performed simulation studies by
mimicking the effects of QTL biomass2 detected from
the example of QTL mapping in soybeans. The simu-
lated mapping population contains the same genotype
data for 184 RILs. The phenotypic values of three traits,
the stem, leaf and root biomass, assumed to obey the
system of ODE (1), were simulated at six different time
points by summing time-dependent genotypic values at
biomass2 calculated with curve parameters in Table 1
and residual errors. Specifically, the phenotypic values of
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Figure 2 Growth trajectories of leaf (A, D), stem (B, E) and root biomass (C, F) for two different genotypes (presented by solid and
broken black curves) at a QTL detected on linkage group 12 (upper panel) and 24 (lower panel), respectively. Two genotypes at a QTL

are the homozygote for the alleles inherited from Kefeng No.1 (solid) and the homozygote for the allele from Nannong 1138-2 (broken). Curves
in grey are growth trajectories of 184 RlLs.

the kth trait were simulated by adding white noise with  of noise variance 6> were set as the estimates from the
variances o to the ODE curves for the jth QTL geno-  q] data, which are 02=242, ¢?=172 and
type with the probability w;; i.e., the conditional prob-
ability of the ith RIL that carries the jth QTL genotype,
given the two markers genotypes of this RIL. The values

0 =0.14 for the leaf, stem, and root biomass, respec-
tively. Meanwhile, by assuming a modest heritability
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Figure 3 Growth trajectories of whole-plant (red), leaf (green), stem (blue) and root biomass (black) for two different genotypes at a
QTL detected on linkage group 12 (upper panel) and 24 (lower panel). Two genotypes at a QTL are the homozygote for the alleles
inherited from Kefeng No.1 (A, C) and the homozygote for alleles inherited from Nannong 1138-2 (B, D).

(0.05) for each trait at a middle stage of growth, we re-
scaled o values which were used to simulate a new
data set.

Systems mapping, implemented with the parameter
cascading method, estimates QTL genotype-specific
curve parameters in the ODE (1) from the simulated
data. The simulation was repeated 100 times to calculate
the means, biases, standard deviations, and root mean
square errors, with results tabulated in Table 2. It was
found that the model can provide reasonably accurate
and precise estimates of QTL genotype-specific ODE
parameters with a modest sample size (n = 184). The
biases of the estimates are negligible, compared with the
scale of the standard deviations. Given that this

simulated data is a mimicry of the real soybean data, the
results suggest that the experimental design used for
soybean mapping is scientifically sound and can provide
convincing QTL detection. This actually is not surpris-
ing because phenotyping has low measurement errors.
In analyzing a simulated data set for the traits
assumed to have a modest heritability (0.05), the esti-
mates of the ODE parameters are reasonably accurate
and precise, indicating the power of systems mapping to
detect small QTLs involved in trait formation. We per-
formed an additional simulation to investigate the
power and false positive rates of the model by changing
levels of noises. In general, the power of the model is
high, reaching 0.80 even when the heritability of growth
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Figure 4 Time-dependent percentages of leaf (green), stem (blue) and root biomass (thin black) for two different genotypes at a QTL
detected on linkage group 12 (upper panel) and 24 (lower panel). Two genotypes at a QTL are the homozygote for the alleles inherited
from Kefeng No.1 (A, D) and the homozygote for alleles from Nannong 1138-2 (B, Q).

curves is low (0.05). Basically, a QTL can be fully
detected when the heritability is 0.10 or larger. In any
case, the false positive rates are not beyond 0.10, mostly
being less than 0.05.

Discussion

Mapping the genetic architecture of complex traits has
been a subject of interest in both theoretical and empiri-
cal aspects of modern biology [3-15]. Original
approaches for genetic mapping are based on single-
point variation in a phenotypic trait, neglecting the
dynamic change of the trait during development. To
capture the dynamic pattern of genetic control, a new

statistical model called functional mapping has been
developed by incorporating the mathematical aspects of
trait development [19-21]. Despite significant improve-
ment over conventional static mapping, functional map-
ping has still a major limitation in characterizing
developmental pathways that cause a final phenotype
and unraveling the underlying genetic mechanisms for
trait formation and progression.

In this article, we have for the first time put forward a
new approach-systems mapping by treating a phenotypic
trait as a dynamic system and incorporating the design
principles of a biological system into a statistical frame-
work for genetic mapping. Various components that
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Table 2 Means of maximum likelihood estimates of curve
parameters from the ODE system (1) and their biases,
standard deviations (STD) and square root mean square
errors (RMSE) from 100 simulation replicates

Genotype Estimate o B % as PBs or PBr T

Q0 TRUE 255 010 031 098 004 1.1 051 218
MEAN 255 010 031 098 004 1.1 051 218
BIAS¥10° 210 -007 072 027 001 349 -088 -2.89

STD*10° 375 008 060 094 001 129 049 1.1
RMSE*10* 375 008 061 094 001 134 050 1.15

qq TRUE 189 0.14 044 104 007 111 056 185
MEAN 189 0.14 044 104 007 111 056 185
BIAS*10° -423 011 055 -061 -005 162 092 -202
STD*10° 360 014 092 099 004 138 045 166
RMSE*10° 362 014 092 099 004 139 046 167

constitute the system through developmental regulation
are studied and connected by a system of biologically
meaningful differential equations (DE). Thus, the genetic
mapping of a complex phenotype become an issue of
testing and estimating genotype-specific curve para-
meters at specific QTLs that define the emerging prop-
erties and dynamic behavior of the DE system. Systems
mapping identifies QTLs that control developmental
interactions of traits, the temporal pattern of QTLs
expression during development, as well as the genetic
determinants that control developmental switches (on/
off).

Systems mapping was applied to map QTLs for
dynamic trajectories of biomass from different organs,
the stem, leaves, and roots, that interact and coordinate
to determine whole-plant biomass growth, in an experi-
mental cross of soybeans between Kefeng No. 1 and
Nannong 1138-2. In general, the stem receives a propor-
tionally larger amount of biomass with development,
accompanying a proportional decrease of biomass to the
leaves and roots. Specific QTLs, biomassl and biomass2,
that control this allometric change with development
have been detected from systems mapping. The alleles
at the two QTLs inherited from Kefeng No. 1 tend to
amplify this contrast in development-dependent biomass
partitioning, as compared to those from Nannong 1138-
2. One of the two QTLs, biomass2, was found in a simi-
lar genomic region identified by traditional functional
mapping [44]. This consistency does not only simply
verify our systems mapping, but also gains new insight
into biological functions of the detected QTLs. For
example, the two QTLs detected, biomassl and bio-
mass2, trigger genetic effects on the interactions and
coordination of different organs which cause the
dynamic variation of biomass growth.

Through various tests for ODE parameters individu-
ally or in a combination, our systems mapping can

Page 8 of 11

reveal the genetic control mechanisms for several
mechanistically meaningful relationships. They are (1)
size-shape relationship - is a big plant due to a big stem
with sparse leaves or a small stem with dense leaves? (2)
structural-functional relationship - in a specific environ-
ment does a plant tend to allocate more carbon to its
leaves for CO, uptake or roots for water and nutrient
uptake? (3) cause-effect relationship - are more roots
due to more leaves or do more leaves produce more
roots? and (4) pleiotropic relationship - different traits
with a similar function tend to integrate into modularity
[45]. How do the same QTLs pleiotropically control this
modularity? A better understanding of these relation-
ships helps to gain more insights into the mechanistic
response of plant size and shape to developmental and
environmental signals and, also, provide guidance to
select an ideotype of crop cultivars with optimal shape
and structure suited to a particular environment [46].

The model described in this article is a simple frame-
work for systems mapping. It can be used as a start
point to expand the concept of systems mapping to
tackle more complicated biological problems. A pheno-
type can be dissected to any number of components at
any level of organization, molecule, cell, tissue, or whole
organism, depending on the interest of researchers and
data availability. With more knowledge about phenotype
formation and development, more components can be
involved in a system that is specified by high-dimension
differential equations. Sophisticated mathematical tech-
niques are needed to obtain stable solutions of these
equations. In addition, by integrating it with genome-
wide association studies, systems mapping will not only
provide a clear view of how different components inter-
act and coordinate to form a phenotype, but also will be
capable of illustrating a comprehensive picture of the
genetic architecture of complex phenotypes. There is
also a good reason to integrate systems mapping with
network biology to explore how “omics” information
contribute to the regulatory mechanisms of phenotype
formation [47]. In any case, systems mapping will open
a new avenue for understanding the genetic architecture
of complex phenotypes from a perspective of mechanis-
tic pathways inside their formation.

Conclusions

The past two decades have seen a phenomenal increase
in the number of tools for the genetic mapping of com-
plex traits. Although genetic mapping continues to be
an interesting area in genetic research owing to the suc-
cess of molecular and sequencing technologies in gener-
ating a flood of data, a conceptual breakthrough in this
area remains elusive. In this article, we present a bot-
tom-top model for mapping and studying the genetic
architecture of complex traits. Different from existing
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mapping models, we use a systems approach to identify
specific genes or quantitative trait loci that govern the
developmental interactions of various components com-
prising the phenotype. The map of developmental inter-
actions among different components is constructed by a
system of differential equations. Thus, by estimating and
testing mathematical parameters that specify the system,
we are able to predict or alter the physiological status of
a phenotype based on the underlying genetic control
mechanisms. We have tested and validated our model
by analyzing a real data set for genetic mapping of bio-
mass growth in soybeans. The detection of QTLs by the
new model provides biologically meaningful interpreta-
tions of QTL effects on trait formation and dynamics.
The new model can be readily used to study the genetic
basis of phenotypes in any other organism.

Methods

Mapping Population

Our model derivation is based on a mapping population
comprising of n recombinant inbred lines (RILSs),
initiated with two inbred lines. By continuous selfing or
inbreeding, RILs after the F, generation are considered
homozygous because the fixation at any locus is given
by f=1-05"" ~ 1. In practical terms, all plants from a
single RIL are genetically identical, and can be used for
replicated experiments under different environments. In
addition, each RIL represents a unique combination of
alleles from the parental genotypes where there are two
homozygous genotypes at each marker locus, each cor-
responding to a parental allele. The mapping population
is genotyped at molecular markers to construct a linkage
map covering the entire genome. The recombination
fraction between two markers is converted to the
genetic distance in centiMorgan (cM) through a map
function, such as the Haldane or Kosambi map function.
The map constructed is used to locate QTLs that con-
trol a quantitative trait of interest.

We obtained a sample of 184 RILs derived from two
cultivars, Kefeng No. 1 and Nannong 1138-2, for map-
ping agronomic traits. These RILs were genotyped for
950 molecular markers locating in 25 linkage groups
[48,49]. The plants were grown in a simple lattice design
with two replicates in a plot at Jiangpu Soybean Experi-
ment Station, Nanjing Agricultural University, China.
Ten plants in the second row of a plot were randomly
selected for measuring leaf, stem and root biomass at
each time in the whole growing season. After 20 days of
seedling emergence, dry weights separately for the
leaves, stem and roots were measured once every 5 to
10 days until most plants stopped growth. A total of 6
to 8 measurements were taken for each of the RILs stu-
died. Great efforts were made to control measurement
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errors for such a large-scale field trial. Phenotyping pre-
cision was estimated to be above 95%.

Unlike a traditional mapping project, our goal is to
map QTLs that control the dynamic process of how dif-
ferent organs, the stem, leaves, and roots, interact and
coordinate to determine whole-plant biomass. The inter-
actions and coordination of different organs for a plant
are understood using design principles described by the
ODE system (1).

Likelihood
Let yy = (yi (ti1), -+ o Vi (timi))T denote the vector of

phenotypic values for trait k (k = 1 for leaf biomass (L),
2 for stem biomass (S), and 3 for root biomass (R)) mea-

)T. Note

that the number of time points measured may be pro-
geny-specific, expressed as m for progeny i. Assuming
that multiple QTLs (segregating with J genotypes), each
bracketed by two flanking markers M, affects these
three traits, we construct a mixture model-based likeli-
hood as

sured on progeny i at time points (tﬂ, oo, tim,

n J
L(z,M) = > [wifi(zi; ©, W) )

i=1 j=1

where y = (y1, Y2, ¥3) is a joint vector of phenotypic
values for the three traits, with z;= (y1; Y2, Y3:) present-
ing the z-vector for progeny i; wj); is the conditional
probability of QTL genotype j (j = 1,..., /) given the mar-
ker genotype of progeny i, which can be expressed as a
function of the recombination fractions between the
QTL and markers [50], and fj(z; ©;, ¥) is an MVN of
leaf, stem and root biomass for progeny i which carries
QTL genotype j, with mean vectors

,Lj:(,l’lerLerlL3j)t j: 1, ,]

specified by @;, and covariance matrix specified by ¥.
If a system of differential equations (1) is used to jointly
model QTL genotype-specific means vectors for the
three traits, then we have @;= (o, Brj 4 1, ttsj Bsjr Olgjs
Brj» A ;) for genotype ;.

Estimation

Unlike a traditional mixture model for QTL mapping,
we will model the genotypic values of each QTL geno-
type in likelihood (2) characterized by a group of non-
linear ODEs. While an analytical solution is not
available, we will implement numerical approaches to
solve these ODEs. Let y(t) denote the genotypic value
of the kth trait at time ¢ for a QTL genotype j. Thus,
the dynamic system of the traits and their interactions,
regulated by QTL genotypes, can be modeled by a
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system of ODE (1),

dprg(t)

dt = gk(”’](t)' G)])/ k= 1, ---,3, (3)

where p(t) = (u1;(2), ..., ,u3,-(t))T, and ©; is a vector of
ODE parameters associated with QTL genotype j. For J
possible genotypes in the mapping population, we have

O = (G)T, o, @IT)T. The question now is how to @ esti-

mate from noisy measurements. The functional mean
#rj(t) may be represented as a linear combination of
basis functions:

R
(1) = cijr e (1) = cyg (1) (4)

r=1

where @;(£) = (i1 (2), ...s (pij(t))Tis a vector of basis
functions with R orders and cy= (cx1, .., cij)T is a vec-

tor of basis coefficients. Define ¢ = ({ckj}z;:[rj:l) as a

length (R x 3 x J) vector of basis coefficients. The cubic
B-splines are often chosen as basis functions, since any
B-spline basis function is only positive over a short sub-
interval and zero elsewhere. This is called the compact
support property, and is essential for efficient computa-
tion. The flexibility of the B-spline basis functions
depend on the number and location of knots we choose.
It is an infinite-dimension optimization problem to
choose the optimal number of knots and their locations.
A popular approach to avoid this dilemma is choosing a
saturated number of knots and using a roughness pen-
alty to control the smoothness of the fitted curve and
avoid over-fitting [40].

We estimate the basis coefficient ¢ and ODE para-
meter ® based on a two-nested level of optimization. In
the inner level of optimization, c is estimated by opti-
mizing a criterion U(c|®), given any value of @. There-

fore, the estimate ¢ may be viewed as a function of Q,
which is denoted as ¢ (®) . Since no analytic formula
for ¢ is available, ¢ (®) is an implicit function. In the
outer level of optimization, ® is estimated by optimizing
a criterion H (9, ¢ (G))). The parameter ¢ is removed in
the parameter space in the outer level by treating it as
an implicit function of ®. Although ¢ (®) does not
have an analytic formula, the outer level of optimization
only requires to calculate the derivative d¢/d® , which
can be obtained by using the implicit function theorem.
The above optimization procedure is called the para-
meter cascading method. Note that when the two cri-
teria U(c|®) and H (@,E(@)) are the same, the
parameter cascading method is equivalent to the profil-
ing method.
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Additional material

Additional file 1: Figure S1. The profiles of the log-likelihood ratios (LR)
between the full model (there is a QTL) and reduced model (there is no
QTL) for soybean height growth trajectories throughout the soybean
genome composed of 25 linkage groups.
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