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Abstract

way as the natural cells.

cells may have functional consequences.

Background: Generation of induced pluripotent stem cells (iPSCs) and converting one cell type to another
(transdifferentiation) by manipulating the expression of a small number of genes highlight the progress of cellular
reprogramming, which holds great promise for regenerative medicine. A key challenge is to find the recipes of
perturbing genes to achieve successful reprogramming such that the reprogrammed cells function in the same

Results: We present here a systems biology approach that allows systematic search for effective reprogramming
recipes and monitoring the reprogramming progress to uncover the underlying mechanisms. Using budding yeast
as a model system, we have curated a genetic network regulating cell cycle and sporulation. Phenotypic
consequences of perturbations can be predicted from the network without any prior knowledge, which makes it
possible to computationally reprogram cell fate. As the heterogeneity of natural cells is important in many
biological processes, we find that the extent of this heterogeneity restored by the reprogrammed cells varies
significantly upon reprogramming recipes. The heterogeneity difference between the reprogrammed and natural

Conclusions: Our study reveals that cellular reprogramming can be achieved by many different perturbations and
the reprogrammability of a cell depends on the heterogeneity of the original cell state. We provide a general
framework that can help discover new recipes for cellular reprogramming in human.

Background

In response to environmental or developmental signals,
eukaryote cells normally transit to a specific state
defined by the realization of its genetic network that
specifies the gene expression and protein abundance
levels. In the landscape of the cell state space, there
exist attractors corresponding to different cell fates [1-4]
and barriers between these attractors constrain cells to
one attractor (one cell fate). Perturbations such as over-
expression of a set of genes may push cells overcome
the barriers and thus move from one attractor to
another in the cell state space. An example is the gen-
eration of induced pluripotent stem cells (iPSCs) from
differentiated somatic cells by overexpression of several
genes [5-8]. A challenging problem is how to efficiently
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find effective, ideally the optimal, perturbations to
reprogram a cell’s fate. In addition, there are other
unanswered questions such as how exactly cellular
reprogramming occurs and what fundamental principles
govern the reprogramming.

We attempt to tackle these challenges from a systems
biology point of view and conduct a proof-of-concept
study in the model organism budding yeast Saccharo-
myces cerevisiae. Yeast cells proliferate in rich medium
through cell cycles and sporulate when nutrients are
limited in the environment. We choose these two
important biological processes to illustrate how the cell
fate can be reprogrammed by perturbing yeast cells, for
example, such that they go through cell cycles under
sporulation condition or vice versa.

To develop reprogramming recipes and gain mechan-
istic insights of the reprogramming process, we first
assembled a network that regulates cell cycle and
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sporulation in yeast, which is feasible given the abun-
dant data available. The next steps were to predict phe-
notypic consequences of perturbations to the cell (yeast
cells going through cell cycles or completing sporula-
tion), and to estimate the landscape of the cell state
space to monitor the reprogramming process. Methods
have been proposed to predict phenotypes but none of
them is applicable to search for reprogramming recipes.
For example, one group of methods predicted pheno-
type of knocking out a gene as the phenotypes shared
by its neighbor genes in the genetic network [9,10]. This
approach does not serve the purpose of finding repro-
gramming recipe, which requires de novo prediction of
phenotype. Landscape in the cell state space has also
been determined by estimating the probability of each
state or solving differential equations to define the
dynamics of the system [11,12]. However, these methods
are limited to small circuits/networks that cannot pro-
vide sufficient molecular details of how reprogramming
is achieved.

In this proof-of-concept study, we modeled the
genetic network underlying cell cycle and sporulation in
yeast using a simple graphical model, Boolean network
[13]. We defined the attractors of cell cycle and sporula-
tion using marker genes. Then, using the concept of cell
state landscape and a sampling strategy, we illustrated
that both quantitative (sporulation efficiency) and quali-
tative (cell viability upon mutations) phenotypes can be
satisfactorily predicted from the network structure with-
out any additional information. Such de novo phenotype
prediction allows systematic search for perturbations
that force the yeast cell to sporulate under the growth
condition or vice versa. Once the reprogramming path
was defined, the potentials of cell states on the path
were estimated by a sampling strategy, which avoids the
difficulty of estimating the landscape for all possible cell
states but still sheds light on understanding how the
reprogramming proceeds from a landscape point of
view. Consistent with the landscape concept, we found
many perturbations that may serve as reprogramming
recipes. More importantly, our analyses suggest that
successful reprogramming relies on the heterogeneity of
the original cell state (whether a reprogramming can
occur) and the restoration of the heterogeneity of the
natural cells (how similar the reprogrammed and natural
cells are).

Results

The network regulating cell cycle and sporulation in
budding yeast

Cell cycle and sporulation are two important biological
processes that have been well studied in budding yeast.
We have curated literature to assemble the key regula-
tors into a 56-node network (Figure 1 and Additional
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file 1, Table S1), including 44 proteins/complexes (e.g.
MBF and SBF), 5 logical AND nodes, two gene groups
(i.e. EMG and MMG), one pathway (i.e. cAMP/PKA),
one phenotype (i.e. sporulation) and three signal (cell
size, sporulation and cell cycle condition) nodes.

Besides the nodes representing proteins, logical AND
nodes were used to model the cooperation between
multiple proteins that is required for regulating their
target genes/proteins. For example, the node of FEAR
represents Cdcl4 early anaphase release network, which
includes proteins such as Espl, Spol2 and Cdc5 [14],
and was thus modeled as an AND node of these pro-
teins. Early and middle meiotic genes are required to be
active for sporulation progress; they were collectively
represented by EMG and MMG nodes, respectively.
Note that the sporulation phenotype is an AND node
because it is activated only if both EMG and MMG are
on. The cAMP/PKA signaling pathway suppresses the
activity of several major sporulation activators such as
Rim15 and Msn2, and was represented by one node for
simplicity [15]. Since genetic network is dynamically rea-
lized in response to environmental cues, we deployed
two signal nodes, growth and sporulation conditions, to
mimic the medium conditions suitable for cell growth
or sporulation induction. The “cell size” node represents
the checkpoint entering S phase in the cell cycle if the
yeast cell grows to a critical size [16,17].

The curated network represents the current knowl-
edge of cell cycle and sporulation in budding yeast.
Under growth condition, when the cell grows large
enough to trigger the cell-size signal, Cln3 is activated
and it in turn activates MBF and SBF, which induces
the transcription of cyclin Clb5 [18]. The activation of
Clb5 drives the cell into S phase when DNA replication
begins [19,20]. Then the transcription factor complex
Mcm1/SFF is formed to activate Clb2, which controls
the entry into M phase for segregation [21]. The exit
from M phase requires degradation of Clb2 by Cdhl
and Sicl. The cell then goes to the stationary G1 phase
before it grows to a critical size and conducts another
round of division. Under sporulation condition, the mas-
ter meiotic regulator Imel, repressed by growth condi-
tion, is turned on [22]. Imel, Ume6 and Rim11 form a
complex to activate early meiotic genes (EMGs) includ-
ing NDT80 and IME2 [15]. MMG and NDT80 are initi-
ally repressed by Suml in the vegetative growth
condition. Activation of the kinase Ime2 inhibits Sum1’s
activity, which derepresses NDT80. Ndt80 then tran-
scribes MMG as well as IME1, IME2 and itself to form
positive feedbacks. Completing sporulation requires
transcription of both EMG and MMG [22].

In the network, we assigned each node to one of three
configurations if the incoming activation and repression
signals are equal: self-degradation (turned off), self-
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Figure 1 Genetic network of budding yeast regulating cell cycle and sporulation. Positive and negative regulations are represented by
green arrow and red link with bar, respectively. Orange arrows represent inputs for a logical AND node. Self-degradation, self-sustaining and
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sustaining (state unchanged) and self-activation (turned
on). A self-degradation node tends to be off, which is a
simplification of degradation process. For example,
Clnl, CIn2 and Cln3 are degraded by a complex SCF
associated with Grrl [23,24]. These degradation
mechanisms are not explicitly represented in the net-
work. Self-sustaining nodes denote proteins maintaining
a constant level. For example, a self-sustaining protein
Cdhl only functions in the G1 phase but its mRNA
level remains constant through the entire cell cycle
[25,26]. The separin Espl and the securin Pdsl are
involved in both meiotic progression and mitotic cell
cycle arrest [27-29]. The transcription of ESP1 is con-
stant through the cell cycle [21] and the location of
Pds1 is cell-cycle dependent [30,31]. Denoting them as
self-activation was to mimic the unknown mechanisms
that activate these two proteins.

Fixed points and dynamics of the network

The stationary states of the network in Figure 1 reflect
cell fates, either completing sporulation or going
through cell cycles. To define the stationary states corre-
sponding to sporulation is straightforward: the SPOR
node is on, which requires on of both EMG and MMG
such that the cell is committed to sporulation [22]. To
define the stationary G1 state in cell cycle, under growth
condition we first evolved 1,000,000 randomly selected
states and find the stationary state with the maximum
basin (the largest attractor). We then identified all the
proteins/complexes (27 out of 56) in the network

showing cyclic change of its state when evolving to the
largest attractor. The stationary G1 states of cell cycle
were reached if the states of these 27 nodes were the
same as those in the largest attractor (the remaining
nodes could be in any state). Unsurprisingly, we did
observe the known activation of Cdhl and Sicl in the
stationary G1 state. Note that the temporal evolution of
these 27 nodes indeed follows the biological pathway of
cell cycle after the cell size signal is turned on (same as
that in [16]): from the excited G1 state (the START) to
the S phase, the G2 phase, the M phase, and finally
back to the stationary G1 state (Additional file 2, Figure
S2). This observation validates the representation of cell
cycle phases and attractors using these 27 nodes (see
Materials and methods). Attractors other than sporula-
tion and cell cycle are collectively referred as “other”
(Figure 2A).

Differential equations have been successfully used to
study detailed dynamics of yeast cell cycle [32]. Since
the genetic network shown in Figure 1 also includes
many genes involved in sporulation, most kinetic para-
meters needed are unknown. In addition, solving differ-
ential equations for the network with 56 nodes is
difficult if not impossible. Therefore, we exploited Boo-
lean network to identify the fixed points of the network,
which should be same as those identified by differential
equation based analysis. Since it is impossible to enu-
merate all the states, we used a sampling strategy to
define attractors and basins (see Materials and Methods)
which still captured the major events in the cell state
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space (see discussion in Additional file 2). The two con-
dition signals in our model give three proper combina-
tions since they are mutually exclusive and do not
present simultaneously. We first randomly initialized the
states without any signal, and follow their evolution to
the stationary states. The percentage of the initial states
converging to a specific attractor reflects the basin size
of the attractor. Without specifying signal, the basin
sizes of the three attractors were comparable (Figure
2B). When either cell cycle or sporulation signal is
turned on, as expected, the cell prefers the correspond-
ing attractor: under growth condition, 70% and 16% of
initial states converged to cell cycle and sporulation
attractors, respectively; under sporulation condition,
these percentages were <0.1% and 50%. Under either
condition, a significant portion of initial states con-
verged to the “other” attractor (neither cell cycle nor
sporulation), which illustrates the stochasticity in the
network.

Although it is prohibitive to calculate the stable prob-
ability of each state for the network of this size [11], the
attractors and basins identified by the sampling strategy
still paint a global view of the cell state landscape, as
conceptually illustrated in Figure 2A. There are three
major attractions: sporulation, cell cycle (stationary G1)
and other. The yeast cell state is mainly determined by
the environmental condition but stochasticity does exist
to affect the cell fate. The attractions were robust sub-
ject to perturbations to the network structure by adding,
deleting or switching direction of edges (Additional file
2, Figure S3), and dynamic trajectories are more conver-
gent in cell cycle than in sporulation (Additional file 2,
Figure S4, S5).

Predicting phenotypes based on genetic network
Predicting sporulation efficiency

Effect of deleting a single gene on the efficiency of yeast
sporulation has been quantitatively assessed using

microarray [33]: a Prespo/Spore ratio for each deletion
strain is the ratio between the numbers of cells not-
completing and completing sporulation. Such a quanti-
tative phenotype provides a unique opportunity to
examine how well network-based predictions can be
made in silico. We calculated the percentage of 10,000
randomly sampled initial states that converge to sporu-
lation attractor, i.e. an attractor with the SPOR node on,
in wild-type and perturbed networks (Materials and
Methods). A ratio between sporulation percentage in
the wild type and a specific perturbation is computed as
the Prespo/Spore ratio and compared with the experi-
mental value.

We conducted single gene deletion for all the gene
nodes in the network and the corresponding node was
clamped to “0” in the simulations. The predicted sporu-
lation efficiencies correlate well with the experimental
values, as shown by a Pearson correlation of 0.809 with
a P-value of 8.69 x 10" given by t-test (Figure 3A) and
a Spearman rank correlation of 0.687 with a P-value of
5.08 x 1077, The lower Spearman correlation is because
most genes in the network are neither sporulation defi-
cient nor efficient whose Prespo/Spore ratios crowd
around 1.0. To further confirm the significance of the
correlation, we generated 10,000 random networks, in
which the number of nodes, each node’s incoming- and
outgoing-degrees, the numbers of each node’s activators
and repressors are same to the curated network (the
links to the logical AND and SPOR nodes were not ran-
domized). The correlations between the Prespo/Spore
ratios and the predicted sporulation efficiencies based
on the random networks only give a mean value of
0.0204 and standard deviation of 0.1835. Compared to
the random networks, the predicted correlation of the
curated network is extremely significant (P-value = 4.04
x 10%).

This encouraging result suggests that (1) the most
prominent interactions related to sporulation have been
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Figure 3 Predicting phenotypes from the network. (A) Correlation between the experimental measured (Prespo/Spore ratios) and the
predicted sporulation efficiency. (B) Predicting viability of 76 mutants (36 viable and 40 inviable). Strains going through START, G1, S, G2, M, G1
and ending at stationary G1 are predicted as viable. See also Additional file 2, Table S2.

captured by the curated network even though about half
of the nodes mainly function in cell cycle; (2) quantita-
tive phenotypes can be predicted using the cell state
landscape concept. There is room for improvement and
we did observe three outliers in the predictions: Rim11,
Rim15 and Clb5. It is most likely that there are still
missing regulatory interactions in the network. The sim-
ple Boolean function may not be sufficient to capture
complicated regulatory logics either (see discussion in
Additional file 2).

Predicting viability of mutation strains

We have collected the viability data on 76 mutants from
the Saccharomyces Genome Database (SGD [34]) and
the study of Chen et al. [32]. To be viable, when started
from the stationary G1 state triggered by cell size signal,
the yeast cell should go through the cell cycle phases in
the proper order. Therefore, in the Boolean network, a
viable mutation state must (1) converge to the stationary
G1 phase (2) through a trajectory containing all the
right-ordered cell cycle phases, under cell growth condi-
tion. Out of 76 mutants, 70 (92.1%) predictions match
with the literature (Figure 3B and Additional file 2,
Table S2), which gives satisfactory classification accuracy
(the MCC is 0.842). To evaluate the significance, we
predicted the viability of these mutant strains using
10,000 random networks as those in the previous sec-
tion. All mutations were predicted to be inviable.
Although the accuracy was 52.6% (40 out of 76
mutants), the MCC was zero, which suggests that the
prediction is just random and insignificant. This satisfac-
tory result shows that the curated network captures the
major dynamics of yeast cell cycle and the synchronous

updating scheme of Boolean network is appropriate to
study the dynamics of this system.

Reprogramming cell fate

Diverse recipes can achieve cellular reprogramming

The satisfactory results of predicting phenotypes based
on the curated network encourage us search for pertur-
bations to the network that may reprogram cell fate, e.g.
yeast cells sporulate under growth condition or prolifer-
ate under sporulation condition. Inspired by the genera-
tion of iPS cells [5-8], we searched for perturbation
(knockdown or overexpression) combinations of 1 to 4
proteins that can achieve reprogramming. To mimic the
generation of iPS cells using transient perturbations, we
initialized the perturbed proteins to “1” for overexpres-
sion or “0” for knockdown and then let the nodes
evolve. There are 1,886,248 possible perturbation combi-
nations for the 42 proteins in the network. Given a con-
dition, we calculated the percentage of the 10,000
randomly sampled initial states converged to the cell
cycle or sporulation attractor with and without a pertur-
bation. If a perturbation reverses the percentages of the
wild type, reprogramming is achieved and the percen-
tage of the targeted attractor defines the potency of the
perturbation. Interestingly, many such reprogramming
perturbations (the 100 most potent recipes listed in
Additional file 3, Table S3) were found, which indicates
the cellular plasticity [4] and is consistent with the epi-
genetic landscape model that there exist various transi-
tion routes between two attractors [1-4]. The potency of
reprogramming recipes for sporulation under cell cycle
condition is much higher than proliferation under
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sporulation condition, which indicates the easiness of
the reprogramming.

Unsurprisingly, the most potent reprogramming per-
turbations are combinations of overexpression and
knockdown. Intuitively, the most effective way to repro-
gram cells from fate A to fate B would be repression of
genes promoting fate A and overexpression of genes
promoting fate B. For example, to reprogram yeast cells
to sporulate under the growth condition, the top pertur-
bation is overexpression of GCN5 and knockdown of
RPD3, SUMI and TUP1 that achieves 97% of sporula-
tion. In contrast, perturbations that only contain either
overexpression or knockdown have much lower potency
of reprogramming: the best overexpression- and knock-
down-only perturbations respectively achieve 48.7%
(overexpressing IME1, IME2, MSN4 and RIM4) (not in
the top 100 recipes) and 85% (knocking down RIM11,
RPD3, SUM1 and TUP1) of sporulation under the
growth condition. Similarly, all the top 100 recipes
reprogramming sporulation to cell cycle under sporula-
tion condition are combinations of overexpression and
knockdown.

We next examined which perturbations are most fre-
quently present in the recipes that achieve reprogram-
ming (Table 1 and Additional file 3, Table S3). In both
directions of cell fate reprogramming, perturbations to
Imel and Tupl have a dominant presence. Imel is a
major meiosis regulator and it is not unexpected that its
overexpression under cell cycle condition or knockdown
under sporulation condition helps reprogram the cell
fate. Tupl represses many genes involved in a wide vari-
ety of physiological processes [34]. In our model, Tupl
forms a complex with Migl and activates Rpd3. Both
Migl and Rpd3 occur frequently in reprogramming
recipes (Table 1). The significance of Rpd3 in repro-
gramming cell cycle to sporulation is in concert to the
observation that Rpd3 is a negative regulator of early
meiotic genes and rpd3 deletion induces expression of
early meiotic genes even in vegetative cells [35]. Since
Migl is activated by abundant glucose in the environ-
ment [36], under the sporulation condition, overexpres-
sing MIG1 mimics the presence of nutrient to drive the

Table 1 Frequencies of the top reprogramming
perturbations

A. Reprogramming cells to sporulation under growth condition
TUPI*® RPD3P SumM1"®P IMET®F
0.251 0.223 0.206 0.035

Perturbation

Frequency

B. Reprogramming cells to cell cycle under sporulation condition
MIG1 IMETF? MSN4® TUPT P
0215 0.138 0.128

Perturbation

Frequency 0.25

KD: knockdown; OE: overexpression. Perturbations are either gene knockdown
or overexpression. See also Additional file 3, Table S3.
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cells to grow. Therefore, the importance of Tupl in
reprogramming is likely due to its functional interac-
tions with Rpd3 and Migl (Figure 1). Suml represses
the expression of NDT80 and other middle meiotic
genes under growth condition [15,37]. It is not surpris-
ing that SUM1 knockdown helps reprogram cells to
sporulate under cell cycle condition. Knocking down
Msn4, a master regulator of stress response [34], to
reprogram yeast cells to proliferate under sporulation
condition is also reasonable because Msn4 is repressed
by growth condition and it activates Imel, the master
regulator of sporulation.

Cellular reprogramming by perturbation and switch of
condition

We examined how the fate of yeast cells can be repro-
grammed by both perturbations and signals. First, under
sporulation condition, we evolved 10,000 random initial
states, and only recorded the initial states and those on
their evolving paths converged to the sporulation attrac-
tors, i.e. the states in the sporulation basin. We have
sampled 3,000 of such basins that include 15,181,093
states in total. Second, upon switching to the growth
condition, we found that not all the states obtained in
the first step evolved to the cell cycle attractor (the
reprogrammed state). The percentage of reprogrammed
states among states with the same evolving distance to
the sporulation attractors were calculated (Figure 4A).
Obviously, the closer to the sporulation attractor (short
evolving distance), the less cells were reprogrammed
when switching condition from sporulation to growth.
Specially, states within 4 evolving steps to the sporula-
tion attractor never evolved to the cell cycle attractor
for the wild type cells. It is consistent with the knowl-
edge that yeast cells would complete sporulation once
the commitment step is passed, even if they are trans-
ferred back to rich medium [22].

We next selected the most potent 100 perturbations
that can reprogram cells from sporulation to prolifera-
tion under the sporulation condition (see Additional file
2). In addition to each perturbation, we also switched
the condition to growth. Combination of perturbation
and condition switching mimic the approach of generat-
ing iPS or transdifferentiated cells, in which perturba-
tions are introduced to cell type A and the cells are
cultured in medium (conditions) for cell type B to
reprogram cell type A to B. We grouped cell states
based on their evolving distance to the sporulation
attractor. The percentage of the states in each group
that evolve to the cell cycle attractors for the wild-type
and perturbed cells were obtained (Figure 4A). The per-
turbation does facilitate reprogramming especially from
the states that are at least 5 steps away from the sporu-
lation attractors. However, most of the recipes still can-
not reprogram cells within two evolving steps to the
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sporulation attractor (Figure 4A). We conducted the
same analysis on the other direction of reprogramming.
When condition was switched from growth to sporula-
tion, even the cell cycle attractor states could sporulate
because it is a normal sporulation process for the wild-
type cells but additional perturbations did boost the
sporulation percentage (Figure 4B).

The difference between the two reprogramming direc-
tions is biologically meaningful. Yeast cells sporulating
under sporulation condition is a natural process and
additional perturbations facilitate its progress. In con-
trast, if yeast cells are committed to sporulation, switch-
ing back to proliferation under sporulation condition is
cellular reprogramming that requires appropriate pertur-
bations; even with reprogramming perturbations, the
fate of yeast cells may not be changed if they are very
close to complete sporulation (two evolving steps from
the sporulation attractors). Also, for the cell states with
the same evolving distance to the sporulation attractors,

not all of them can be reprogrammed (Figure 4A).
Together, our observations indicate that cellular repro-
gramming may depend on the heterogeneity of the cell
population. If the cells are completely specified in one
cell fate, it may not be reprogrammable.

Mimicking the generation of iPS cell

It is almost impossible to convert a fully differentiated
mammalian cell back to the pluripotent state by only
switching culture medium. Therefore, to mimic the gen-
eration of iPS cell, we examined the reprogramming of
the yeast cells committed to sporulation, i.e. cells within
4 evolving steps from any sporulation attractor that can-
not evolve to cell cycle attractors by only switching con-
dition. For the 100 most potent reprogramming recipes,
we checked the percentage of the 10,000 randomly
sampled cell states that are committed to sporulation
but can be reprogrammed to proliferation and we
defined this percentage as the efficiency of the repro-
gramming recipe. Obviously, the efficiency of a high-
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potency recipe is not necessarily high (Figure 5A).
Potency reflects the fixed points of the network under a
given environmental condition and reprogramming per-
turbation, and all initial states are considered when cal-
culating the percentage of cell cycle attractors. Efficiency
defined here indicates the convergence to cell cycle
attractors only from the cell states committed to
sporulation.

Under the growth condition, by random sampling of
one million initial states, we found 12 cell cycle attrac-
tors and the existence of multiple attractors reflects the
heterogeneity of proliferating cells. The reprogrammed
cells converge to 2 to 9 of these attractors (Additional
file 4, Table S4). Because accumulating evidence
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suggests that the heterogeneity is critical for the func-
tion of embryonic and adult stem cells[38], we hypothe-
size that the proliferation heterogeneity of yeast cells is
also selected by evolution to offer survival advantages.
Indeed, the 12 cell cycle attractors and the cell states
within 5 evolving steps to them vary significantly on
converging to the sporulation attractors when switching
condition to sporulation (Figure 5B). This observation
indicates that the 12 cell cycle attractors are not equal
in terms of their capability to sporulate in response to
lack of nutrient in the environment. Therefore, the
reprogrammed cells would have different sporulation
capabilities depending on which cell cycle attractors are
restored.
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Figure 5 Divergent properties of recipes reprogramming sporulation to cell cycle under growth condition. (A) Potency versus efficiency
of a recipe. (B) Cell cycle attractors are unequal in terms of their capability to sporulate. When starting from the states within 5 evolving steps to
the 12 cell cycle attractors, their percentages of converging to sporulation attractors under sporulation condition vary significantly. (C)
Heterogeneity deviation versus efficiency of a recipe. The six Pareto optimal recipes are highlighted on the Pareto frontier. Right panel:
heterogeneity profiles for the wild type and reprogrammed cells. Wild type cells under growth condition populate in 12 basins (A1 to A12 and
colored differently) and the basin size is proportional to the width of each color in the profile bar. Cells reprogrammed by different recipes show
different extent of deviation from the natural cells. See also Additional file 4, Table S4.




Ding and Wang BMC Systems Biology 2011, 5:50
http://www.biomedcentral.com/1752-0509/5/50

A deviation metric was defined to measure how much
the heterogeneity of natural cells is restored in the
reprogrammed cells (Materials and Methods). The more
similar the reprogrammed cells populate the cell cycle
attractors as the natural cells, the smaller the deviation
is. As shown in Figure 5C, an efficient recipe does not
necessarily have a small heterogeneity deviation, i.e. it
does not restore the heterogeneity of the natural cells
well. With respect to the reprogramming efficiency and
heterogeneity deviation, five Pareto optimal [39] recipes
were identified (Figure 5C). For example, knockdown of
IME2 and overexpression of MIG1, RPD3 and TUP1
has a heterogeneity deviation of 0.24 and efficiency of
26%. As discussed above, this perturbation boosts prolif-
eration and inhibits sporulation. The reprogrammed
cells repopulate three attractors (the profiles shown in
Figure 5C) with similar percentages as the natural cells.
This analysis highlights the importance of choosing the
optimal reprogramming recipe.

Reprogramming routes on the landscape of cell states

To illustrate how the reprogramming proceeds, we
monitored the cell state transition for the wild-type and
reprogrammed cells. First, under, for example, growth
condition we randomly sampled states from the basin of
a given attractor state (the root node). Second, we
evolved all the states in the previous step under the
reprogramming perturbations and added all new states
on the evolving paths to this state-transition graph. Fig-
ure 6A and 6B show two examples of the state-transi-
tions for both the wild-type and reprogrammed cells. It
is obvious that the state-evolving paths are significantly
altered by reprogramming perturbations and some
nodes act as converging transition states (see below).
Exactly as the landscape concept suggests, there are
many transition routes between the cell cycle and sporu-
lation attractors.

The common nodes in the reprogramming paths gen-
erated by different perturbations were identified transi-
tion states in reprogramming. For either reprogramming
direction (cell cycle to sporulation or vice versa), the top
100 most potent reprogramming perturbations were
used to construct 100 state-transition graphs sampled
from 10,000 random initial states. We then calculated a
normalized state-transition flux for each state, defined
as the flux flowing through the node divided by the
number of nodes in the graph. In the 100 state-transi-
tion graphs, a transition state was defined as the one
that was passed by at least 9,000 reprogramming paths
with an average normalized flux larger than 0.05 (more
than 5% of the initial states in a state-transition graph
passing through these states). With this criterion, no
transition state was found in the cellular reprogramming
without condition switching, i.e. reprogramming from
cell cycle to sporulation under cell cycle condition or
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from sporulation to cell cycle under sporulation condi-
tion. In contrast, transition states did exist for repro-
gramming with condition switching: three in the
reprogramming from cell cycle to sporulation under
sporulation condition and five from sporulation to cell
cycle under cell cycle condition (Additional file 5, Table
S5). The most prominent differences between the transi-
tion states of the opposite reprogramming directions are
the activities of Migl and Rmel: both active in the
reprogramming from sporulation to cell cycle but inac-
tive in the opposite direction. As mentioned above,
Migl is activated by abundant glucose [40] thus pro-
motes mitosis, while Rmel inhibits meiosis by repres-
sing IME1 expression and promotes mitosis by
activating CLN2 expression [34]. Our observation sug-
gests that major transition states may exist even though
there are divergent routes of reprogramming generated
by diverse reprogramming perturbations.

In the framework of cell state landscape, the repro-
gramming perturbations pull cells out of one attractor
and push it over the barriers to another attractor. To
illustrate the landscape, we employed a sampling strat-
egy to estimate the potential of each cell state on the
reprogramming paths (Materials and Methods). By
defining the reprogramming path and transition states
first, we avoided the extensive computation that is infea-
sible to conduct for a network of this size and devote
our efforts to estimate the potential of states only on
the reprogramming paths. Figure 6C shows an example
of reprogramming paths generated by different pertur-
bations starting from two different cell cycle attractors.
It is obvious that the barriers in the landscape are over-
come by the perturbations.

Discussion

A systematic approach to searching for reprogramming
recipes

We propose here a systems biology approach to system-
atically search for recipes of reprogramming cell fate
and understanding its mechanisms. Our approach con-
sists of the following steps. First, constructing a genetic
network that regulates the cellular states of interest; Sec-
ond, appropriately representing the phenotypes using
marker proteins/genes; Third, making de novo predic-
tions of phenotypes based on the network; Fourth,
searching for perturbations to the network that can
reverse the phenotype percentages; Fifth, estimating the
potential of cell states on the reprogramming paths and
find the transition states. In this study of budding yeast,
our simulations match well with the experimental mea-
surements and existing knowledge, which indicates the
validity of this approach. It is no doubt that improve-
ment can be made in our approach, particularly on con-
structing a more complete network and predicting
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Potential

—— GCN5*RPDICSUMI TUPI®™®
— IME1**MSN4SUMI*° TUPI*

Figure 6 Monitoring the reprogramming process. Green and red nodes/links represent wild type and reprogramming paths, respectively.
States in the cell cycle biological path are colored in blue. States on the reprogramming path from the wild type attractor to the
reprogrammed attractor are colored in pink. Cell cycle, sporulation and other attractors are colored in blue, red and black respectively. The width
of the links is proportional to the transition flux. For the clarity of illustration, we only (A) plot 320 transitions between 254 states selected from
9213 transitions between 7191 states in the reprogramming from cell cycle to sporulation under the growth condition by the recipe of GCN5“®
RDP3'® sUM1™® TUPTP, (B) plot 350 transitions between 255 states selected from 14157 transitions between 11089 states in the reprogramming
from sporulation to cell cycle under the sporulation condition by the recipe of IMET*PMIGTP*MSN4CTUP1I. (C) Example of reprogramming
paths from the cell cycle attractors to the sporulation attractors under the growth condition. C1 and C2 are two different cell cycle attractors

landscape. See also Additional file 5, Table S5.

and S is a sporulation attractor. Each node represents a state on the reprogramming paths and the height reflects the potential in the

phenotypes more precisely. More efficient methods are
also needed to estimate potential landscape in the cells
state space. Nevertheless, we believe such a framework
should be applicable to other systems such as generation
of iPS and transdifferentiated cells.

The genetic network with a reasonably large size (56
nodes in this study) can provide mechanistic insights
that are often missed by simplified circuits. We have
further demonstrated the feasibility of predicting pheno-
types from genetic network without additional prior
knowledge (Figure 3). This observation is resonant to
the proposal that the topology of biological network is

dictated by its function [41]. Although we take a simple
Boolean network to model the genetic network, it is
likely that the network topology encodes the primary
constraints of the functional regulations in the cell,
which is crucial to de novo prediction of phenotypic
consequences for perturbations to the system. Tests on
additional systems and various phenotypes are needed
to further prove this hypothesis.

Our approach allows monitoring of the reprogram-
ming progress (Figure 6). Consistent with the landscape
concept, there are many recipes that can achieve a
desired reprogramming. We show that recipes with
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combination of overexpression and knockdown are often
more potent than the ones with only either overexpres-
sion or knockdown. As discussed above, this observation
is quite intuitive but mixed perturbations have not been
exploited in generating iPS or transdifferentiated cells,
likely due to lack of a systematic method to search for
optimal reprogramming recipes. The approach we pre-
sent here may allow identification of such recipes to
effectively reprogram human cells from cell type A to B:
knockdown of genes promoting type A and overexpres-
sion of genes promoting type B.

We find several transition states (Figure 6) in the
reprogramming with condition switching, which is simi-
lar to the scenario in the generation of iPS cells. Similar
to the checkpoint that yeast cells have to pass to com-
mit to sporulation, mammalian cells often go through
several checkpoints along differentiation. It is imaginable
that the generation of iPS cells probably needs to over-
come several major barriers to achieve pluripotency.
This speculation awaits experimental test and, if proved
to be true, identification of such transition states would
shed lights on understanding the mechanisms of both
differentiation and reprogramming.

Heterogeneity of cell population is crucial for cellular
reprogramming

Among the models for iPS cell generation[42], the sto-
chastic model predicts that most cells initiate reprogram-
ming but only a small number complete reprogramming;
in contrast, in the elite model only a small portion of
cells can initiate and complete reprogramming. Our ana-
lyses suggest a compromised model. If cells are fully spe-
cified to one cell state as shown in Figure 4, they may not
be reprogrammable. Due to the noise inside cell, the cell
population showing a common phenotype are heteroge-
neous; a subset of the cell population that are not com-
pletely specified for a phenotypic state can all initiate
reprogramming but only a portion of them can complete
the desired reprogramming (Figure 4).

Restoration of heterogeneity of natural cells by
reprogrammed cells depends on reprogramming recipe
A critical question in cellular reprogramming is how
much the reprogrammed cells resemble the natural
cells. The functional roles of heterogeneity of embryonic
and adult stem cells are recognized recently; it is
believed that the mammalian cells have evolved to
achieve such heterogeneity [38] and our observation
that the cell cycle attractors are not equal in terms of
their capability to sporulate in response to sporulation
condition is consistent with this hypothesis. As hetero-
geneity restoration depends on reprogramming recipes
(Figure 5), we argue that an ideal recipe should fully
restore such heterogeneity of the natural cells and the
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observed differences between iPS and embryonic stem
cells such as gene expressions may be partially due to
the difference of their heterogeneity.

Conclusions

In summary, our proof-of-concept study on budding
yeast illustrates the feasibility of systematic search for
optimal reprogramming recipe and highlights the
importance of choosing an appropriate recipe to
achieve an effective cellular reprogramming. Our ana-
lyses also demonstrate that a successful reprogram-
ming may rely on the heterogeneity of the original cell
type and suggest a compromised model for generation
of iPS or transdifferentiated cells. In addition, restora-
tion of natural cells’ heterogeneity by reprogramming
is recipe-dependent and we propose such heterogeneity
restoration may be critical to the functions of repro-
grammed cells.

Methods

Boolean network

In a Boolean network [13], the nodes (e.g. genes or pro-
teins) are binary variables and their states can be either
on (active “1”) or off (inactive “0”). The state of each
node is determined by the states of its parent nodes
including itself in the case of self-regulation. Network
dynamics is modeled by updating the Boolean functions,
leading the system transit from the initial state to the
final state, where a network state is a collective binary
representation of all variables (i.e. a binary vector repre-
senting the state of all the proteins).

We adopted a modified version of Boolean network
used in [16] and [43], in which the node states in the
next time step are determined by the node states of the
current time step via the following rules:

Si(t+1) =
1,if F>0
0,if F<0
1,if F =0 and i is self - activation
0,if F =0 and i is self - degradation
Si(t),if F=0 and i is self - sustaining
where F = %;a,;S; (t) and i is the target node while j is
the parent node. S(¢) is the state of i at step ¢ and a;; is

the contribution weight of parent node j to target node
i. The value of a;; is 1 if j activates i; or -1 if represses i.

Attractor identification

In principle, all the attractors a dynamic system can be
found by enumeration, i.e. evolving the network from all
possible initial states and recording the converged states.
Because enumeration quickly becomes prohibitive for
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large networks due to the exponentially increasing num-
ber of possible initial states, random sampling strategy is
an alternative for attractor identification. It is important
to assess the sampling convergence. The sampling was
considered converged if the percentages of attractors do
not change significantly when increasing sampling. We
started from random sampling of 5,000 initial states,
and then increased the sampling by 5,000 until the per-
centages of all the three types of attractors changed less
than 1.0%. We found that a random sampling of
100,000 initial states is sufficient to identify all the
major attractors of the network.

Estimating network landscape

To compute the potential landscape of a given Boolean
model, Han and Wang generated a transition probability
matrix for all the enumerated states in their network of 11
nodes[11]. By solving the master equations, they obtained
the steady-state probabilities and thus the potential land-
scape. For our network of 56 nodes, their method is inap-
plicable to get the potential landscape of all the possible
states. Because we are only interested in states on the
reprogramming paths, we employed the following strategy
to estimate the potential of the states of interest.

(1) Given input signals, e.g. sporulation condition,
we first generated a state-transition graph starting
from the states on the reprogramming paths and
including the states on their evolving paths to the
corresponding attractor;

(2) If the number of states in the state-transition
graph was small, we added additional states from
randomly sampled evolving paths until the total
number of states reached 10,000;

(3) We then calculated the transition probability T}
from state i to state j in the graph using the method
of [11]. In our simulation, we set the parameters y =
5 and ¢ = 0.001;

(4) Because the state-transition graph was con-
structed by sampling in step 1 and did not cover all
the possible states, we used a pseudo state x to col-
lectively represent all the states that were not
included in the graph. The transition probability
from a state i to the pseudo state x was calculated

aslin =1— ; Tij and the transition probability from

the pseudo state x to a state j wasTyj = ZTij/n,
i

where n is the number of states other than the
pseudo state;

(5) We solved the equations using the iterative
method of [11] to get the steady-state probability p;
for each state;
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(6) We repeated step 1 to step 5 to calculate the
potential of each state under all three possible condi-
tions, i.e. growth condition, sporulation condition and
no signal. We then averaged the steady-state probabil-
ities to calculate the potential of state i as U = -In p;.

Predicting phenotypes
Sporulation efficiency
To estimate the sporulation efficiency, we calculated the
percentage of 10,000 randomly sampled states evolving
to sporulation attractors. Let it be. To compare the pre-
dicted and experimental measured Prespo/Spore ratios
determined by microarray for a single gene deletion
strain [33], we followed the procedure of [44] to calcu-
late the predicted ratio as

o Pwildtype
' Pcletion

The correlation between the values of and the Prespo/
Spore ratios reflects the prediction accuracy of our
model.

Cell cycle phase and viability prediction

In cell cycle, the “START” checkpoint is responsible for
regulating the G1-S phase transition, ensuring that S
phase does not begin until the cell reaches the critical
size. Although the precise mechanism linking cell size to
S phase initiation remains unclear, Cln3 is activated at
this checkpoint. Therefore, we modeled this mechanism
by a cell-size signal activating CIln3 (Figure 1). There are
six phases in a cell cycle: START, G1, S, G2, M and sta-
tionary G1 phase. The START phase is different from
stationary G1 phase with an active Cln3 node. Cells
evolve from START to stationary G1 phase after Cln3 is
activated by the cell-size signal.

To determine to which cell cycle phase a state
belongs, we identified all the 27 protein nodes that show
cyclic state change when converging to the stationary
G1 phase and consider them as the indicator of cell
cycle phase. For a network state s, we calculate a score
for each cell cycle phase j,

gi)= [T ((r=s)+ (=)' uwy)

ienodes

where i is one of the 27 cell cycle nodes, w;; is the
weight denoting the contribution of the node i to the
phase j if the node is “on”, s; is the activity of node i
(either 1 or 0). When, s; = 1, the contribution of the
node to the score is wy; if s; = 0, the contribution is 1 -
w;;. The network state s is considered to be in cell cycle
phase / that gives the maximum g(j), i.e.

J=j |maxjephasesg(j)
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To determine the weight w;;, we started from the biolo-
gical cell cycle trajectory and initialized the weights of
the nodes included in [16] as: w; = 1 if the node i is
active in a state belonging to the cell-cycle phase j; other-
wise w;; = 0. The weights of those nodes not included in
[16] are derived from literature. For example, Cdc14 is a
protein phosphatase required for mitotic exit. It is loca-
lized in the nucleus until transported to cytoplasm in
anaphase to decrease the CDK/B-cyclin activity and thus
to initiate mitotic exit [45]. Therefore we initially set the
weight of Cdcl4 in M phase to 1 and 0 in other phases.
Next, by manually fine-tuning the weights, e.g. from 1 to
0.8 or from 0 to 0.1, we found the weights that allow cor-
rect assignment of each state in the biological cell cycle
trajectory to the cell cycle phase (Additional file 6, Table
S6). These weights were then used to calculate the g(j)
score, which can correctly assign network states to the
proper cell cycle phases. Take the last state in the biologi-
cal cell cycle trajectory (Additional file 2, Figure S2) as an
example: the scores of START, G1, S, G2, M and station-
ary G1 are 0.0014, 0.0015, 0, 0, 0 and 0.9971, which cor-
rectly assigns the state to the stationary G1 phase.

When judging whether a mutant is viable or not, we
clamped the mutated genes (nodes) to 0 (deletion) or 1
(overexpression) and evolved the network from START
state of the largest basin under the growth condition.
Then we checked (i) whether the obtained trajectory was
converged to the cell cycle attractor and (ii) whether the
trajectory went through the cell cycle phases in the proper
order, namely START - G1 - S - G2 - M - G1 - stationary
G1. Note that the G1 phase between M and stationary G1
is optional and the duration of each phase is not necessa-
rily correlated with the number of states involved. If the
trajectory proceeds in the proper order of cell cycle phases,
the mutant is viable; otherwise it is inviable.

The Matthews correlation coefficient (MCC) measures
the quality of binary classifications and is calculated as [46]:

TP x TN — FP x FN
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP, TN, FP and FN represent true positives,
true negatives, false positives and false negatives. A
MCC value of +1 represents a perfect prediction, 0 an
average random prediction and -1 an inverse prediction.

Heterogeneity deviation of reprogrammed cells from
natural cells

Under growth condition, wild-type yeast cells converged
to 12 cell cycle attractor states. The percentages of the
random initial states converging to these attractors were
denoted by a heterogeneity profile, w = (wy, -, w,),
where w; is the percentage and # = 12 is the number of
cell cycle attractors. Similarly, the heterogeneity profile
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for the reprogrammed cells x = (x; -, x,,) was also cal-
culated. The heterogeneity deviation of the repro-
grammed cells from the wild-type cells was calculated as

d(x, w) = Xn:wi(xi —w;)?.
i=1

A smaller deviation suggests better restoration of the
wild-type heterogeneity by reprogramming.

Additional material

Additional file 1: Details of curated regulatory network. Literature
evidence for the nodes and edges in the curated regulatory network.
Related to Figure 1 in main text.

Additional file 2: Supporting information. It describes the robustness
and dynamics of the network and more detailed materials related to
main text.

Additional file 3: Reprogramming recipes and the frequency of
perturbations. Reprogramming recipes and the frequency of
perturbations.

Additional file 4: Recipes reprogramming sporulation to cell cycle.
Recipes reprogramming sporulation to cell cycle. The reprogramming
efficiency, heterogeneity deviation, potency and number of restored
attractors are listed.

Additional file 5: Common states on the reprogramming paths.
Common states on the reprogramming paths from cell cycle to
sporulation under sporulation condition and from sporulation to cell
cycle under cell cycle condition. Related to Figure 6 in main text.

Additional file 6: Weights used to assign cell state to cell cycle
phase on the biological pathway. Weights used to assign cell state to
cell cycle phase on the biological pathway.
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