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Abstract
Background: The orexins (hypocretins) are a family of peptides found primarily in neurons in the
lateral hypothalamus. Although the orexinergic system is generally thought to be the same across
species, the orexins are involved in behaviors which show considerable interspecific variability.
There are few direct cross-species comparisons of the distributions of cells and fibers containing
these peptides. Here, we addressed the possibility that there might be important species
differences by systematically examining and directly comparing the distribution of orexinergic
neurons and fibers within the forebrains of species with very different patterns of sleep-wake
behavior.

Methods: We compared the distribution of orexin-immunoreactive cell bodies and fibers in two
nocturnal species (the lab rat, Rattus norvegicus and the golden hamster, Mesocricetus auratus) and
two diurnal species (the Nile grass rat, Arvicanthis niloticus and the degu, Octodon degus). For each
species, tissue from the olfactory bulbs through the brainstem was processed for immunoreactivity
for orexin A and orexin B (hypocretin-1 and -2). The distribution of orexin-positive cells was noted
for each species. Orexin fiber distribution and density was recorded and analyzed using a principal
components factor analysis to aid in evaluating potential species differences.

Results: Orexin-positive cells were observed in the lateral hypothalamic area of each species,
though there were differences with respect to distribution within this region. In addition, cells
positive for orexin A but not orexin B were observed in the paraventricular nucleus of the lab rat
and grass rat, and in the supraoptic nucleus of the lab rat, grass rat and hamster. Although the
overall distributions of orexin A and B fibers were similar in the four species, some striking
differences were noted, especially in the lateral mammillary nucleus, ventromedial hypothalamic
nucleus and flocculus.

Conclusion: The orexin cell and fiber distributions observed in this study were largely consistent
with those described in previous studies. However, the present study shows significant species
differences in the distribution of orexin cell bodies and in the density of orexin-IR fibers in some
regions. Finally, we note previously undescribed populations of orexin-positive neurons outside the
lateral hypothalamus in three of the four species examined.
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Background
The orexins (hypocretins) are a recently described family
of peptides originating in cells of the lateral hypothala-
mus [1,2]. Orexins are thought to be primarily involved in
the regulation of arousal and sleep-wake behavior, general
activity, body temperature, drinking, and feeding [3-18].
Anatomical studies of orexin fiber distribution in the rat
brain show that the densest projections extend to the
locus coeruleus, raphé nuclei, periaqueductal central gray,
paraventricular hypothalamic nucleus, arcuate nucleus,
and the lining of the third ventricle [19-24]. Orexin cell
bodies in the rat are primarily limited to the perifornical
nucleus and lateral hypothalamic area, with more sparse
distributions in the dorsal hypothalamic area, posterior
hypothalamic area and the dorsomedial hypothalamic
nuclei [19-21,24]. Published descriptions of orexin cell
and fiber distributions are generally similar to those in the
rat for the Syrian and Djungarian hamster [25-27] as well
as for humans [28-30].

The orexins consist of two peptides, orexin A (OXA, hypo-
cretin-1) and orexin B (OXB, hypocretin-2), derived from
the same precursor protein, preproorexin [1,2]. The orex-
ins bind to two G-coupled protein receptors, orexin recep-
tors 1 (OX1R, HCRTR-1) and 2 (OX2R, HCRTR-2) [1].
Although OXA and OXB appear to be equally effective in
activation of OX2R, OXA is 30- to 100-fold more effective
than OXB in activating OX1R [1,31]. The two orexin recep-
tors exhibit distinctly different distribution patterns in the
rat brain [reviewed in [32]]. For example, while the raphé
nuclei, thalamus, and layer 6 of the cortex express OX1R
and OX2R equally, only OX1R is present in cortical layer 5,
hippocampal field CA1, and locus coeruleus (LC),
whereas cortical layer 2, hippocampal field CA3, septal
nuclei, and tuberomammillary nuclei express only OX2R
[33-35]. The differential distribution and potential selec-
tivity of the two orexin receptors raises the possibility that
there may be some differences in the functional roles
played by OXA and OXB within the central nervous sys-
tem.

Several other lines of evidence have also suggested that
OXA and OXB may be differentially involved in particular
functional systems. First, repeated studies have shown
that OXA is more effective than OXB in promoting inges-
tive behavior [1,5,9]. This conclusion is supported by data
from orexin receptor studies. Orexin A-induced ingestive
behavior is attenuated by OX1R antagonists [15,36], and
food deprivation selectively up-regulates OX1R mRNA in
the amygdala without affecting OX2R mRNA in this struc-
ture [34]. Second, although OXB is generally ineffective in
eliciting feeding or drinking behavior, there is evidence
that OXB may be important in the promotion of arousal.
Several studies have shown that the effects of orexins on
arousal in thalamic midline and raphé nuclei depend pri-

marily upon OX2R [37,38], and disruption of OX2R has
been linked to the sleep disorder narcolepsy in dogs [39].
In at least one study, OXB has been shown to be more
effective than OXA in activation of wakefulness-promot-
ing thalamic nuclei in the rat [37], although this is not
likely to be the case for all structures involved in the regu-
lation of sleep and wakefulness, [33]. While both orexins
are clearly involved in a multitude of homeostatic and reg-
ulatory processes, most published reports on their func-
tions have not fully addressed potential differences
between OXA and OXB.

Most published data on the distribution of orexin cells has
focused on OXA, and relatively little is known about OXB.
The distribution of OXB is generally described as being
identical to that of OXA but is often presented incom-
pletely [20,22,24] or not at all [19,21]. Because the two
orexins are produced by the same precursor protein, there
may have been a tendency in the early literature on the
orexins to assume that the peptides are produced equally
in each orexin cell, and at least one study has provided
some support for this assumption [40]. However, there is
evidence that the up-regulation of one orexin peptide over
the other is very possible, and may serve some physiolog-
ically relevant function [23,41].

A second issue that has received little attention involves
the tendency to assume that distributions of orexin-con-
taining cells and fibers seen in one strain or species of
research animal are representative of all strains and spe-
cies. Although partial descriptions of orexin distribution
within the central nervous system have been published for
many species, including mice [42-44], cats [40,45], and
humans [29], most studies examining orexin distribution
in detail throughout the brain have been in rats (Rattus
norvegicus). In addition, most descriptions of the orexins
in the rat were performed using the highly inbred Wistar
strain [19,20,24]. The occasional differences found in
orexin distribution between rat strains tend to be largely
ignored or overlooked. For example, OXA-IR cells have
been described in the median eminence [21] in the
Sprague-Dawley (SD) rat, a less inbred strain, but not in
the Wistar rat. Although previous studies of the Wistar rat
showed orexin-IR cell bodies only in the lateral hypotha-
lamus, at least one study has shown OXB-IR, but not OXA-
IR cells in the amygdala of both Wistar and SD rats [46].
These studies highlight both the importance of examining
orexin distribution in more than one specific animal type,
and the previously mentioned importance of examining
both forms of orexin.

While the orexins have been studied in some depth in
nocturnal laboratory rodents, little attention has been
paid to them in diurnal animal models. Detailed descrip-
tions of orexin cell or fiber distributions in diurnal ani-
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mals are limited, and currently there are no descriptions
of the distribution of both peptides in any diurnal species
that are as complete as those available for the Wistar rat.
Studies in humans [29] and sheep [47] describe OXA in
limited portions of the brain, and the distribution of
OXA-IR cell bodies has also been described in the Korean
chipmunk (Tamias sibiricus barberi) [14] and the African
green (vervet) monkey (Cercopithecus aethiops) [18]. The
most complete study to date in a diurnal animal describes
OXB, but not OXA in the Nile grass rat (Arvicanthis niloti-
cus) [48]. Given the reported relationship between the
orexins and regulation of sleep and arousal [reviewed in
[49]], it is especially important to investigate potential dif-
ferences in orexin distribution in animals with completely
different sleep patterns, such as those seen in nocturnal
and diurnal animals. This is especially important because
the loss of orexin or the dysfunction of its receptors have
been linked to several disorders in humans [50-53], a
diurnal species.

One potential diurnal animal model with which to inves-
tigate this issue is the Nile grass rat, a rodent native to sub-
Saharan Africa. The grass rat exhibits strong diurnal pat-
terns of activity both in the laboratory and in the field
[54,55]. The grass rat is a murid rodent, and as such is
closely related to the standard laboratory rat (hereafter
referred to as the lab rat). The grass rat is an excellent
model for investigation of various physiological differ-
ences between nocturnal and diurnal animals, including
those associated with sleep [56,57], reproduction [55,58-
60], and the circadian regulation of activity [61-66]. We
have recently demonstrated that the grass rat exhibits a
diurnal rhythm in Fos-immunoreactivity in OXB cells
[67].

A second diurnal animal model being used in laboratory
study of circadian biology is the degu (Octodon degus), a
highly social South American hystricomorph rodent [68].
The degu is relatively long-lived and matures slowly,
unlike the rapidly maturing rats and mice commonly used
in laboratory research [Reviewed in [69]]. Like hamsters,
rhythms in degus are strongly influenced by social and
olfactory cues [70,71], and there is some evidence for sea-
sonal (photoperiodic) changes in reproductive structures
[Reviewed in [69]]. The degu has been used as a model for
research on sleep and the circadian regulation of behavior
[72-78].

The location of orexin cell bodies may influence the con-
stellation of signals reaching these cells, and the distribu-
tion of their fibers should reflect which brain regions
receive arousal-inducing stimuli via the orexinergic sys-
tem. The basic function of this system is likely to be very
similar across species, as every animal must have the
capacity to undergo arousal at particular times of day and

in response to particular types of arousal-inducing stim-
uli. Indeed, published data show very similar distribu-
tions of orexin cells and fibers across species. However,
animals are not the same with respect to all of the stimuli
that produce arousal or to all of the responses associated
with that arousal. There are therefore likely to be some dif-
ferences among species with respect to which signals con-
verge on orexin cells and to where these cells send their
signals. To evaluate this hypothesis, we conducted a sys-
tematic analysis of the distribution and relative abun-
dance of OXA and OXB cell bodies and fibers and
systematically compared them in two diurnal species (the
grass rat and the degu) and two nocturnal species, the lab
rat and golden hamster (Mesocricetus auratus). As previous
studies have already described orexin distributions in the
highly inbred Wistar rat, we chose to use a less inbred
strain, the Long-Evans (LE) rat, in the current study.

Materials and methods
Animal handling
Adult male grass rats (n = 4) and degus (n = 4) were
obtained from captive breeding colonies at Michigan State
University and the University of Michigan, respectively.
Adult male Long Evans rats (n = 3) and hamsters (n = 4)
were obtained from a commercial breeder (Charles River
Laboratories, Raleigh, North Carolina). All animals were
housed under standard light-dark (LD) cycles (LE rat,
grass rat, and degu, 12:12 LD; hamster, 14:10 LD) with
food and water provided ad libitum prior to perfusion. All
animal handling procedures in this study followed
National Institutes for Health guidelines and were
approved by the Michigan State University All-University
Committee for Animal Use and Care.

Tissue collection and processing
All animals used in this study were sacrificed during the
light phase of the LD cycle. At the time of sacrifice, all ani-
mals were anesthetized with sodium pentobarbital (Nem-
butal; Abbot Laboratories, North Chicago, IN) and
perfused transcardially with 0.01 M phosphate-buffered
saline (PBS; pH 7.4, 150–300 ml/animal), followed by
150 to 300 ml of fixative (4% paraformaldehyde in 0.1 M
phosphate buffer, pH 7.4). Brains were post-fixed for 4 to
8 hours in 4% paraformaldehyde before being transferred
to 20% sucrose in 0.1 M phosphate buffer. After 24 h in
sucrose, brains were sectioned in three series at either 30
μm (grass rat and hamster) or 40 μm (LE rat and degu)
using a freezing microtome.

Coronal sections from the olfactory bulb through the
brain stem of four grass rats, three LE rats, four hamsters
and four degus were used to determine orexin A and B
fiber distribution. A third series of sections from one grass
rat and one degu was stained with Cresyl violet, mounted
on gelatin-coated slides and coverslipped to aid in deline-
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ation and identification of different structures. Additional
sections through the preoptic area and lateral hypothala-
mus from two LE rats, three grass rats and one hamster
were used in OXA blocking experiments. Tissue from the
LH of all four species was used in OXA and OXB blocking
experiments.

Tissue was processed for OXA or OXB immunoreactivity
in the following manner. Unless otherwise specified, all
steps were carried out at room temperature. Free-floating
tissue was incubated in 5% normal donkey serum (NDS;
Jackson Laboratories), in PBS with 0.3% Triton-X 100
(Research Products International, Mount Prospect, IL;
PBS-TX) for 1 h. Tissue was then incubated in primary
antibody for 42 h at 4°C (goat anti-orexin A 1:10,000, or
goat anti-orexin B 1:10,000, Santa Cruz Biotechnology,
Santa Cruz, CA; in PBS-TX and 3% NDS), and then in
biotinylated secondary antibody for 1 h (donkey anti-goat
1:500, Santa Cruz; in PBS-TX and 3% NDS), followed by
1 h in avidin-biotin complex (0.9% each avidin and
biotin solutions, Vector Laboratories, Burlingame, CA; in
PBS-TX). Tissue was rinsed and reacted in diaminobenzi-
dine (DAB, 0.5 mg/ml, Sigma) in a tris-hydrochloride
buffer (Trizma, Sigma; pH 7.2) with hydrogen peroxide
(0.35 μl 30% hydrogen peroxide/ml buffer). Control sec-
tions were incubated in the PBS-TX/NDS solution, with
the primary antibody omitted. Tissue used in blocking
experiments was processed as described above, but prior
to adding tissue to the primary antibody solution, the pri-
mary antibody was preabsorbed with one or both orexin
blocking peptides for 48 h at 4°C (1:50 OXA, 1:50 OXB,
or 1:50 each OXA and OXB blocking peptide, Santa Cruz;
in PBS with 0.3% Triton-X 100 and 3% NDS). All tissue
was mounted on gelatin-coated slides, dehydrated, and
coverslipped.

Specificity of antibodies
The primary antibodies used in this study were obtained
from Santa Cruz Biotechnology, Inc. (OXA, catalog
number sc-8070; OXB, catalog number sc-8071). Each is
a polyclonal, affinity-purified antibody raised against a
peptide corresponding to a 19 amino acid sequence at the
C-terminus of the respective orexin peptides. The blocking
peptides used in this study, also obtained from Santa
Cruz, are the peptide fragments against which the primary
antibodies were raised. The specificity of these primary
antibodies to their respective peptides has been estab-
lished in previously published studies, using either preab-
sorption studies against the full-length orexin peptide
[OXA; [79]]; or by comparison with antibodies of known
specificity [OXB; [80]].

Cell and fiber counts and analysis
For analysis of orexin A or B fiber distribution, all sections
were examined under a light microscope (Leitz, Laborlux

S, Wetzlar, Germany), and the presence or absence of
labeled fibers, as well as their density, was recorded for
brain regions from the olfactory bulbs through the brain-
stem. Tissue from a minimum of two animals were sam-
pled for each region examined in this manuscript. The
distribution of all OXA or OXB-IR cell bodies was also
mapped for each species. High-resolution digital photo-
graphs of representative sections were taken using a digital
camera (Carl Zeiss, AxioCam MRc; Göttingen, Germany)
attached to a Zeiss light microscope (Axioskop 2 Plus).
Image contrast and color balance were optimized using
Zeiss AxioVision software (Carl Zeiss Vision). Final figures
were prepared using Adobe Illustrator and Adobe Pho-
toshop (Adobe Systems, San Jose, CA).

To systematically record the distribution and relative den-
sity of OXA and OXB fibers within each species, fiber den-
sities were divided into the following five categories: very
dense (++++), dense (+++), moderately dense (++), low
density (+), and absent (-). To control for effects of poten-
tial species differences in the affinity of the antibodies for
their antigens, or for differences associated with the thick-
ness of the sections used for the different species, this
study compares relative densities within each species
rather than quantitative measurements across all species.
In each species examined, "very dense" is defined as the
region with the greatest density of orexin fibers in that spe-
cies (typically the locus coeruleus), and "low density"
defined as areas in which fibers are sparsely distributed (as
in the cortex). Terminology and abbreviations for neural
structures in this study follow Paxinos and Watson [81],
except for divisions of the hamster bed nucleus of the stria
terminalis (BNST) which follows Morin and Wood [82].
Comparisons of BNST divisions between species follow
the comparison of terminologies between rat and hamster
outlined in Alheid et al. [83]. Stereotaxic atlases for the rat
[81] and Syrian hamster [82] were used to aid in identifi-
cation of specific structures in these species. Because no
available atlases for the degu and grass rat contain the
level of detail necessary for this study, Nissl-stained tissue
was used in concert with the rat atlas [81] for identifica-
tion of nuclei in these species. Functional and anatomical
grouping of brain structures for analysis followed Paxinos
[84], as modified by John I. Johnson (personal communi-
cation). Because of the resulting size and complexity of
the orexin fiber data set, fiber densities in the regions
examined in this study were subjected to a principal com-
ponents factor analysis (PCA; Statistica, StatSoft, Tulsa,
OK) to identify patterns in the data.

Results
Orexin cell bodies
General
In all animals examined, OXA- and OXB-IR cell bodies
were present in the lateral hypothalamus (Figure 1).
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Within each species examined, the distribution of orexin-
IR neurons was quite consistent, with little individual var-
iation from one animal to the next. Although the distribu-
tion of orexin neurons differed among species, the
majority of the orexin cells in all species were observed in
the perifornical region (PeF) and lateral hypothalamic
area (LHA). In the LE rat, grass rat and hamster, cell bodies
immunoreactive for OXA were also found in the paraven-
tricular hypothalamic nucleus (Pa), supraoptic nucleus
(SO), and the supraoptic retrochiasmatic nucleus (SOR)
(Figure 2, Figure 3). Orexin A-IR neurons in the Pa and SO
were generally smaller and less intensely stained for OXA
than were cells in the PeF. For all three species exhibiting
orexin-IR neurons in the Pa and SO, the OXA-IR nuclei
did not appear to represent nonspecific binding of the pri-
mary antibody, as preabsorption of the primary antibody
with OXA blocking peptide supplied by the manufacturer

reduced or eliminated OXA immunoreactivity in these
nuclei (Figure 4). Preabsorption with blocking peptides
reduced or eliminated both OXA and OXB immunoreac-
tivity in the LH in all four species examined (not shown).
No OXB-IR neurons were observed in Pa, SO, or SOR of

Supraoptic nucleus.Figure 3
Supraoptic nucleus. Photomicrographs of orexin A cell 
bodies in the supraoptic nucleus (SO) of the Long-Evans rat 
(A), grass rat (B), and Syrian hamster (C). Note lack of simi-
lar cell bodies in the degu (D). OC: optic chiasm. Scale bar = 
200 μm.

Orexin A and B cell bodiesFigure 1
Orexin A and B cell bodies. Photomicrographs of orexin 
A and orexin B cell bodies in the Long-Evans rat, grass rat, 
Syrian hamster, and degu. Scale bar = 100 μm.

Paraventricular nucleusFigure 2
Paraventricular nucleus. Photomicrographs of orexin A 
cell bodies in the paraventricular nucleus (Pa) of the Long-
Evans rat (A), grass rat (B), and Syrian hamster (C). Note 
lack of similar cell bodies in the degu (D). 3V: third ventricle. 
Scale bar = 200 μm.
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any species. Orexin A and OXB cell body distribution in
the LE rat, grass rat, degu and hamster are summarized in
Table 1 and are depicted in Figures 5, 6, 7, and 8, respec-
tively.

Orexin cell bodies in the LE Rat
In the LE rat, OXA- and OXB-IR cells were observed at high
density in the PeF, LHA, and dorsomedial hypothalamic
nucleus (DMH) (Figure 5). Moderate densities of labeled
cells were present in the posterior hypothalamic area (PH)
and tuberum cinerum (TC). Sparsely scattered cells were
also observed in the dorsal hypothalamic area (DH), ret-
rochiasmatic area (RCh), and the subincertal thalamic
nucleus (SubI). Orexin A-IR cell bodies in SO and magno-
cellular Pa were very dense (Figure 2A, Figure 3A), while
cell bodies in SOR were only moderately dense No OXB-
IR neurons were seen in the Pa or SO.

Orexin cell bodies in the grass rat
The distribution of OXA- and OXB-IR neurons in the grass
rat was similar to the pattern seen in the LE rat. Cell bodies
expressing OXA and OXB were observed at very high den-
sity in PeF, TC, LHA, and PH (Figure 6). Unlike the LE rat,
small numbers of OXA- and OXB-IR neurons in the PeF
were observed inside the fornix in all grass rats examined
in this study. Moderate densities of OXA- and OXB-IR cell
bodies were visible in DMH and SubI, with sparsely scat-
tered cells also present in RCh and DA. As in the LE rat,
cell bodies expressing strong OXA immunoreactivity were
present in PA, SO, and SOR (Figure 2B, Figure 3B). No
OXB-IR neurons were present in these nuclei. Orexin A-IR
cell bodies were very densely distributed in the magnocel-
lular Pa and SO. Moderately dense OXA-IR cell bodies
were present in SOR.

Table 1: Orexin cell body distribution

Brain region LE rat Grass rat Hamster Degu
A B A B A B A B

Dorsal hypothalamic area + + + + ++ ++
Dorsomedial hypothalamic nucleus +++ ++ ++ ++ ++ ++ ++++ ++++
Lateral hypothalamic area +++ +++ +++ +++ ++++ ++++ ++++ ++++
Paraventricular hypothalamic nucleus, magnocellular +++ - ++++ - - - - -
Perifornical nucleus ++++ ++++ ++++ ++++ + + ++ ++
Posterior hypothalamic area ++ ++ +++ +++ - - ++ ++
Retrochiasmatic area + + + + - - + +
Subincertal thalamic nucleus + + ++ + + + + +
Supramammillary nucleus - - - - + +
Supraoptic nucleus ++++ - ++++ - ++ - - -
Supraoptic nucleus, retrochiasmatic ++ - +++ - + - - -
Tuberum cinerum ++ ++ +++ +++ + + ++ ++

Distribution of orexin A and B cell bodies in the Long-Evans rat, grass rat, Syrian hamster, and degu. The relative densities of OXA- or OXB-
containing cells are indicated in each column as very dense (++++), dense (+++), moderately dense (++), sparse (+), or absent (-).

Preabsorption of blocking peptideFigure 4
Preabsorption of blocking peptide. Photomicrographs of 
paraventricular nucleus (Pa; column 1) and supraoptic 
nucleus (SO; column 2) of the Long-Evans rat, grass rat, and 
Syrian hamster after preabsorption with orexin A blocking 
peptide. Note that preabsorption with blocking peptide elim-
inates cell bodies seen in Figures 2 and 3. 3V: third ventricle; 
OC: optic chiasm. Scale bar = 200 μm.
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Long-Evans ratFigure 5
Long-Evans rat. Line drawing of every 6th section through the region of the Long-Evans rat hypothalamus that contains 
orexin cells. Sections are ordered from rostral (A) to caudal (N). Filled circles indicate locations where both orexin A and 
orexin B neurons are found, while open circles indicate orexin A neurons only. 3V: third ventricle; SCN: suprachiasmatic 
nucleus; OC: optic chiasm; f: fornix; mt: mammillothalamic tract. Scale bar = 500 μm.
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Grass ratFigure 6
Grass rat. Line drawing of every 6th section through the region of the grass rat hypothalamus that contains orexin cells. Sec-
tions are ordered from rostral (A) to caudal (L). Filled circles indicate locations where both orexin A and orexin B neurons 
are found, while open circles indicate orexin A neurons only. 3V: third ventricle; SCN: suprachiasmatic nucleus; OC: optic chi-
asm; f: fornix; mt: mammillothalamic tract. Scale bar = 500 μm.
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Syrian hamsterFigure 7
Syrian hamster. Line drawing of every 6th section through the region of the Syrian hamster hypothalamus that contains 
orexin cells. Sections are ordered from rostral (A) to caudal (J). Filled circles indicate locations where both orexin A and 
orexin B neurons are found, while open circles indicate orexin A neurons only. 3V: third ventricle; SCN: suprachiasmatic 
nucleus; OC: optic chiasm; f: fornix; mt: mammillothalamic tract. Scale bar = 500 μm.
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DeguFigure 8
Degu. Line drawing of every 6th section through the region of the degu hypothalamus that contains orexin cells. Sections are 
ordered from rostral (A) to caudal (N). Filled circles indicate locations where both orexin A and orexin B neurons are found. 
3V: third ventricle; OC: optic chiasm; f: fornix; mt: mammillothalamic tract; aq: cerebral aqueduct. Scale bar = 500 μm.
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Orexin cell bodies in the hamster
Unlike the LE rat and grass rat, OXA- and OXB-IR neurons
in the hamster were conspicuously absent in PeF; the
majority of orexin cells were observed in LHA and DMH,
dorsal or dorsomedial to PeF, with sparsely scattered cells
also present in TC and SubI (Figure 7). Although OXA-IR
neurons were present in the hamster magnocellular PA,
SO, and SOR (Figure 2C, Figure 3C), the overall density of
OXA-IR cell bodies in these structures was far lower than
that in the LE rat or grass rat. As in the LE rat and grass rat,
no OXB-IR neurons were present in these nuclei.

Orexin cell bodies in the degu
The distribution of OXA- and OXB-IR cell bodies was very
different in the degu than in the LE rat, grass rat and ham-
ster. The regions of highest density of OXA and OXB cells
formed two distinct clusters, in the DMH and in the LHA
ventrolateral to the fornix (Figure 8). Orexin A and OXB
neurons were less densely distributed in the PeF, DA, and
PH. In the PeF, orexin-IR neurons were clustered tightly
against the boundaries of the fornix, but did not intrude
into this structure as observed in the grass rat. Cells
labeled for OXA and OXB were sparsely distributed
throughout the RCh and SubI. Unlike the hamster, grass
rat and LE rat, no orexin-IR neurons were visible in the Pa,
SO, or SOR (Figure 2D, Figure 3D). Orexin A- and B-IR
cells in the degu were also different from those seen in the
other three species in that orexin neurons were scattered
through the TC caudal to the ventromedial hypothalamic
nucleus (VMH), with small numbers of cells observed
near the midline in sections through the supramammil-
lary nucleus (SuM).

Orexin fiber distribution
General
Orexin A- and OXB-IR fibers were visible in many regions
throughout the forebrain, midbrain, and hindbrain in all
species examined (Table 2). Numerous varicosities were
noted on these fibers, especially in the most dense projec-
tions extending rostrally from the lateral hypothalamus to
the preoptic area and amygdala, and posteriorly through
the periaqueductal gray to the raphé nuclei and brain-
stem. The average density of OXA and OXB fiber innerva-
tion in over two hundred individual brain regions was
examined for each species. A PCA analysis of these fiber
densities revealed only one significant eigenvector (eigen-
value = 5.740, cumulative variance explained = 71.748%);
no other factors with eigenvalues greater than 1 were
revealed. Factor coordinates for all species along this
eigenvector were similar (LE Rat OXA = -0.8753, OXB = -
0.8669; Grass rat OXA = -0.8275, OXB = -0.8178; Hamster
OXA = -0.8657, OXB = -0.8446; Degu OXA = -0.8270,
OXB = -0.8498), suggesting a strong overall similarity
between OXA and OXB fiber densities across species.
Overall, the PCA analysis revealed that correlations in

OXA measurements between pairs of species ranged from
59.2% to 72.2% similarity, while these measurements for
OXB ranged from 57.1% to 68.6%. The PCA analysis thus
suggests that the four species were very similar with
respect to their relative distributions of orexinergic fibers
across the brain, but that there are also some very real dif-
ferences. Within species, correlations between OXA and
OXB fiber densities were extremely high (LE rat: 85.8%;
grass rat: 85.2%; hamster: 92.4%; degu: 98.5%). Signifi-
cance levels for all correlations were < 0.001. The PCA cor-
relation matrix summarizing between-species correlations
for OXA and OXB is presented in Table 3. The overall
details of the distribution and relative density of OXA and
OXB fibers for each species are summarized in Table 2.
Below we provide a general description of the patterns of
fiber distribution and highlight the differences between
species.

Hypothalamus
In all species examined, OXA- and OXB-IR fibers extended
from the lateral hypothalamus throughout much of the
brain. These fibers were moderately to densely distributed
throughout much of the hypothalamus, with the excep-
tion of the zona incerta, where fiber density was low, and
the suprachiasmatic (Figure 9) and medial mammilary
nuclei, which exhibited little to no orexin fibers in any
species. Several species differences were observed. First,
differences in fiber density were seen in the main regions
in which we saw substantial differences in the distribution
of labeled cells. In the hamster PeF, fiber density was
reduced in comparison with the other species, and in the
LE rat and grass rat, many OXA fibers were also present in
the magnocellular Pa and SO. Orexin B fibers in all species
and OXA fibers in the hamster and degu were moderate to
low in the Pa and SO. Second, in the degu, a very dense
network of OXA and OXB fibers was present in the VMH
(Figure 10D), but in the other species fiber densities in
this region were moderate to low. The OXA and OXB fiber
complex in the degu VMH was the single most densely
distributed network of orexin fibers in this animal. Third,
in the hamster, OXA- and OXB-IR fibers in the lateral
mammillary nucleus (LM) were fairly dense, while in the
other three species fibers in the LM were sparse (Figure
11).

Thalamus
In contrast to the dense networks of OXA and OXB fibers
in the hypothalamus, orexin fibers were sparse or absent
throughout much of the thalamus. The majority of orexin
projections to the thalamus targeted midline structures,
most notably the paraventricular thalamic nucleus (PV),
which received dense or very dense orexin projections in
all four species. In all species examined, projections of
OXA or OXB fibers to lateral regions of the thalamus were
most dense in the intergeniculate leaflet (IGL) (Figure
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Table 2: Orexin fiber distribution

Brain region LE rat Grass rat Hamster Degu
A B A B A B A B

Hypothalamus
Anterior hypothalamic area ++ ++ + + +++ ++ +++ +++
Anterodorsal preoptic nucleus + + + + ++ + ++ ++
Anteroventral periventricular nucleus ++ + + - ++ ++ ++ ++
Arcuate nucleus +++ +++ +++ + ++ ++ ++ ++
Circular nucleus ++ + ++ + +++ +++ +++ +++
Dorsal hypothalamic area ++ ++ ++ ++ ++ ++ ++ ++
Dorsomedial nucleus +++ ++ ++ + +++ ++ +++ +++
Lateral hypothalamic area +++ +++ +++ +++ +++ +++ ++ ++
Lateral mammillary nucleus + + + + +++ +++ + +
Lateral preoptic area +++ + + + ++ + ++ ++
Lateroanterior nucleus ++ + ++ ++ +++ +++ +++ +++
Magnocellular preoptic nucleus + + + + ++ ++ ++ ++
Medial mammillary nucleus, lateral part - - - - - - + +
Medial mammillary nucleus, medial part - - - - - - - -
Medial mammillary nucleus, median part + + + + - - + +
Medial preoptic area ++ + + + ++ ++ ++ ++
Medial preoptic nucleus ++ + ++ ++ ++ + ++ ++
Median preoptic nucleus +++ +++ ++ ++ +++ +++ +++ +++
Parastrial nucleus +++ ++ ++ ++ + + + +
Paraventricular nucleus, magnocellular ++++ ++ ++ + ++ ++ ++ ++
Paraventricular nucleus, parvocellular +++ ++ +++ ++ ++ ++ ++ ++
Perifornical nucleus ++++ +++ +++ ++ + + +++ +++
Periventricular nucleus +++ ++ ++ + ++ ++ +++ +++
Posterior hypothalamic area +++ +++ ++ ++ ++ ++ ++ ++
Posterodorsal preoptic nucleus ++ + ++ ++ ++ + ++ ++
Preoptic nucleus, ventromedial +++ +++ +++ ++ ++ ++ +++ +++
Retrochiasmatic area +++ ++ ++ ++ +++ ++ +++ +++
Subincertal nucleus +++ +++ ++ ++ + + + +
Submammillothalamic nucleus ++ + ++ ++ + + ++ ++
Suprachiasmatic nucleus, anterior - - - - + + - -
Suprachiasmatic nucleus, posterior + + - - + + + +
Supramammillary nucleus +++ ++ ++ + ++ ++ +++ +++
Supraoptic nucleus ++++ + ++++ ++ ++ + + +
Supraoptic nucleus, retrochiasmatic ++++ ++ +++ + ++ + +++ +++
Tuberomammillary nucleus ++++ ++++ +++ +++ ++++ ++++ ++++ ++++
Tuberum cinereum ++ ++ +++ ++ + + ++ ++
Ventrolateral preoptic area +++ ++ + + +++ ++ +++ +++
Ventromedial nucleus ++ + + + ++ ++ ++++ ++++
Ventromedial nucleus, anterior + + + + ++ + ++++ ++++
Zona incerta, caudal ++ + + + + + - -
Zona incerta, rostral ++ + + + ++ ++ + +

Thalamus
Anterodorsal nucleus + + ++ ++ + + + +
Anteromedial nucleus - - - - - - - -
Anteroventral nucleus + + + - - - - -
Central medial nucleus ++ ++ + + + - ++ +
Centrolateral nucleus + + + + + + +++ +++
Dorsolateral geniculate nucleus - - - - - - - -
Interanterodorsal nucleus + + + + ++ + - -
Interanteromedial nucleus ++ + + + + + - -
Intergeniculate leaflet ++ ++ ++ ++ ++ ++ ++ ++
Intermediodorsal nucleus ++ ++ +++ +++ ++ ++ + +
Lateral posterior nucleus - - - - - - - -
Laterodorsal thalamic nucleus + + - - - - - -
Medial geniculate nucleus - - + + - - - -
Mediodorsal thalamic nucleus + + + + ++ + ++ ++
Nucleus of the fields of Forel + + - - + + - -
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Paracentral nucleus ++ ++ - - + + +++ +++
Parafascicular nucleus + + + + + - - -
Paratenial nucleus - - ++ + + + + +
Paraventricular nucleus ++++ ++++ +++ +++ ++++ ++++ ++++ ++++
Posterior intralaminar nucleus ++ ++ + + + + + +
Posterior limitans ++ ++ ++ + ++ ++ ++ ++
Posterior nuclear complex - - - - - - - -
Reticular thalamic nucleus + - - - - - - -
Reuniens nucleus + + + + + - + +
Rhomboid nucleus ++ ++ - - ++ ++ - -
Submedius nucleus - - + + + - - -
Subparafascicular nucleus + + + + + + + +
Ventral anterior nucleus - - - - - - - -
Ventral posteriolateral nucleus - - - - - - - -
Ventral posteriomedial nucleus - - - - - - - -
Ventrolateral geniculate nucleus + + + + + + + +
Ventrolateral thalamic nucleus - - - - - - - -
Ventromedial thalamic nucleus ++ + - - - - - -
Xiphoid nucleus +++ ++ +++ ++ +++ +++ + +

Epithalamus
Lateral habenular nucleus ++ + - - + + + +
Medial habenular nucleus - - ++ + ++ - - -
Stria medullaris - - - - + - - -

Cerebral isocortex
Layer 1 + + + + + + + +
Layer 2 + + + + + + + +
Layer 3 -/+ -/+ -/+ -/+ -/+ -/+ -/+ -/+
Layer 4 -/+ -/+ -/+ -/+ -/+ -/+ -/+ -/+
Layer 5 + + + + + + + +
Layer 6 + + + + + + + +
Agranular insular cortex ++ + + + + + + +
Cingulate and retrosplenial agranular cortex + + + + + + - -
Frontal cortex + + + + + + + +
Granular insular cortex + + + + ++ ++ + +
Occipital cortex - - + + + + + +
Orbital cortex + + + + + + + +
Parietal cortex + + + + + + + +

Amygdala
Anterior amygdaloid area + + + + ++ ++ ++ ++
Anterior, posteromedial, and posterolateral cortical amygdaloid nuclei ++ ++ ++ ++ + + ++ ++
Basolateral amygdaloid nucleus + + - - + + + +
Basomedial amygdaloid nucleus + + + + + + ++ ++
Bed nucleus of the stria terminalis*

Intraamygdaloid division + + + + + + + +
Lateral division ++ ++ ++ + N/A N/A + +
Lateral division, dorsal (Rat), anterolateral (Hamster) ++ + + + ++ ++ + +
Lateral division, posterior (Rat), posterolateral (Hamster) ++ ++ ++ + ++ ++ + +
Lateral division, ventral (Rat), anteroventral (Hamster) +++ +++ ++ + ++ ++ ++ ++
Medial division, anterior (Rat), anteromedial (Hamster) ++ ++ ++ ++ ++ ++ ++ ++
Medial division, posterointermediate (Rat), posteromedial (Hamster) + + ++ + ++ ++ ++ ++
Medial division, posterolateral (Rat), posterointermediate (Hamster) + + ++ + ++ ++ ++ ++

Central amygdaloid nucleus + + + + + + - -
Intercalated amygdaloid nucleus ++ + + - ++ ++ ++ ++
Lateral amygdalohippocampal area + + + - + + ++ ++
Lateral amygdaloid nucleus + + + + + + + +
Medial amygdaloid nucleus ++ + + + +++ +++ + +
Nucleus of the lateral olfactory tract + + + + ++ ++ + +
Posteromedial amygdalohippocampal area + + + + + + +++ +++

Hippocampus
CA1 + + + + - - - -
CA2 - - - - + + - -
CA3 - - - - + + + +
Dentate gyrus + + - - - - + +

Table 2: Orexin fiber distribution (Continued)
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Tenia tecta + + ++ + ++ ++ ++ ++
Entorhinal cortex + + + - + + + +
Indusium griseum ++ ++ + + ++ ++ - -
Subiculum + + - - - - + +

Olfactory
Anterior olfactory nuclei ++ ++ ++ ++ ++ ++ + +
Islands of Calleja + + + + ++ ++ ++ ++
Olfactory bulb - - - - - - - -
Olfactory tubercule - - - - + + + +
Piriform cortex + + + + + + + +

Other Forebrain
Bed nucleus of the anterior commissure +++ ++ ++ ++ ++ ++ ++ ++
Claustrum ++ ++ + + ++ ++ + +
Dorsal endopiriform nucleus ++ + + + + + + +

Septal nuclei
Lateral septal nucleus, dorsal part ++ ++ ++ + ++ + + +
Lateral septal nucleus, intermediate part + + + - + + - -
Lateral septal nucleus, ventral part + + ++ + ++ ++ + +
Medial septal nucleus ++ ++ + + +++ +++ ++ ++
Nucleus of the horizontal limb of the diagonal band of Broca +++ ++ + + ++ ++ ++ ++
Nucleus of the vertical limb of the diagonal band of Broca +++ + + + +++ ++ ++ ++
Septofimbrial nucleus + + + + ++ ++ + +
Septohippocampal nucleus ++ + + + +++ +++ ++ ++
Triangular septal nucleus + + - - + + - -

Basal ganglia
Accumbens nucleus, core - - - - + + - -
Accumbens nucleus, shell + + ++ + - - + +
Accumbens shell, lateral + + + + + + - -
Caudate putamen - - - - + + - -
Dorsal peduncular pontine nucleus ++ + ++ ++ + + + +
Globus pallidus, lateral + + + + - - - -
Globus pallidus, medial - - - - - - - -
Pedunculopontine tegmental nucleus ++ ++ ++ + ++ ++ ++ ++
Peripeduncular nucleus + + + + ++ ++ + +
Substantia innominata ++ ++ + + ++ ++ ++ ++
Substantia nigra, compact part + + + + + + + +
Substantia nigra, lateral part ++ ++ + + ++ ++ + +
Substantia nigra, reticular part - - - - - - - -
Subthalamic nucleus + + + + ++ ++ - -
Ventral pallidum ++ ++ + + + + + +
Ventral tegmental area ++ + ++ + ++ ++ ++ ++
Ventral tegmental nucleus ++ + - - + + + +

Brainstem reticular nuclei
B9 serotoin cells ++ ++ + + ++ ++ - -
Cuneiform nucleus ++ ++ ++ + ++ ++ + +
Deep mesencephalic nucleus ++ ++ + + ++ + + +
Dorsal paragigantocellular nucleus + + - - + + + +
Gigantocellular reticular nucleus ++ + + + + + + +
Gigantocellular reticular nucleus, ventral part ++ + ++ + ++ ++ ++ ++
Gigantocellular reticular nucleus, α part ++ ++ ++ + ++ ++ ++ ++
Intermediate reticular nucleus +++ + - - ++ + + +
Lateral paragigantocellular nucleus +++ ++ + + ++ ++ +++ +++
Lateral reticular nucleus ++ + + + + + + +
Medullary reticular nuclei, dorsal part + + + + + + + +
Medullary reticular nuclei, ventral part + + + + + + + +
Paramedian reticular nucleus + + - - + + + +
Parvocellular reticular nucleus ++ ++ + + ++ + + +
Pontine reticular nucleus, caudal part + + + - + + + +
Pontine reticular nucleus, oral part ++ + + + + + - -
Pontine reticular nucleus, ventral part - - + + ++ ++ + +
Reticulotegmental nucleus of the pons +++ ++ ++ ++ + + + +
Subcoeruleus nucleus, dorsal part ++ ++ + + ++ ++ ++ ++
Subcoeruleus nucleus, ventral part ++ ++ + - ++ ++ + +

Table 2: Orexin fiber distribution (Continued)
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Subcoeruleus nucleus, á part +++ +++ +++ ++ +++ +++ +++ +++
Sensory, somatic and motor nuclei

Abducens nucleus (VI) - - - - - - - -
Ambiguus nucleus ++++ +++ +++ ++ ++ + ++ ++
Barrington's nucleus ++++ +++ +++ +++ ++++ ++++ +++ +++
Dorsal motor nucleus of vagus (X) + + + + ++ + + +
Facial nucleus (VII) ++ + ++ + + + ++ ++
Gracile nucleus - - - - ++ + + +
Hypoglossal nucleus (XII) + + + - - - + +
Kölliker-Fuse nucleus +++ ++ ++ ++ +++ +++ +++ +++
Lateral parabrachial nucleus +++ +++ ++ ++ ++ ++ ++ ++
Medial parabrachial nucleus +++ ++ + + ++ + ++ ++
Nucleus of the solitary tract

Central ++ ++ + + + + ++ ++
Dorsal ++++ +++ ++++ ++++ ++++ ++++ +++ +++
Medial + + +++ ++ +++ +++ +++ +++
Ventrolateral +++ ++ + + ++ ++ ++ ++

Oculomotor nucleus (III) - - - - - - - -
Trigeminal motor nucleus (V) + + + + - - + +
Trigeminal principal sensory nucleus (V) + + + + + + + +
Trigeminal spinal nucleus, caudal part + + ++ ++ + + ++ ++
Trigeminal spinal nucleus, interpolar part - - + + + + + +
Trigeminal spinal nucleus, oral part - - + + + + ++ ++
Trochlear motor nucleus (IV) + + - - + + - -

Raphé nuclei
Dorsal raphé nucleus ++++ ++++ +++ +++ ++++ ++++ ++++ ++++
Linear nucleus of the raphé +++ +++ ++ + +++ ++ ++ ++
Median raphé nucleus ++++ ++ +++ +++ +++ +++ +++ +++
Pontine raphé nucleus +++ +++ ++ ++ +++ ++ +++ +++
Raphé magnus nucleus +++ ++ ++ ++ ++ ++ ++ ++
Raphé obscurus nucleus +++ ++ ++ + +++ +++ +++ +++
Raphé pallidus nucleus +++ ++ ++ + ++ ++ + +
Rhabdoid nucleus + + + + + + + +

Periaqueductal gray
Dorsolateral periaqueductal gray ++ ++ + + ++ ++ + +
Dorsomedial periaqueductal gray +++ +++ ++ ++ +++ +++ ++ ++
Lateral periaqueductal gray +++ +++ ++ ++ ++ ++ ++ ++
Thalamic periaqueductal gray ++ ++ + + +++ ++ ++ ++
Ventrolateral periaqueductal gray +++ ++ +++ ++ +++ ++ +++ +++

Other midbrain
Dorsolateral pontine nucleus + + ++ ++ - - + +
Inferior colliculus + + - - ++ + ++ ++
Interpeduncular nucleus + + ++ + ++ ++ - -
Pretectal nuclei

Anterior pretectal nucleus + + + + - - + +
Medial pretectal nucleus ++ ++ ++ + ++ ++ ++ ++
Posterior pretectal nucleus ++ + + + - - ++ ++

Red nucleus - - - - - - + -
Superior colliculus + + - - - - + +
Tegmental nuclei

Anterior tegmental nucleus + + - - + + + +
Dorsal tegmental nucleus - - - - - - - -
Laterodorsal tegmental nucleus ++ ++ ++ ++ ++ ++ +++ +++

Cerebellum
Cerebellar cortex - - - - - - ++ +
Interposed, lateral, and medial cerebellar nuclei + + + + - - ++ ++

Other hindbrain
Central tegmental tract ++ ++ + + ++ + + +
Cochlear nuclei

Dorsal cochlear nucleus + + - - + + + +
Ventral cochlear nucleus - - - - - - - -

Inferior olive ++ + +++ ++ - - - -
Lateral lemniscus + + - - + - - -

Table 2: Orexin fiber distribution (Continued)
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Locus coeruleus ++++ ++++ ++++ ++++ ++++ ++++ +++ +++
Nucleus of Darkschewitsch - - ++ + - - + +
Parabigeminal nucleus + + + + ++ ++ +++ ++
Prepositus nucleus ++ + - - + + ++ ++
Superior olivary nuclei

Nucleus of the trapezoid body ++ + + + - - + +
Superior olive - - - - - - - -
Trapezoid body - - + + + + - -

Vestibular nuclei + + + + + - ++ +
Circumventricular and non-neuronal

Area postrema - - - - - - ++ ++
Choroid plexus + + + + + + + +
Ependyma + + ++ + + + + +
Median eminence ++++ + ++++ + ++ ++ ++ ++
Subcommisural organ - - - - - - - -
Subfornical organ + + + - - - ++ +

Distribution of orexin A and B fibers in the Long-Evans rat, grass rat, Syrian hamster, and degu. The relative densities of OXA- or OXB-containing 
fibers are indicated in each column as very dense (indicated by ++++), dense (+++), moderately dense (++), sparse (+), or absent (-). Unmarked 
rows indicate areas for which no data are available.

Table 2: Orexin fiber distribution (Continued)
12); other lateral or ventral thalamic nuclei received little
to no orexin input. Although the pattern of orexin inner-
vation in the thalamus was fairly consistent, the degu dif-
fered from most or all of the other species examined in
several regions. First, dense orexin fibers were present in
the degu centrolateral (CL) and paracentral nuclei (PC)
(Figure 13D). In the other three species, orexin fibers in
these nuclei were mostly sparse or absent, although the LE
rat did exhibit moderate innervation in the PC (Figure
13A). In contrast, the opposite pattern was observed in
the xiphoid nucleus (Xi), which contained sparse fibers in
the degu and dense orexin innervation in the other three
species (Figure 14).

Telencephalon
Outside of the diencephalon, the distribution of orexin-IR
fibers was more heterogeneous (see Table 2). Orexin-A
and OXB fibers were scattered throughout all areas of the
cortex; these fibers were more concentrated in inner and
outer cortical layers, and slightly reduced in Layers 3 and
4 in all animals (Figure 15). The olfactory bulbs exhibited
no fibers in any species examined (Fig. 16), but sparsely
scattered fibers were present in the olfactory cortex and
tubercle in all species. Orexin fiber density was uniformly
low to moderate in the septal nuclei, claustrum, and amy-
gdala, with the exception of the hamster medial amy-
gdaloid nucleus, where orexin fibers were more dense
than in the grass rat and degu, but not significantly more
so than in the LE rat. The density of both OXA and OXB
fibers was very low in the hippocampus and basal ganglia
in all animals. The bed nucleus of the anterior commis-
sure exhibited moderate to dense orexin fiber innervation
in all species (Fig. 17).

Midbrain
In general, OXA and OXB innervation of midbrain struc-
tures was moderate to low, with the exception of the dense
fiber tracts in the periaqueductal gray and the very dense
plexus of OXA and OXB fibers projecting to the raphé
nuclei observed in all species (Figure 18).

Hindbrain
In the hindbrain, OXA and OXB-IR fiber densities were
moderate to low in the ascending brainstem tracts, motor
and precerebellar nuclei, and were sparsely distributed or
absent in the cochlear, vestibular, and olivary nuclei in all
species. Visceral sensory nuclei, such as the nucleus of the
solitary tract (Sol) and the Kölliker-Fuse nucleus, exhib-
ited moderate to dense innervation by OXA and OXB fib-
ers in all species, but the nucleus with the most extensive
network of orexin fibers observed in the hindbrain was
the LC (Figure 19). In the LE rat, grass rat, and hamster,
the LC was the most densely innervated structure
observed in the brain. In the degu, the network of OXA
and OXB fibers present in the LC was quite dense, but was
slightly less so than that observed in the VMH.

Cerebellum
In the cerebellum, very few orexin fibers were observed in
the LE rat, grass rat or hamster, but the degu was markedly
different. In the degu cerebellum, moderate OXA and
OXB fiber densities were observed in some deep cerebellar
nuclei, as well as the flocculus (Figure 20D).

Circumventricular regions and ependyma
In circumventricular organs, OXA innervation in all ani-
mals was moderate to low, and there were even fewer OXB
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fibers. In the LE rat and grass rat, the median eminence
exhibited greater densities of OXA-IR fibers relative to the
other two species, although this difference is likely
explained by axonal projections from the OXA-IR cells in
the Pa and SO in these two species.

Discussion
General observations
We present here a thorough examination of the distribu-
tion of OXA- and OXB-IR cell bodies and fibers in four

species. Prior to this study, no published data were avail-
able describing orexin A or B in the LE rat strain or in the
degu, and no data were available for OXA in the grass rat
or OXB in the Syrian hamster. The data presented here
correspond well with previously published examinations
of OXA in the Syrian hamster [25,27] and of OXB in the
grass rat [48].

Ventromedial hypothalamic nucleusFigure 10
Ventromedial hypothalamic nucleus. Photomicrographs 
of orexin A fibers in the ventromedial hypothalamic nucleus 
(VMH) of the Long-Evans rat (A), grass rat (B), Syrian ham-
ster (C), and degu (D). Note markedly higher density of 
orexin fibers in the degu VMH in comparison with the other 
three species. 3V: third ventricle; Arc: arcuate nucleus. Scale 
bar = 300 μm.

Table 3: Principal component factor analysis

Orexin A
LE rat Grass rat Hamster Degu

LE rat 1.0000
Grass rat 0.7220 1.0000
Hamster 0.6982 0.6086 1.0000

Degu 0.6412 0.5706 0.6458 1.0000

Orexin B
LE rat Grass rat Hamster Degu

LE rat 1.0000
Grass rat 0.6989 1.0000
Hamster 0.6862 0.6054 1.0000

Degu 0.6321 0.5709 0.6401 1.0000

Pairwise correlation matrix of orexin fiber distribution in the Long-Evans rat, grass rat, Syrian hamster, and degu. Correlation values were obtained 
from a principal component factor analysis of orexin A and orexin B fiber density patterns in all four species. Values listed at intersections between 
rows and columns represent the correlation in fiber density between species indicated by the corresponding row and column labels. All values 
represent significant correlations (p < 0.001).

Suprachiasmatic nucleusFigure 9
Suprachiasmatic nucleus. Photomicrographs of orexin A 
fibers around the suprachiasmatic nucleus (SCN) of the 
Long-Evans rat (A), grass rat (B), Syrian hamster (C), and 
degu (D). 3V: third ventricle; OC: optic chiasm. Scale bar = 
200 μm.
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At the most general level, the three most significant obser-
vations in this study were: (1) There is a high degree of
correspondence within species between OXA and OXB;
(2) The overall pattern of orexin cell and fiber distribution
is very similar in these four species and to those described

previously for other strains and species of mammal,
including Wistar and Sprague-Dawley rats [19-22,24],
Djungarian hamsters [26,27] and primates [28,30,85];
and (3) Despite the overall similarity between species,

Xiphoid nucleusFigure 14
Xiphoid nucleus. Photomicrographs of orexin A fibers in 
the xiphoid nucleus (Xi) of the Long-Evans rat (A), grass rat 
(B), Syrian hamster (C), and degu (D). Note relative lack of 
orexin fibers in the degu Xi in comparison with the other 
three species. 3V: third ventricle. Scale bar = 200 μm.

Intergeniculate leafletFigure 12
Intergeniculate leaflet. Photomicrographs of orexin A fib-
ers in the intergeniculate leaflet (IGL) of the Long-Evans rat 
(A), grass rat (B), Syrian hamster (C), and degu (D). DLG: 
dorsolateral geniculate nucleus; VLG: ventrolateral geniculate 
nucleus. Scale bar = 200 μm.

Lateral mammillary nucleusFigure 11
Lateral mammillary nucleus. Photomicrographs of 
orexin A fibers in the lateral mammillary nucleus (LM) of the 
Long-Evans rat (A), grass rat (B), Syrian hamster (C), and 
degu (D). Note higher density of orexin fibers in the hamster 
LM in comparison with the other three species. MM: medial 
mammillary nucleus. Scale bar = 200 μm.

Centrolateral nucleusFigure 13
Centrolateral nucleus. Photomicrographs of orexin A fib-
ers in the centrolateral nucleus (CL) of the Long-Evans rat 
(A), grass rat (B), Syrian hamster (C), and degu (D). Note 
higher density of orexin fibers in the degu CL in comparison 
with the other three species. LV: lateral ventricle; PV: par-
aventricular thalamic nucleus, MHb: medial habenular 
nucleus; LHb: lateral habenular nucleus. Scale bar = 300 μm.
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there are several striking differences, both with respect to
the distribution of orexin-IR cells, as well as in the relative
density of orexin-IR fibers in some regions.

The implications of the observation that there are high
levels of correspondence between OXA and OXB distribu-

tion within species are twofold. First, although at least
some OXA-only cell types were identified in the current
study (see below), our data support the general assump-
tion that the majority of cells and fibers expressing OXA
immunoreactivity also express OXB, consistent with pre-
vious reports [40]. Within each species, the PCA analysis

Dorsal raphé nucleusFigure 18
Dorsal raphé nucleus. Photomicrographs of orexin A fib-
ers in the dorsal raphé nucleus (DR) of the Long-Evans rat 
(A), grass rat (B), Syrian hamster (C), and degu (D). 4: troch-
lear nucleus; Aq: cerebral aqueduct. Scale bar = 300 μm.

Olfactory bulbFigure 16
Olfactory bulb. Photomicrographs of orexin A fibers in the 
olfactory bulb of the Long-Evans rat (A), grass rat (B), Syrian 
hamster (C), and degu (D). E/OV: Ependymal layer/Olfactory 
ventricle; GrO: Granular cell layer; Mi: Mitral cell layer. Scale 
bar = 300 μm.

Cerebral cortexFigure 15
Cerebral cortex. Photomicrographs of orexin A fibers in 
the somatosensory cortex of the Long-Evans rat (A), grass 
rat (B), Syrian hamster (C), and degu (D). I-VI: Cortical layers 
1–6. Scale bar = 300 μm.

Bed nucleus of the anterior commissureFigure 17
Bed nucleus of the anterior commissure. Photomicro-
graphs of orexin A fibers in the bed nucleus of the anterior 
commissure (BNC) of the Long-Evans rat (A), grass rat (B), 
Syrian hamster (C), and degu (D). LV: lateral ventricle; f: for-
nix. Scale bar = 300 μm.
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showed nearly identical values for both OXA and OXB
(Table 2), suggesting that both the pattern of distribution
and region-specific density of OXA and OXB fibers are
largely identical within each individual. Second, the over-
lap between OXA- and OXB-IR fibers in all species studied
suggests that the individual actions of OXA and OXB in
regulation of physiology and behavior are more likely due
to differences in the distribution of the orexin receptor
subtypes within the brain than to differential distribution
of the two forms of the peptide. The two orexin receptor
subtypes do exhibit marked differences in distribution in
rats [33-35], and both rat and human orexin receptors
express differential responsiveness to OXA or OXB [1,31].

The second major pattern seen in this study, that species
are very similar with respect to the distribution of orexin
fibers and cells, suggests that orexin networks are strongly
conserved. This implies that the functions of orexin are
likely to be similar in the LE rat, grass rat, Syrian hamster,
and degu, as well as in other species. In addition, the PCA
analysis appears to show stronger correlations between
species which are more closely related; for example, corre-
lations between the LE rat and grass rat are stronger than
those between the LE rat and degu (Table 2). This finding
suggests that the differences observed between species
may be due to differences in phylogenetic history rather
than differences in the function of the orexins in noctur-
nal and diurnal animals. The orexins are strongly con-
served peptides [86-88]. The orexin gene arose early in
chordate evolution [89], and has been retained in all
major vertebrate classes, including fish [90,91], amphibi-

ans [87,92,93], reptiles [94], birds [88], and mammals
[86]. This pattern is evidence for an essential functional
role for the orexins in mediation of behavioral and phys-
iological processes common to all vertebrates, and further
implies strong evolutionary constraints against modifica-
tion of projections from orexin cells. This conclusion is
consistent with the emerging consensus that the orexins
are important in stabilizing transitions between the sleep-
ing and waking states, rather than playing an important
role in establishing sleep-wake patterns [95].

Lastly, though there are relatively few major differences
among species in the distributions of these highly con-
served peptides, their presence suggests functional differ-
ences related to the life history, behavior, or physiological
organization of different animals. We focus the rest of our
discussion on some of the differences among species with
respect to in the distribution of orexin-IR cells and fibers.

Species differences in OXA and OXB cell distribution
Though few in number, the three differences observed
between species in the overall distribution of orexin-IR
cell bodies were striking. First, orexin cells were conspicu-
ously absent in the hamster PeF. Second, the distribution
of the main body of orexin-IR perikarya within the caudal
diencephalon in the degu was markedly different from
that seen in the other species examined in this study.
Third, the presence of OXA-IR cell bodies in the Pa and SO
was noted in three of the four species examined.

FlocculusFigure 20
Flocculus. Photomicrographs of orexin A fibers in the floc-
culus (Fl) of the Long-Evans rat (A), grass rat (B), Syrian ham-
ster (C), and degu (D). Note higher density of orexin fibers 
in the degu Fl in comparison with the other three species. 
PFl: paraflocculus; VC: ventral cochlear nucleus. Scale bar = 
300 μm.

Locus coeruleusFigure 19
Locus coeruleus. Photomidcrographs of orexin A fibers in 
the locus coeruleus (LC) of the Long-Evans rat (A), grass rat 
(B), Syrian hamster (C), and degu (D). 4V: fourth ventricle. 
Scale bar = 200 μm.
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In the hamster, previous reports stated that orexin-IR neu-
rons were primarily located in LHA and PeF [25,27]. In
the present study, orexin-IR cells were largely absent in the
PeF, and were primarily found in the LHA dorsal to the
perifornical region (Figure 7). It is possible that the differ-
ence observed between the present data and those
described in previous reports reflect differences in deline-
ation of specific hypothalamic areas. The present study
relied on a hamster-specific atlas to identify brain regions
[82]; as noted by the authors of this atlas, the hamster
brain is in many respects organized quite differently from
that of the rat [82]. At least one previous study [27] used
a rat brain atlas [81]; the second report [25] did not indi-
cate the method used for identification of different
regions. In comparison with the rat brain atlas, the region
identified as PeF in the hamster atlas is much smaller and
situated closer to the fornix [81,82]. However, even if an
expanded rat-like definition of the PeF is applied to the
hamster, it is clear that the number of orexin neurons
observed near the fornix is lower in the hamster than in
the other three species examined in this study (see Figures
5, 6, 7, 8).

In the degu, two main differences were noted in the distri-
bution of orexin-IR perikarya within the caudal dien-
cephalon in comparison with the other three species.
First, the degu exhibited orexin neurons through a much
larger extent of the rostral-caudal axis of the hypothala-
mus, with cells expressing OXA or OXB extending from
the RCh to the SuM (Figure 8). Second, the overall organ-
ization of the main body of orexin neurons differed in the
degu relative to the other species in that two distinct clus-
ters of orexin-IR cells were present, one dorsomedial to
the fornix, and a second group ventrolateral to the fornix.
In the caudal portion of their distributions, these groups
merged into a single scattered group of orexin-IR cells near
the midline, below the third ventricle. The differences in
the overall distribution of orexin neurons in the degu rel-
ative to the other three species raise the possibility that
orexin cells in the ventrolateral LHA, TC, and SuM of the
degu receive different inputs or project to different targets
than orexin cells in the dorsal LHA and PeF of the rat, grass
rat, or hamster. Projections from these neurons might
contribute to the overall differences in orexin fiber distri-
bution in the degu relative to the other three species (see
below).

Although the main body of orexin neurons in the LE rat,
grass rat and hamster LHA were fairly consistent with
those described previously, the presence of OXA-IR peri-
karya in the magnocellular nuclei of the hypothalamus in
these three species has not been described previously. The
presence of orexin-IR neurons outside of the lateral
hypothalamus is not without precedent. Earlier reports
suggested the presence of OXA-IR neurons in the median

eminence [21], and OXB-IR neurons in limbic structures
[46]. In general, the OXA-IR perikarya in the Pa, SO and
SOR were not as darkly stained as were OXA-IR neurons
in the LHA and PeF, and the number of OXA-IR cells in
these nuclei varied between species (Figure 2, Figure 3).
Orexin A-IR cells in the Pa and SO were fairly dense in the
grass rat, with fewer OXA-IR cells visible in the LE rat Pa
and SO. In the hamster, immunoreactivity for OXA was
generally negligible in cells of the Pa, but a small number
of well-defined OXA-IR neurons were visible in the SO.

The magnocellular neurosecretory cells of the Pa and SO
are primarily known for the production of arginine vaso-
pressin (AVP) and oxytocin (OT), peptide hormones
delivered to the pituitary via projections to the median
eminence [reviewed in [96]]. These cells have been stud-
ied extensively, and the normal functions of these nuclei
are well-understood. The presence of a previously unre-
ported peptide in these cells is therefore quite surprising.
Several lines of evidence suggest that the OXA immunore-
activity in these nuclei reflects the presence of the peptide
rather than non-specific immunoreactivity. First, tissue
that has been blocked by preabsorption of the OXA anti-
body with OXA blocking peptide reduces or eliminates
the staining of cell bodies in the Pa, SO, and LHA of all
species examined (Figure 4). Second, as immunohisto-
chemical procedures for both OXA and OXB were identi-
cal except for the primary antibody used, nonspecific
binding of the secondary antibody is unlikely (see Meth-
ods). Third, the OXA immunoreactivity seen in the Pa,
SO, and SOR does not appear to be the result of the pri-
mary antibody binding to an orexin-like peptide that is
normally found in these magnocellular nuclei, as tissue
reacted with the same antibodies does not show any evi-
dence of orexin-IR perikarya in the Pa or SO of the degu
(present study), Sprague-Dawley rat (personal observa-
tion), or the golden-mantled ground squirrel (Sper-
mophilus lateralis) (personal observation). Finally, the
OXA-IR neurons in the SO and Pa are not the result of the
antibody binding to AVP, as other regions known to pro-
duce AVP, such as the SCN, do not exhibit similar immu-
noreactivity (see Figure 9). However, as the presence of
prepro-orexin mRNA has not yet been shown in these
nuclei, it is important to note that the OXA-IR cell bodies
visible in the SO and Pa could be due to nonspecific bind-
ing of the antibodies used in this study. It is also possible
that these neurons do not actually produce OXA, but
instead may selectively uptake and store OXA produced
by cells elsewhere in the hypothalamus.

The Pa and SO are involved in a number of systems in the
brain. These nuclei project to the pituitary via the median
eminence, where they release vasopressin and oxytocin,
peptides involved in reproduction, regulation of blood
pressure, and control of the hypothalamic-pituitary-adre-
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nal (HPA) axis [reviewed in [97]]. The presence of OXA in
these magnocellular nuclei in the LE rat, but not in the
inbred Wistar rat, might be related to the stress response,
which is higher in the LE rat than in the Wistar rat [98].
Orexin A actions in the Pa appear to potentiate the stress
response, in part by modulating the release of cortico-
trophin releasing factor (CRF) [99-101]. In contrast, OXB
appears to have a suppressive rather than a stimulatory
effect on CRF release [102], raising the possibility that dif-
ferences in OXA distribution might contribute to differ-
ences in stress-related behavior and physiology between
different strains of rats.

Species differences in OXA and OXB fiber distribution
There were several specific regions in which one or two
species tended to strongly diverge from the rest in terms of
orexin-IR fiber density. In two of these regions -the mag-
nocellular neurosecretory nuclei of the hypothalamus in
the LE rat and grass rat, and the PeF in the hamster – dif-
ferences in OXA and OXB fiber density are directly related
to the presence of OXA cell bodies or the absence of any
orexin-IR neurons, respectively. A third area, the median
eminence in the LE rat and grass rat, is also likely different
with respect to OXA fiber density than in the hamster and
degu because of projections originating from OXA-IR cells
in the LE rat and grass rat Pa and SO (although it is worth
mentioning that the hamster, which also exhibited OXA
neurons in the SO, did not differ from the degu with
respect to OXA fiber density in this region). The species
differences in relative fiber density in other brain regions
raise more interesting questions. We will focus the
remainder of this discussion on the brain regions within
each species that showed the most unique patterns of
innervation – specifically, the LM of the hamster, and the
VMH, CL, Xi, and cerebellum of the degu.

Orexin fiber density in the lateral mammillary nucleus
was much higher in the hamster than in the other three
species, in which orexin fibers were sparse or absent in
this region (Figure 11). The mammillary nuclei in general
receive dense input from the hippocampus [reviewed in
[103]], and lesion studies suggest a role for the LM in spa-
tial learning and memory in rats [104]. However, it is not
obvious at this time why the hamster LM should exhibit
increased orexin fiber input, which is presumably associ-
ated with arousal, relative to the other species. It should
be noted that hamsters were kept in a 14:10 LD cycle in
order to prevent testicular regression, which is known to
affect orexin cells in some species [47]. Therefore,
although all species in the current study were in the same
reproductive condition, the hamsters were maintained in
a slightly different photoperiod than the other species. It
is theoretically possible that the longer daylengths to
which the hamsters were exposed are responsible for the
relatively high density of orexin fibers in their LM. We

view this as unlikely, as most photoperiodic effects on
behavior and physiology are mediated by changes in
gonadal function, and there is no evidence of gonad-inde-
pendent effects of daylength on the orexin system.

The most striking differences in orexin fiber distribution
in this study were seen in the degu. In this species, orexin
fiber density was lower in the xiphoid nucleus (Figure
14D) and much higher in the centrolateral nucleus of the
thalamus (Figure 13D) in comparison to the other three
species. The degu also exhibited an extremely dense net-
work of orexin-IR fibers in the VMH, predominantly in
the ventromedial portion of this nucleus (Figure 10D). In
the other species, orexin fiber density in the VMH was
moderate to low, while this nucleus represented the
region of greatest fiber density observed in the degu. With
respect to the cerebellum, the degu exhibited moderately
dense orexin-IR innervation of the cerebellar nuclei and
flocculus, while in the other three species these regions
were sparsely innervated at best (Figure 20). The grass rat,
LE rat, and Syrian hamster are relatively closely related to
each other (all are members of the Suborder Sciurognathi,
Family Muridae), and the degu (Suborder Hystricognathi,
Family Octodontidae) is relatively distantly related to
them [68]. It is therefore possible that the differences in
fiber distribution observed between the degu and the
other three species are a reflection of phylogenetic history
and constrains associated with it, rather than functional
differences among these rodents. However, it is tempting
to speculate on the function of orexin projections to these
regions in the degu.

Although the implication of the lack of orexin input to the
xiphoid nucleus is unclear, the networks of orexin-IR fib-
ers in the degu CL, VMH and cerebellum could all play a
role in anti-predator behavior during periods of height-
ened arousal, such as sentinel activity. When feeding,
degus alternate sentinel duties and produce alarm calls to
warn conspecifics of danger [reviewed in [69]]. Sentinel
duty in the degu requires that an animal both detect
potential threats, and respond properly to threats once
identified. The orexin-IR fibers in the flocculus might aid
in the visual detection of threats. Predator avoidance
behavior in the degu appears to be based primarily upon
visual scans for aerial or ground-level threats [105]. Pur-
suit of a visually acquired target requires smooth, coordi-
nated eye movements to maintain visual contact with a
constantly moving stimulus [106]. The flocculus has been
shown to be important in maintaining such predictive eye
movements during visual tracking [107]. The CL and the
VMH may be involved in appropriate response to preda-
tors. Amygdalar projections from the CL and other intral-
aminar thalamic nuclei are thought to engage fear
responses in rats [reviewed in [108]], and the CL specifi-
cally appears to be important in cognitive awareness and
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executive decision making [109]. The VMH is part of the
cerebral-hypothalamic "behavior control column" medi-
ating somatomotor aspects of complex motivated behav-
ior [110]. The dorsomedial region of this nucleus is
specifically implicated in predator-induced defensive
responses [111]. The three brain regions in the degu
receiving heavier than average orexin innervation may all
be involved in anti-predator behaviors. It is possible that
coordination and activation of these systems during peri-
ods of heightened arousal may be an important function
of orexins in the degu.

Conclusion
In summary, with respect to the overall distribution of
orexin, this study confirms the high degree of similarity
among species overall, but also reveals some significant
differences. The distribution of orexin-IR cell bodies and
fibers is quite similar among the Long-Evans rat, grass rat,
hamster and degu, and is largely consistent with previ-
ously published reports [19-22,24,25,27,48]. With respect
to orexin fibers, the high levels of congruence between
species suggest a strongly conserved common role for
OXA and OXB in the maintenance of arousal state, mod-
ulation of somatomotor activity, and control of ingestive
behavior. On the other hand, there are some significant
species differences in the distribution of orexin cell bodies
as well as the density of orexin-IR fibers in some regions.
With respect to cell bodies, the present study describes
specific species differences in the organization of the main
body of OXA- and OXB-IR neurons in the lateral hypoth-
alamus, and also provides evidence for a previously unde-
scribed population of OXA-IR neurons in the
magnocellular neurosecretory nuclei of the hypothala-
mus. These differences in orexin cell distribution raise the
possibility that some subpopulations of orexin-IR neu-
rons might differ with respect to afferent inputs, suggest-
ing potential differences in activation of orexin neurons
among species. In addition, while the overall distribution
and relative densities of orexin fibers are quite similar
across species, there are striking differences in some
regions. These presumably reflect interspecific variability
in the importance or function of acute orexin actions in
specific nuclei, and suggest that we should not assume
that the system operates identically across species.

Abbreviations
Arcuate nucleus (Arc)

Arginine vasopressin (AVP)

Bed nucleus of the anterior commissure (BAC)

Bed nucleus of the stria terminalis (BNST)

Centrolateral thalamic nucleus (CL)

Cerebral aqueduct (aq)

Corticotrophin releasing factor (CRF)

Diaminobenzidine (DAB)

Dorsal hypothalamic area (DA)

Dorsolateral geniculate nucleus (DLG)

Dorsomedial hypothalamic nucleus (DMH)

Ependymal layer (E)

Flocculus (Fl)

Fornix (f)

Fourth ventricle (4V)

Granular cell layer of olfactory bulb (GrO)

Hypothalamic-pituitary-adrenal axis (HPA)

Immunoreactive (IR)

Intergeniculate leaflet (IGL)

Lateral hypothalamic area (LH)

Lateral habenular nucleus (LHb)

Lateral mammillary nucleus (LM)

Lateral ventricle (LV)

Leuteinizing hormone releasing hormone (LHRH)

Light-dark (LD)

Locus coeruleus (LC)

Long-Evans (LE)

Mammillothalamic tract (mt)

Medial habenular nucleus (MHb)

Medial mammillary nucleus (MM)

Mitral cell layer of olfactory bulb (Mi)

Neuropeptide-Y (NPY)

Normal donkey serum (NDS)
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Nucleus of the solitary tract (Sol)

Olfactory ventricle (OV)

Optic chiasm (OC)

Orexin A (OXA)

Orexin B (OXB)

Orexin receptor 1 (OX1R)

Orexin receptor 2 (OX2R)

Oxytocin (OT)

Paracentral thalamic nucleus (PC)

Paraventricular hypothalamic nucleus (Pa)

Paraventricular thalamic nucleus (PV)

PBS with 0.3% Triton-X 100 (PBS-TX)

Paraflocculus (PFl)

Perifornical region (PeF)

Phosphate-buffered saline (PBS)

Posterior hypothalamic area (PH)

Principal components factor analysis (PCA)

Retrochiasmatic area (RCh)

Sprague-Dawley (SD)

Subincertal thalamic nucleus (SubI)

Suprachiasmatic nucleus (SCN)

Supramammillary nucleus (SuM)

Supraoptic nucleus (SO)

Supraoptic retrochiasmatic nucleus (SOR)

Third ventricle (3V)

Trochlear nucleus (4)

Tuberum cinerum (TC)

Ventral cochlear nucleus (VC)

Ventrolateral geniculate nucleus (VLG)

Ventromedial hypothalamic nucleus (VMH)

Xiphoid nucleus (Xi)
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