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Abstract

Background: Immunity to conserved viral antigens is an attractive approach to develop a universal vaccine against
epidemic and pandemic influenza. A nucleoprotein (NP)-based vaccine has been explored and preliminary studies
have shown promise. However, no study has explored the immunity and cross-protective efficacy of recombinant
NP derived from Escherichia coli compared with recombinant vaccinia virus (Tiantan).

Methods: Recombinant NP protein (rNP) from influenza virus A/Jingke/30/95(H3N2) was obtained from E. coli and
recombinant vaccinia virus (Tiantan) RVJ1175NP. Purified rNP without adjuvant and RVJ1175NP were used to
immunize BALB/c mice intramuscularly. Humoral immune responses were detected by ELISA, while cell-mediated

RVJ1175NP-immunized (91%) mice.

universal influenza vaccine.

immune responses were measured by ex vivo IFN-y ELISPOT and in vivo cytotoxicity assays. The cross-protective
efficacy was assessed by a challenge with a heterosubtype of influenza virus A/PR/8/34(H1N1).

Results: Our results demonstrate that a high dose (90 pg) of rNP induced NP-specific antibodies and T cell
responses that were comparable with those of RVJ1175NP in mice. Importantly, the survival ratio (36, 73, and 78%)
of the vaccinated mice after the influenza virus A/PR/8/34(H1NT1) challenge was rNP vaccine dose-dependent (10,
30, and 90 ug, respectively), and no significant differences were observed between the rNP- and

Conclusions: Influenza A virus NP derived from E. coli or recombinant vaccinia (Tiantan) virus elicited
cross-protection against influenza virus in mice, and the immune response and protective efficacy of rNP were
comparable to RVJ1175NP. These data provide a basis for the use of prokaryotically expressed NP as a candidate

Background

Influenza virus causes a highly contagious and acute re-
spiratory disease [1]. Vaccination is the primary strategy
for preventing and controlling epidemic and pandemic
influenza [2,3]. Currently, licensed influenza vaccines are
trivalent live attenuated or inactivated killed virus vac-
cines, consisting of three strains of each virus (influenza
A HIN1 and H3N2 and one influenza B) thought to be
most prevalent in the upcoming influenza season [4,5].
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However, these vaccines elicit neutralizing antibodies
against the highly variable hemagglutinin (HA) of influ-
enza virus, providing protection against homologous but
non-antigenically distinct heterologous viruses. Thus,
these vaccines must be frequently reformulated to match
the circulating strains [6,7]. In addition, current com-
mercial influenza vaccines are produced by propagating
the virus in embryonated chicken eggs, which is time-
consuming and requires one egg per vaccine dose [8,9].
Therefore, the development of a vaccine that induces
cross-protection against variant subtypes of influenza A
virus and which can be produced quickly at high quan-
tities is desirable.

The highly conserved nucleoprotein (NP) of influenza
A virus is an attractive candidate for a broad-spectrum
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influenza vaccine [10-13]. NP could generate subtype
cross-reactive cytotoxic T lymphocyte (CTL) immunity
to accelerate viral clearance in mice and humans [14,15],
and the non-neutralization antibodies induced by NP
play a role in heterosubtypic immunity in mice [16,17].
Previous studies have demonstrated that NP induces
heterosubtypic protection when used as a vaccine com-
ponent. NP-based vaccines, including DNA vaccines
[18,19], viral vector vaccines [20-22], peptide vaccines
[23], protein subunit vaccines [24,25], and multi-
antigenic vaccines [26-28], can generate cross-protec-
tion. Recently, a phase I clinical trial was conducted in
healthy adults using a modified vaccinia virus Ankara
(MVA) vector expressing influenza NP and matrix pro-
tein 1 (MVA-NP+M1). In that study, a challenge with in-
fluenza H3N2 and H1N1 showed that the MVA-NP+M1
vaccine was safe and immunogenic in humans [29,30].
We previously constructed a recombinant vaccinia virus
(Tiantan) RVJ1175NP expressing the NP of influenza
virus A/Jingke/30/95(H3N2), which elicited significant
protective efficacy in mice [20]. However, the production
of this viral vector vaccine was complicated, and the
pre-existing vector antibody may interfere with vaccin-
ation efficacy. Thus, it is important to identify a conveni-
ent method for large-scale NP production that does not
require embryonated eggs or cell culture.

Escherichia coli expression systems can facilitate the
rapid and economical production of recombinant pro-
teins [31,32]. The expression and purification of a single
antigenic protein in bacterial culture may be a simple
and rapid strategy for generating large quantities of in-
fluenza vaccine [33-36]. However, few studies of the im-
munogenicity and protective efficacy of recombinant NP
expressed in E. coli have been performed, and no investi-
gation has compared the efficacy of NP from prokaryotic
expression systems with eukaryotic expression systems.
To determine whether E. coli-expressed NP could be
used as a broad-spectrum influenza vaccine, a compari-
son of the immunogenicity and protective efficacy of
prokaryotic- and eukaryotic-expressed NP is required.

In this study, we purified recombinant NP (rNP) from
influenza virus A/Jingke/30/95(H3N2) expressed in E.
coli, and constructed a recombinant vaccinia virus (Tian-
tan) RVJ1175NP expressing the same NP. The immuno-
genicity and cross-protective efficacy of the rNP was
compared with that of RVJ1175NP in BALB/c mice. We
found that the E. coli-expressed rNP induced NP-
specific antibodies and a T cell response at high doses.
Additionally, the cross-protective efficacies of the rNP
against a lethal challenge with heterosubtype influenza
virus A/PR/8/34(H1N1) were comparable to those of
RVJ1175NP. These data provide a basis for the use of E.
coli-expressed NP as a potential universal influenza
vaccine.

Page 2 of 13

Results

Characterization of rNP purified from E. coli or RVJ1175NP
To assess the efficacy of rNP expressed in E. coli as a can-
didate universal influenza vaccine, we constructed an ex-
pression plasmid, pET30a-ND, to express rNP of influenza
A/Jingke/30/95(H3N2) in E. coli BL21(DE3) (Figure 1A),
as well as a recombinant vaccinia virus RVJ1175NP expres-
sing NP (Figure 1D).

The NP gene of influenza A/Jingke/30/95(H3N2)
was optimized and cloned into pET30a for expression
in BL21(DE3) (Figure 1A). Untagged soluble recom-
binant protein was purified using ion exchange and
size exclusion chromatography. SDS-PAGE demon-
strated that the rNP was >90% pure (Figure 1B). The
presence of purified rNP was confirmed by Western
blot analysis with mouse anti-NP polyclonal anti-
bodies (55 kDa), whereas the control BL21(ED3) did
not produce NP protein (Figure 1C). BHK cells
infected with RVJ1175NP or RVJ1175 were analyzed
by Western blotting with the same mouse anti-NP
polyclonal antibodies (Figure 1E). Our results showed
that RVJ1175NP expressed the proteins as expected
(55 kDa), whereas the control RVJ1175 did not pro-
duce the protein. The above results demonstrate that
NP was successfully expressed and purified.

Comparable NP-specific antibody responses were induced
in both rNP- and RVJ1175NP-immunized mice

The immunization schedule is shown in Figure 2 and
Table 1. To analyze NP-specific humoral immunity,
serum samples from four mice per group were collected
ten days after each priming and boosting event, and
purified NP was used to coat a 96-well plate to detect
NP-specific IgG antibodies.

As shown in Figure 3, after the priming immunization,
the NP-specific antibody titer in each rNP-vaccinated
group was slightly lower than that in the RVJ1175NP-
vaccinated group (2x10%-4x10° vs. 8x10°). Statistically sig-
nificant differences were observed between 10 pg NP-,
30 pug NP-, and RVJ1175NP-vaccinated groups (P<0.05),
as well as between the 10 and 90 pg NP-vaccinated groups
(P<0.05). No statistically significant differences were
observed between the 90 pg NP- and RVJ1175NP-
vaccinated groups. However, after boosting immunization,
the NP-specific antibody titer increased markedly (2x10°-
4x10° vs. 4x10°-1x10°%, P<0.01), and no significant differ-
ences were found between the rNP-vaccinated groups, or
between the rNP- and RVJ1175NP-vaccinated groups.
The NP-specific antibody titer in each rNP-vaccinated
group was slightly higher than that in the RVJ1175NP-
vaccinated group (4x10°-1x10° vs. 3x10°).

These results indicate that rNP elicited comparable
NP-specific humoral immunity to RVJ1175NP.
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Figure 1 Characterization of rNP purified from E. coli transformed with pET30a-NP or expressed from BHK cells infected with
RVJ1175NP. (A) Schematic representation of the expression plasmid (pET30a-NP) used to express the NP of influenza A/Jingke/30/95(H3N2) in E.
coli BL21(DE3). (B) SDS-PAGE of purified rNP. Purified rNP was fractionated by 10% SDS-PAGE and stained with Coomassie blue. BL21(DE3)
transformed with pET-30a was used as a negative control. (C) Western blot analysis of purified rNP with mouse polyclonal antibodies specific for
NP. (D) Schematic representation of RVJ1175NP encoding the influenza NP gene. ITR, inverted terminal repeat; P7.5 K, P7.5 later promoter; P11K,
P11 later promoter; TKR, right thymidine kinase; TKL, left thymidine kinase. (E) Western blot analysis of influenza NP expressed in BHK cells
infected with RVJ1175NP using mouse polyclonal antibodies specific for NP. BHK cells infected with RVJ1175 were used as a negative control. The
expression bands for NP and their molecular weights are indicated
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Comparable moderate T cell immune responses were
induced in high-dose rNP- and RVJ1175NP-immunized
mice

To detect NP-specific T cell-mediated immune responses,
five mice from each group were sacrificed ten days after

0 2 4 6 8 10 (Week) the last immunization, and specific cellular immune re-
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described.

t tmmunization 4 Detection ¥ Challenge To identify IFN-y-positive SFC against the NP4 155

Figure 2 Immunization schedule for the BALB/c mice. Mice were epitope, we performed ex vivo IFN-y ELISPOT assays.

immunized i.m. three times, two weeks apart with 10, 30, or 90 ug As indicated in Figure 4A, compared with the PBS con-

of NP or PBS alone, respectively. Age- and sex-matched mice were trol group (<5 SFC/10° splenocytes), no significant IFN-

immunized twice, four weeks apart with 2x10” PFU per mouse of
RVJ1175NP as a positive control. Serum samples from four mice
were collected ten days after each immunization. Ten days after the

y-positive SFC against the NP4 55 epitope were
detected in the 10 or 30 pg NP-immunized mice (<10

last immunization, five mice in each group were sacrificed for ex vivo SFC/10° splenocytes). However, a significant number of
IFN-y ELISPOT and in vivo cytotoxicity assays. Next, eleven mice in SFC were detected in both the 90 pg NP- and
each group were challenged intranasally with 10" TCIDs, RVJ1175NP-vaccinated groups (19 + 1 SEC/10° spleno-
(10XMLDs) of influenza A/PR/8/34(H1NT1) ten days after the last cytes, 35 + 1 SFC/106 splenocytes, respectively), and the

immunization . L .
immune responses were significantly different when
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Table 1 Immunization program
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Group Immunogen Dose Number of mice Immunization route
1 PBS 0 30 im.
2 NP 10 ug 30 i.m.
3 NP 30 ug 30 i.m.
4 NP 90 ug 30 im.
5 RVJ1175NP 2x107 PFU 30 i.m.

Note: Amino acid sequences of NP derived from A/Jingke/30/95(H3N2).

compared with PBS-immunized mice (P<0.05 and 0.01,
respectively) (Figure 4A).

To assess the lytic potential of effector CD8" T cells in
the mice, we examined cell cytotoxicity in vivo by trans-
ferring target cells pulsed with NPy4; 155 into mice. The
results of our in vivo cytotoxicity assays were in agree-
ment with those of the ex vivo IFN-y ELISPOT assays.
As shown in Figure 4B, compared with 8% of the NP4,
155 peptide-pulsed targets eliminated in PBS control
mice, neither the 10 (10%) nor the 30 (4.5%) pg NP-
vaccinated groups showed any marked cytotoxic effect.
A cytotoxic effect was detected, however, in the 90 pg
NP- (17%) and RVJ1175NP-vaccinated groups (45%).
Significant differences were observed between the
RVJ1175NP- and PBS-vaccinated groups (P<0.05), but
not between the RVJ1175NP- and 90 pug NP-vaccinated
groups. Taken together, these results indicate that a high
dose of rNP elicited a weak T cell response, similar to
RVJ1175NP.
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Figure 3 Comparable NP-specific antibody responses were
induced in both the rNP- and RVJ1175NP-immunized mice.
BALB/c mice were immunized i.m. with 10, 30, or 90 ug of rNP or
PBS alone, three times, two weeks apart. Mice immunized with
RVJ1175NP (2x10” PFU) twice, four weeks apart, were used as
positive controls. Serum samples were collected ten days after
priming and boost immunization. NP-specific IgG responses were
measured by ELISA as described. All data are shown as the log10
geometric mean titer + standard deviation of four mice from each

group

Comparable protective efficacies against a lethal
challenge with heterosubtype influenza virus A/PR/8/34
(H1N1) were induced in both the rNP- and RVJ1175NP-
immunized mice

To assess the cross-protection provided by rNP and
RVJ1175NP, we challenged the immunized mice with
10xMLDs, of influenza virus A/PR/8/34 (HIN1) ten
days after the last immunization (eleven mice per group)
and monitored their weight changes and survival ratios
for three weeks.

The observed weight changes are shown in Figure 5A.
Body weight decreased to the lowest level in all groups
at days 8-9 after the influenza virus A/PR/8/34(H1N1)
challenge. Subsequently, body weight decreased con-
tinuously in the PBS group until day 17 when the last
mouse died. In the RVJ1175NP- and each rNP-
vaccinated group, the body weights of the mice returned
to baseline at day 9. The body weights were restored to
baseline most rapidly in the 90 pg NP-immunized
group. The body weights were completely restored in
each group of surviving mice at day 21. Statistically sig-
nificant differences in weight loss were observed
between the rNP- and PBS-immunized groups on days
7-21 (P<0.05), between the RVJ1175NP- and PBS-
immunized groups, and between the 90 ug NP and
other vaccinated mice on days 7-21 (P<0.05). No signifi-
cant differences were observed between the 10 pug NP-,
30 pg NP-, and RVJ1175NP-vaccinated mice.

The survival ratios are shown in Figure 5B and
Table 2. Compared with the PBS group (0%, 0/11),
the survival ratio in the RVJ1175NP group was 91%
(10/11, P=0.0001), while the survival ratios in the
rNP group at doses of 10, 30, and 90 pg were 36 (4/
11, P=0.09), 73 (8/11, P=0.01), and 78% (7/9,
P=0.005), respectively. Excluding the 10 pug NP group,
statistically significant differences in the survival
ratios were observed between the rest of the rNP-
and PBS-vaccinated mice (P<0.01). No significant
differences were observed between the rNP- and
RVJ1175NP-vaccinated mice.

The above results indicate that rNP elicited compa-
rable cross-protection to RVJ1175NP in mice, and the
survival ratios tended to increase with a higher dose of
rNP.
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Figure 4 Comparable moderate T cell immune responses were induced in both high-dose rNP- and RVJ1175NP-immunized mice. BALB/
¢ mice were immunized i.m. with 10, 30, or 90 pg of rNP or PBS alone, three times, two weeks apart. Mice immunized with RVJ1175NP (2x10
PFU) twice, four weeks apart, were used as a positive control. Ten days after the last immunization, mice were sacrificed for ex vivo IFN-y ELISPOT
and in vivo cytotoxicity assays, as described. All data are shown as the mean + standard deviation for two independent experiments. (A) Specific
T cell responses were tested by ex vivo IFN-y ELISPOT assays against NPq47.155 in mice (n = 4 per group). Splenocytes (500,000) were incubated

ex vivo with or without 5 ug/ml NP4,.15s. The plates were then incubated for 20-24 h. The left panel shows the number of IFN-y-producing cells
as determined by ELISPOT. Each histogram is representative of data from one mouse; a portion of the results are presented here. (B) In vivo
cytotoxicity assays to determine the specific lytic potential of effector CD8" T cells in mice. Target cells were transferred to immunized or naive
mice (n = 5 per group). The left histograms show the number of CFSE,, unpulsed (M1) or the CFSEgn NPy47-155-pulsed (M2) mouse spleen cells.
Each histogram is representative of data from one mouse; a portion of the results are presented here. The right graph indicates the percentage
of specific killing for NP147.155-pulsed targets from the indicated groups

An influenza virus A/PR/8/34(H1N1) challenge boosted splenocytes), the average number of SFC was 756, 802,
NP-specific immunity and increased mouse survival 1712, and 1080 SFC/10° splenocytes in the 10, 30, and
To explore the possible mechanisms of protection, 90 pg rNP group and in the RVJ1175NP group, respec-
35 days after influenza virus A/PR/8/34(HIN1) chal- tively. The number of SFC increased significantly (P<0.01),
lenge, humoral and cell-mediated immune responses and tended to increase with higher immunization doses.
were detected in the surviving mice. An examination of  Significant differences were observed only between the
the PBS group was not possible as none of the mice 10 pug NP- and RVJ1175NP-vaccinated surviving mice
survived. (P<0.05), and differences were not observed between the
Based on our ELISA results (Figure 6A), NP-specific = rNP-immunized surviving mice at different doses, nor
humoral immune responses were slightly increased in  between the rest of the rNP groups and the RVJ1175NP-
the surviving mice (P<0.05). The NP-specific IgG titer = immunized groups.
increased from pre-challenge levels of 4x10°-1x10° to As revealed by our in vivo cytotoxicity assays
3x10°-5x10° in each immunized group. No significant  (Figure 6C), NP4, 155 peptide-pulsed target killing was
differences were found between these groups. The increased markedly in the surviving mice (P<0.01). Com-
strength of the humoral immune response in the rNP  pared with the pre-challenged mice (30%), the cytotoxic
groups was similar to that in the RVJ1175NP group. rates were increased to 93, 96, and 96% with 10, 30, and
Based on our ex vivo IFN-y ELISPOT assays 90 pg of rNP in the surviving mice, respectively, and
(Figure 6B), the number of IFN-y-positive SFC against  increased cytotoxic effects were observed in the survi-
NP;47.155 was markedly increased in the surviving mice ving RVJ1175NP mice (from 45 to 100% ). No differ-
(P<0.01). Compared with pre-challenge (<50 SFC/10° ences were observed between each group.
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Figure 5 Comparable protective efficacies against a lethal challenge by heterosubtype influenza virus A/PR/8/34(H1N1) were induced
in both rNP- and RVJ1175NP-immunized mice. Ten days after the last immunization, mice were anesthetized using a pentobarbital sodium
solution and challenged intranasally with a lethal dose (10xMLDsp) of influenza virus A/PR/8/34(H1N1). Weight changes and the survival of the
mice were monitored for three weeks (n = 11 per group, except n = 9 for the 90 pg rNP group, as two mice were killed while being
anesthetized). (A) Weight changes after the viral challenge. The average percent of the initial weight is expressed as a percentage of the
examined day relative to the weight prior to the challenge. (B) Percent of mice surviving after the challenge. Survival was analyzed using the
Kaplan-Meier log-rank test. Significant differences in survival were compared with the PBS control groups (¥, P<0.05; **, P<0.01)

The above results indicate that a challenge with influ-
enza virus increased NP-specific immune responses in
the surviving mice, especially NP-specific cell-mediated
immune responses.

Discussion

Influenza is a major cause of morbidity and mortality
worldwide. Vaccination is the most effective strategy to
control influenza epidemic and pandemics. However, cur-
rently licensed influenza vaccines are annual vaccines that
induce subtype-specific virus-neutralizing antibodies
against the highly variable surface antigen HA; thus, they

do not protect against new subtypes or antigenic variants.
In addition, conventional egg-dependent manufacturing is
time-consuming and expensive. Therefore, it is important
to produce a vaccine that induces cross-protection and
which can be produced rapidly and inexpensively. Immu-
nity to conserved NP antigens is an attractive approach
for developing universal influenza vaccines, and a subunit
vaccine based on a prokaryotic production system could
be rapidly and inexpensively produced. Although many
studies have explored the protective capacity of NP as a
component of a DNA vaccine or expressed by viral vec-
tors, it remains unclear whether similar results could be

Table 2 Mouse survival calculation after influenza virus A/PR/8/34(H1N1) challenge

Immunogen Number surviving/total Survival ratio (%) P (versus PBS)
PBS 0/1 0 /

10 ug of NP 4/ 364 0.09

30 pg of NP 8/11 727 001

90 pg of NP 7/9 778 0.005
RVJ1175NP 10/11 91.0 0.0001

Note: The immunized mice were challenged with 10xMLDs, of influenza virus A/PR/8/34(H1N1) ten days after the last immunization. N = 11 per group, except n
=9 for the 90 pg rNP group because two mice were killed while being anesthetized. No significant differences were observed between each rNP group, or
between the rNP- and RVJ1175NP-immunized groups. The P-values shown here were calculated compared to the PBS control group.
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Figure 6 An influenza virus A/PR/8/34(H1N1) challenge boosted the NP-specific immune responses in the surviving mice. To explore the
possible mechanisms of immunological protection, 35 days after the challenge with influenza virus A/PR/8/34(H1N1), humoral and cell-mediated
immune response changes were explored. The analysis was performed for the surviving mice; no analysis was performed for the mice in the PBS
group since none survived. (A) NP-specific IgG antibody titers were tested by ELISA in the surviving mice. (B) Specific T cell responses were
tested directly by ex vivo IFN-y ELISPOT assays against NP147.s5 in the surviving mice. (C) In vivo cytotoxicity assays were used to determine the
specific lytic potential of effector CD8"* T cells in the surviving mice. The results are representative of two experiments (n = 2-4 per experiment)

obtained with rNP. In this study, we compared the im-
munogenicity and cross-protection of rNP from E. coli
with recombinant vaccinia (Tiantan) virus RVJ1175NP in
mice. Our results demonstrate that a high dose of rNP
induced comparable anti-NP antibody and T cell responses
to RVJ1175NP in mice. Importantly, the protective effica-
cies of rNP were comparable with that of RVJ1175NP.
These data provide a basis for the use of E. coli-expressed
NP as a candidate universal influenza vaccine for further
study.

A wide variety of NP-based vaccine formulations have
been evaluated for cross-protection from this highly
conserved antigen [18-30]. Recombinant vaccinia viruses
are conventionally used to study the immunogenicity of
foreign proteins [37-42]. The vaccinia virus Tiantan

strain was used as a vaccine against smallpox in China
before 1980, and it is now widely used as a vector
[43,44]. We previously used RVJ1175 expressing the
potential cross-protective antigens of NP, Matrix protein
1 (M1) and Polymerase basic 1 (PB1) of influenza A/
Jingke/30/95(H3N2) with the vaccinia virus Tiantan
strain to induce cross-protection in Balb/C mice, the
results indicated that NP is the most effective antigen
among the antigens we tested, and the survival rate of
the RVJ1175NP immunized mice could achieved as high
as almost 100% against the lethal challenge of influenza
influenza virus A/PR/8/34 (H1IN1) with a challenge dose
ranged from 1LD50 to 5LD50[20]. However, the compli-
cated production process and pre-existing vector
immunity may interfere with the vaccine. Escherichia
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coli-based expression systems are the simplest and fast-
est way to generate large quantities of influenza vaccine.
However, no investigation has compared the immunity
and cross-protective efficacy of rNP derived from E. coli
with recombinant vaccinia virus (Tiantan). To explore
the potential of E. coli-expressed NP as a candidate uni-
versal influenza vaccine, we compared the immunoge-
nicity and efficacy of three doses of rNP (10, 30, and
90 pg) from E. coli with that of RVJ1175NP.

Antibodies against NP are non-neutralizing, and al-
though viral infection and some replication continues to
occur, it can limit viral replication and reduce illness se-
verity [16,17,45,46]. In the present study, the results of
NP-specific IgG detection demonstrated that the E. coli-
expressed NP without adjuvant could elicit a strong
humoral immune response, similar to RVJ1175NP. Re-
cently, Lamere et al. [45] demonstrated that systemic
immunization with NP accelerated the clearance of a
2009 pandemic HINI1 influenza virus isolate in an
antibody-dependent manner, and that anti-NP IgG spe-
cifically promoted influenza virus clearance in mice
through a mechanism involving both FcRs and CD8" T
cells [46]. These studies strongly suggest that antibodies
induced by immunization with NP can be used to elicit
cross-protection.

Currently, NP is thought to play a role in protection
mainly through the CTL cross-reaction. Several previous
studies have confirmed that NP-based vaccines inducing
cell-mediated immunity can provide cross-protection
against a heterosubtypic influenza virus challenge
[14,15,18-28]. In this study, cell-mediated immune
responses were assessed by measuring ex vivo IFN-y se-
cretion in splenocytes and in vivo cytotoxicity against
the CD8" T cell epitope NP147.155. Although few ex vivo
IFN-y-positive SFC and weak in vivo cytotoxicity were
induced at low doses (10 or 30 pg) of NP, a weak cellular
immune response could be detected at high doses
(90 pg) of NP. Such T cell-mediated immunity was com-
parable with that induced by RVJ1175NP. These results
indicate that the weak cellular immune response was
boosted by increasing the immunization dose or by
using an adjuvant. Additionally, although the NP-
specific CD8" T cell immunity of NP was weak in the
present study, it might establish long-term memory cells.
Therefore, a later time point should be investigated.

To assess the cross-protection effect provided by rNP
and RVJ1175NP, 10xMLDs, of influenza virus A/PR/8/
34(H1NT1) was used to challenge the immunized mice. It
should be noted that, according to the amino-acid
sequence alignment, the differences in amino-acid se-
quence between the influenza virus strains of A/Jingke/
30/95 (H3N2) and A/PR/8/34 (HIN1) is 40.7% for HA
and 92.6% for NP respectively (Data was analyzed by the
software of Clustal X (1.8), detailed information would
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be seen in Figure 7 in the section of supporting file).
The observed weight changes were comparable between
the rNP-vaccinated mice and the RVJ1175NP-vaccinated
mice. Notably, mice immunized with 90 pg of NP
showed the earliest and best recovery (better than
RVJ1175NP). These results indicate that rNP effectively
relieved the symptoms of influenza and reduced the
disease severity. In addition, the survival ratios (36, 73,
and 78%) were rNP vaccine dose-dependent (10, 30, and
90 pg, respectively), and no statistical differences were
observed between the rNP-immunized mice and
RVJ1175NP (91%). Consistent with previous studies, the
survival protective efficacy in our study was in accor-
dance with the strength of the pre-challenge immune
response [47,48]. The above results indicate that E. coli-
expressed NP elicited cross-protection in the mice, simi-
lar to RVJ1175NP, and that the efficacy was correlated
with the magnitude of the immunological response.

To explore the possible mechanisms of protection, im-
mune responses were evaluated in the surviving mice.
Compared with pre-challenge, both the NP-specific
humoral and cell-mediated immune responses were
increased in the surviving mice. These results suggest
that NP-specific humoral and cell-mediated immune
responses are closely correlated with protection. They
also suggest that the protection efficacy might be further
enhanced by an outbreak of seasonal influenza [49-51].
However, further support of this hypothesis is important
to promote universal flu vaccine development. As under
the lethal challenge of influenza virus, the examination
of the PBS group was not possible as none of the mice
survived, there was lack a proper control in this experi-
ment, so further study should be designed to include an
unvaccinated group infected with a sub-lethal dose of in-
fluenza virus to quantify the immune response values
elicited after infection in animals without previous
vaccination.

It also should be noted that, the mechanisms that rNP
could induce cross-protection are complex. The general
consensus favors the idea that rNP can induce CTL
responses that can kill infected cells and help the host
recovery from the infection [14,15,18-28], while the non-
neutralizing antibodies induced by rNP contribute little
to providing protective ability. However, recent studies
in mice also demonstrated that antibodies against rNP
also contribute to heterosubtypic immunity, and thus
can limit viral replication and reduce illness severity,
maybe through a mechanism involving both FcRs and
CD8" T cells [16,17,45,46]. In our experiment, in spite of
the very low levels of CTL elicited in the rNP and
RVJ1175NP vaccinated groups, survival rates were
achieved as high as 73%, 78%, and 91% in the 30 pg rNP,
90 pg rNP and RVJ1175NP vaccinated group after the
lethal challenge of influenza virus, respectively. The
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Figure 7 The amino-acid sequence alignment between the HA and NP of the influenza virus strains of A/Jingke/30/95 (H3N2) and

mechanism of cross-protection induced by rNP should
be investigate by much more studies such as more im-
mune response index should be examined, and passive
serum transfer experiment et.al may be helpful to test
the role of NP specific serum antibody in providing
protection.

In addition, although previous studies have shown
that mucosal immunization with NP protein could
induce CTL responses, thus generate cross-protective
response. And IgG produced by intraperitoneal or
intramuscular injection of NP protein was not suffi-
cient to protect mice against heterologous influenza
virus, we confirmed the intramuscular injection of NP
protein could provide cross-protection in Balb/C mice
in this study, such protection would contribute the
vaccine form we used, the immune path way of such
vaccine, the remnant LPS adjuvants effect in the ex-
periment, the immune responses type induced by the
vaccine, and so on. In the future study, much more
detailed information should be investigated to learn
the structure of the rNP, as the rNP was in soluble
form at the end of the fermentation, and the struc-
ture of the rNP may be polymer forms, thus would
be more immunogenic . In addition, the antibody
subtypes induced by the rNP may also be detected in
future, as the IgG1, IgG2a subtype may also influence
the protective efficacies of the vaccine. And more

detailed indicators for the cellular immune response
of NP should be investigated to learn the role of both
CD8" and CD4" T cell immune response in the con-
tribution of the cross-protection.

Conclusions

In summary, our study demonstrates that the immune
response and protective efficacy of rNP from E. coli were
comparable to those of RVJ1175NP. These data provide
a basis for the use of E. coli-expressed NP as a candidate
universal influenza vaccine for further study. To the best
of our knowledge, this is the first study to compare the
immunity and protective efficacy of E. coli-expressed
and vaccinia virus expressed NPs. Further work to im-
prove the cross-protective immunity and efficacy of rNP
using adjuvants or by combining it with other protective
antigens, and additional influenza virus subtype chal-
lenge studies to examine the level of broad-spectrum
protection, are required.

Materials and methods

Preparation of rNP and RVJ1175NP

The amino acid of NP protein was based on influenza
virus A/Jingke/30/95(H3N2). The NP gene sequence
encoding the full-lenghth of NP protein was optimized
according to the codon bias of E. coli [52]. The re-
combinant NP expression vector pET30a-NP was
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constructed by inserting the NP gene between the Ndel
and EcoRI restriction sites. Next, INP was expressed in
E. coli BL21(DE3) cells transformed with pET30a-NP.
Briefly, bacteria were grown to log phage at cell concen-
tration of OD600 was 0.6-0.8 in 2xYT medium with
100 mg/L kanamycin at 37°C, and protein expression
was induced by adding isopropylthio-3-D-galactoside
(IPTG) to a final concentration of 0.1 mmol/L. After
10 h of further incubation at 25°C, the cells were har-
vested by centrifugation, and SDS-PAGE anylysis
showed that rNP was mainly in the supernatants of the
cell lysis, thus the rNP was expressed in soluble form in
E. coli fermentation. Then the untagged soluble recom-
binant protein was purified using ion exchange exclusion
chromatography by DEAE Sepharose Fast Flow column
and then size exclusion chromatography by Superdex
S200 column. After concentration and filter sterilization,
the protein concentration was determined using a com-
mercial bicinchonic acid (BCA) assay, and rNP concen-
tration was 1 mg/ml in the final purified product.
Endotoxin levels were determined using the Tachypleus
Amebocyte Lysate assay (Chinese Horseshoe Crab
Reagen Manufactory, Xiamen, China) as directed by the
manufacturer, and the endotoxin level of the rNP was
about 2000 EU/mg. The final purified protein was stored
in PBS at -70°C until use.

The original vaccinia virus Tiantan strain and dual-
promoter insertion vector pJSA1175 were produced in
our laboratory [20]. The NP gene of influenza virus A/
Jingke/30/95(H3N2) was inserted into the Smal site of
pJSA1175. Recombinant vaccinia virus was produced by
the transfection of pJSA1175-NP into CEF cells that
were infected with vaccinia Tiantan strain, and was
designated as RVJ1175NP (Figure 1). RVJ1175NP
induced marked cross-immune protection in BALB/c
mice [20], and was used to immunize mice as a positive
control.

Peptide and influenza viruses

The H-2¢ restricted class I peptide NPy47.155 (TYQR-
TRALV) was synthesized commercially (Beijing Scilight
Biotechnology Ltd. Co., Beijing, China). The purity of
the peptide was >90% following HPLC and mass
spectrum analysis. NP147 155 is the CTL epitope of NP in
BALB/c (H-2%) mice and was selected as the optimal
peptide by mapping influenza A/PR/8/34(H3N2) NP
peptide pools [53]. The peptide was used at 5 pg/ml to
analyze NP-specific T cell immune responses using
ex vivo gamma interferon enzyme-linked immunospot
(IFEN-y ELISPOT) assays and in vivo cytotoxicity assays.
Stimulation with PMA (50 ng/ml) and ionomycin (1 pg/
ml) was used as a positive control to generate and detect
antigen-specific T cells by ELISPOT.
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Mouse-adapted influenza virus A/PR/8/34(H1N1) was
used as the challenge strain. The viruses were propa-
gated in allantoic fluid from nine-day-old embryonated
eggs at 34°C for two days. The allantoic fluid was col-
lected, aliquoted, and stored at -70°C until use. The viral
50% lethal dose was measured in BALB/c mice (MLDs5)
and the TCIDs, titer was detected in MDCK cells [54].
All experiments with live influenza virus were performed
in a biosafety level 2 containment facility.

SDS-PAGE and Western blotting

rNP purified from E. coli or expressed from RVJ1175NP
was analyzed for size and purity by SDS-PAGE and
Western blotting using mouse polyclonal antibodies
against influenza virus NP. For the rNP, both purified pro-
tein and BL21(DE3) cell controls were lysed in SDS-PAGE
sample loading buffer and then separated by SDS-PAGE,
followed by staining with Coomassie brilliant blue R250.
For the RV]J1175NP, BHK cells infected with RV]J1175NP
or control RV]J1175 were collected after 48 h, then pro-
cessed by cell lysis and separated by SDS-PAGE. For
Western blot analysis, the lysates separated by SDS-PAGE
were transferred by electroblotting to a polyvinylidene
difluoride membrane (Millipore). The membrane was
blocked for 1 h in 5% skim milk at 37°C and then incu-
bated with polyclonal antibodies in 2% skim milk for 1 h
at 37°C. After being washed three times with phosphate-
buffered saline (PBS) containing 0.05% Tween-20 (PBST),
the membrane was subsequently incubated in horseradish
peroxidase (HRP)-conjugated secondary anti-mouse anti-
bodies. Binding signals were visualized with 3,3,5,5- tetra-
methylbenzidine (TMB) as the substrate.

Immunization and challenge
Five- to six-week-old female BALB/c mice were obtained
from the Institute of Laboratory Animal Sciences, Chinese
Academy of Medical Sciences and Peking Union Medical
College (Beijing, China). All mouse experiments in this
study followed the Regulations for Administration of
Laboratory Animals of the People’s Republic of China.
The mice were immunized intramuscularly (i.m.) three
times, two weeks apart with 10, 30, or 90 pg of rNP or
PBS alone, respectively. Age- and sex-matched mice
were immunized twice, four weeks apart with 2x10”
PFU per mouse of RVJ1175NP as a positive control.
Blood samples were collected ten days after each
immunization. Ten days after each immunization, five
mice per group were sacrificed for cellular immune
response assays (ex vivo IFN-y ELISPOT assays or
in vivo cytotoxicity assays). Ten days after the last
immunization, eleven mice in each group were lightly
anesthetized using a pentobarbital sodium solution and
were challenged intranasally with 50 pl of viral suspen-
sion containing 10* TCIDs, (10xMLDs) of influenza A/
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PR/8/34(H1INT1). Survival and weight loss were moni-
tored daily for three weeks. The challenge experiment
was repeated three times.

Enzyme-linked immunosorbent assay (ELISA)

Costar 96-well plates were coated with purified NP at a
concentration of 2 pg/ml at 4°C overnight. The plates
were then washed with PBST and blocked with 2%
bovine serum albumin (BSA) in PBS. The test samples
were serially diluted in PBS containing 1% BSA and
incubated at 37°C for 1 h. Diluted HRP-linked goat-anti-
mouse IgG antibodies (100 pl) were added to each well,
and the plates were incubated at 37°C for 1 h. TMB sub-
strate solution (100 pl) was then added to each well
After a 5-min incubation at room temperature in the
dark, the reaction was stopped by adding 50 pl of 2 M
H,SO, per well and the absorbance was measured at
450 nm. The antibody titer was defined as the reciprocal
of the highest dilution that yielded an ODys5q value >2.1
times of the mean value of naive mouse serum.

IFN-y ELISPOT assay

The number of NP-specific IFN-y-secreting cells in mice
was counted using commercial ELISPOT assay kits (BD
Biosciences) as per the manufacturer’s instructions.
Briefly, anti-mouse IFN-y monoclonal antibodies were
coated on multiscreen 96-well plates at 4°C overnight.
Next, the plates were washed three times and blocked
for 2 h with RPMI 1640 containing 10% FBS (GIBCO) at
room temperature. Spleen mononuclear cells (SMNCs)
were obtained after the red cells in the spleen cell sus-
pension were lysed. Then the freshly isolated splenocytes
(5%10°) were transferred to each well and NP4, 155 was
added at a final concentration of 4 pg/ml. Cells without
the peptide were used as a negative control and cells
with PMA (50 ng/ml) and ionomycin (1 pg/ml) were
used as positive controls. Following incubation for
20-24 h at 37°C in a 5% CO, incubator, the cell suspen-
sions were aspirated. All wells were washed four times
with PBST, biotinylated detection antibody was added,
and the plates were incubated for 2 h at room
temperature. After four washes, streptavidin horseradish
peroxidase antibody was added at 100 pl per well for 1 h
at room temperature. Following four more washes,
100 pl of freshly prepared 3-amino-9-ethylcarbazole sub-
strate solution was added for 15-30 min at room
temperature in the dark to yield colored spots. Finally,
the reaction was stopped by thoroughly rinsing with tap
water. The plates were air-dried and stored in the dark
until analysis. The number of spots was analyzed with a
fully automated computer-assisted video image analysis
system (Bioreader 4000; Bio-Sys, Karben, Germany). The
average number of spot-forming cells (SFC) was adjusted
to 1x10° splenocytes for data display.
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In vivo cytotoxicity assay

An in vivo cytotoxicity assay was performed as described
by Byers et al. [55]. Briefly, to prepare target cells for
in vivo cytotoxic activity detection, splenocytes from
naive BALB/c mice were washed and divided into two
populations. One population was pulsed with 10 pg/ml
NPi471.155 incubated at 37°C for 4 h, and labeled with a
high concentration of CFSE (10 uM) (CESEyg, cells).
The second target population was left without peptide
and was labeled with a low concentration of CFSE
(1.0 uM) (CFESE,,,, cells). For intravenous injection, an
equal number of cells from each population were mixed
together, such that each mouse received a total of 1x10’
cells in 100 pl of PBS. The cells were injected into mice
vaccinated previously with PBS, rNP, or RVJ1175NP.
Specific in vivo cytotoxicity was determined by collecting
the spleen from recipient mice 20 h after injection, and
labeled fluorescent target cell populations were detected
based on their differential CFSE fluorescence intensities
by flow cytometry. Decreased numbers of CFSEy;g cells
indicated in vivo cytotoxicity. The percentage of specific
killing was calculated as follows: Cytotoxicity = [1-(Ratio
of naive group/Ratio of experimental group)] x100; Ratio
= percentage CFSEy,,,/percentage CFSEpg,.

Statistical analysis

Statistical analyses were performed with GraphPad Prism
version 5.01 (GraphPad Software, Inc., 2007) and the SPSS
software package (release 12.1; SPSS Inc., Chicago, IL).
Comparisons of the mean immune responses among the
mouse groups were performed using analyses of variance
with an unpaired ¢-test. Comparisons of antibody titers
among the treatment groups were performed using Stu-
dent’s t-test. Comparisons of the percentage of specific
killing were performed with Fisher’s exact test. Compari-
sons of the loss of body weight and survival curves were
calculated by t-tests and the log-rank (Mantel-Cox) test.
All reported P-values were two-sided; values <0.05 were
considered to be statistically significant.

Animal ethics statement

This mouse study was conducted in strict accordance
with the recommendations in the Guide for the Care
and Use of Laboratory Animals of the Chinese Center
for Disease control and prevention. The protocol was
approved by the Committee on the Ethics of Animal
Experiments of the Institute for Occupational Health
and Poison Control (Permit Number: EAWE-2010-029).
Serum was obtained by orbital sinus puncture. In the
ELISPOT assay and in vivo CTL assay, mice were sacri-
ficed by cervical dislocation. Challenge experiment was
performed under sodium pentobarbital anesthesia, and
all efforts were made to minimize suffering. After influ-
enza virus challenge, mice were monitored closely for
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three weeks for signs of illness. Any animals in a mori-
bund condition were euthanized.

Supporting data file

Figure 7. The amino-acid sequence alignment between
the HA and NP of the influenza virus strains of A/
Jingke/30/95 (H3N2) and A/PR/8/34 (HIN1). According
to the amino-acid sequences alignment by the software
of Clustal X (1.8), the results demonstrated that the dif-
ferences in amino-acid sequence between the influenza
virus strains of A/Jingke/30/95 (H3N2) (referred as JK3
in the graph) and A/PR/8/34 (HIN1) (referred as PR8 in
the graph) is 40.7% for HA and 92.6% for NP respec-
tively. The data sets supporting the results of this article
is included within the article.
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