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Abstract

Recently with an emerging theory of ‘compressive sensing’ (CS), a radically new concept of compressive sensing radar
(CSR) has been proposed in which the time-frequency plane is discretized into a grid. Random filtering is an
interesting technique for efficiently acquiring signals in CS theory and can be seen as a linear time-invariant filter
followed by decimation. In this paper, random filtering structure-based CSR system is investigated. Note that the
sparse representation and sensing matrices are required to be as incoherent as possible; the methods for optimizing
the transmit waveform and the FIR filter in the sensing matrix separately and simultaneously are presented to
decrease the coherence between different target responses. Simulation results show that our optimized results lead
to smaller coherence, with higher sparsity and better recovery accuracy observed in the CSR system than the
nonoptimized transmit waveform and sensing matrix.

Keywords: Compressive sensing radar; Random filtering; Cross-correlation; Optimization algorithm

1 Introduction
Compared with the whole scene observed by radar sys-
tems, the target scene is sparse therein in the majority of
cases. Classical radars do not take advantages of this spar-
sity and lead to complicated and expensive radar receiver
consisting of high-rate analog-to-digital (AD) converters,
large memories, and fast computing systems.
Recently with an emerging theory of ‘compressive sens-

ing’ (CS) [1-4], a radically new concept of compressive
sensing radar (CSR) has been proposed [5]. According to
CS theory, CSR can recover the target scene from far fewer
samples or measurements than traditional methods. To
make this possible, CSR relies on two principles: sparsity,
which restricts the number of targets of interest, and inco-
herence, which says the dissimilarity between targets of
interest. Obvious characteristics of the CSR system can be
summarized as follows [5,6]:

• Eliminating the need for the pulse compression
matched filter at the receiver
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• Reducing the required receiver AD conversion
bandwidth so that it need operate only at the low
‘information rate’ rather than at the high Nyquist rate

• Providing the potential to achieve higher resolution
between targets than traditional radars whose
resolution is limited by the uncertainty principles

Two different tasks of CSR have been investigated by
only a few papers. The first radar task is to detect and
estimate targets in distinct range, Doppler and angle cells
[6,7]. The second is imaging, including range profiling,
synthetic aperture radar (SAR) and inverse synthetic aper-
ture radar (ISAR) [8-10]. In both cases, CSR can work
in the situation of sparse targets/scene. CSR was demon-
strated to be capable of successfully working with an AD
converter operating at a sampling frequency lower than
the Nyquist rate. An exact recovery of target scene can be
implemented with four times undersampling for CSR SAR
imaging [5]. CSR was considered to transmit a sufficiently
incoherent pulse and reconstruct the sparse target scene
by the greedy algorithm. Better resolution in the time-
frequency plane over traditional radar can be provided
[6]. In [8-10], CS technique was applied to range profiling,
azimuth domain focusing, and (ω, k) domain focusing in
SAR imaging.
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CSR waveform design was also investigated by Chen
[11] and Subotic [7]. To effectively reconstruct the target
scene, it is required that the correlations between tar-
get responses must be small. A multiple-input multiple-
output (MIMO) radar waveform design method has been
proposed based on simulated annealing (SA) algorithm
[11]. For a distributed radar system, waveform and posi-
tion impacts have been examined by considerations of
sparsity of the target scene and the restricted isometry
property (RIP) [7], [12].
In [5], Baraniuk has suggested an interesting choice for

the sensing matrix of CSR system. He pointed out that
in majority of cases we can use a causal, quasi-Toeplitz
matrix where each row is a right shift of the row imme-
diately above it. The sensing matrix based on random
filtering is plotted in Figure 1. The measurement process
in CSR can be seen as a linear time-invariant filter fol-
lowed by decimation. When we choose a pseudo-noise
(PN) sequence as the initial row, this approach can be
named as random filtering. Obvious benefits of random
filtering structure-based CSR can be summarized as [13]

• The sensing matrix is stored and applied efficiently.
• Fast fourier transformation (FFT) can be used to

replace convolution for long filters.
• It is easily implementable in software or hardware.

The constitutions of the two kinds of random filtering
structure-based compressive sensing radar is illustrated in
Figure 2. As we can see, the random filter can be imple-
mented both in time and frequency domain. In Figure 2,
we also note that two Toeplitz matrices have been used
and concatenated. The first appears due to the convolu-
tion of the transmitted waveform with the sparse target
scene, spreading the energy of each target in the scene.
The second is caused by the convolution of a random
filter with the received signal. Actually, the input for
the second Toeplitz matrix is no longer sparse in the
canonical basis because of the concatenation of the two
matrices.
CS theory suggests that the sensing matrix � and sparse

representation matrix � be as incoherent (orthogonal) as
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Figure 1 Random filter matrix.

possible. A measure of coherence between � and � can
be expressed as

ρ(�,�) = max
i�=j

|〈�i,�j〉| (1)

where 〈, 〉 denotes the inner product,�i is the ith row of�,
and�j is the jth columns of� . ρ(�,�) plays an important
role in the successful recovery of basis pursuit (BP) and
orthogonal matching pursuit (OMP) algorithms [14]. Low
coherence between � and � means small ρ(�,�).
We note that a key notion of the RIP in CS theory also

requires the orthogonality between� and� [15]. The RIP
can be expressed as [16]

∀|T | ≤ S : (1−δS)‖θT‖22 ≤ ‖DTθT‖22 ≤ (1+δS)‖θT‖22
(2)

where ∀|T | ≤ S mean for any sparsity T, which is less
than S, | · | is the cardinality operator, ‖ · ‖2 represents the
l2 norm being equivalent to the square root of the sum
of squares of all the elements, D = �� is the equiva-
lent dictionary, DT is a subset extracted from D, θT are
the coefficients corresponding to the T selected columns,
and 0 < δS < 1 is the S-restricted isometry constant
(RIC). If the RIP holds, any subset of columns of D are
nearly orthogonal and the incoherence between � and
� is ensured. However, the RIP is difficult for us to ver-
ify [17]. Therefore, some matrices have been proved to
be incoherent enough with any fixed sparsifying basis �

with overwhelming probability, such as Gaussians or ±1
random matrices [16].
Elad has proposed an alternative framework towards the

incoherence required by CS [18]. This alternative, which
has been shown to be computationally more efficient and
produce significantly better results, can be described as
[19]

μ(D) = max
i�=j

∣∣∣∣∣ dTi dj
‖di‖2‖dj‖2

∣∣∣∣∣ (3)

where | · | is the absolute value, μ(D) is often called the
mutual coherence of the matrix D, and di = ��i denotes
the ith column of D. The mutual coherence is known to
be a sub-optimal metric to quantify CS matrices as com-
pared to RIC. Notably, μ ≥ 1/

√
M for a M × N Gaussian

matrix. Thus, using the mutual coherence metric, we have
a sub-optimal quadratic scaling ofMwith the sparsity S. In
comparison, a linear scaling of M with S is achieved with
the RIC.
If D is designed such that μ(D) is as small as possible,

the orthogonality between � and � can be guaranteed
and successful recovery will be implemented in CS pro-
cess. Here, the transposition (·)T was applied for image
processing in real number domain.
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Figure 2 The constitution of random filtering structure-based compressive sensing radar. Random filter can be implemented in time and
frequency domain: (a) time domain random filter with convolution and (b) frequency domain random filter with FFT and IFFT.

In this paper, we are concerned with incoherence
between the sensing and sparse representationmatrices in
random filtering structure-based CSR. With the thought
that the sensingmatrix and transmit waveform in CSR can
be changed in mind, we will investigate the problem of
how to design the sensing matrix and transmit waveform
to guarantee incoherence in the CSR system.
A similar thought has appeared in image processing

and can be traced back to Elad’s work [18]. Elad first
attempted to decrease the average mutual coherence by
optimizing the sensing matrix. His work showed that
designing a sensing matrix is a better choice than a ran-
dom matrix, and it indeed leads to better CS perfor-
mance. Abolghasemi proposed a gradient descent method
to optimize the sensing matrix [20]. Duarte-Carvajalino
extended Elad’s work and proposed to optimize the sparse
representation and sensing matrices simultaneously [15].
Due to more freedom degrees introduced in CS, this new
CS framework can offer better performance than only
optimizing the sensingmatrix. Overall, the results of these
methods show enhancement in terms of both reconstruc-
tion accuracy and the maximum allowable sparsity CS can
recover.
The remainder of this paper is organized as follows.

First, we study the theory of random filtering structure-
based compressive sensing radar in Section 2. Then,
we introduce our proposed algorithms to design the
transmit waveform and sensing matrix in Section 3.
In Section 4, we present detailed experimental results
demonstrating the superiority of our framework. Finally,
concluding remarks and directions for future research are
presented.

2 Review of compressive sensing radar based on
random filtering

2.1 Sparse representation dictionary
Consider a target scene in time-frequency plane is dis-
cretized into an L × M grid, and we define time and
frequency shift matrices as

Tl
L×N =

⎛⎝ 0l−1×N
IN×N

0(L+1−N−l)×N

⎞⎠ (4)

FmL×L =

⎛⎜⎜⎜⎜⎝
ω0
M 0 · · · 0

0 ω1
M

. . .
...

...
. . . . . . 0

0 · · · 0 ωL−1
M

⎞⎟⎟⎟⎟⎠
m

(5)

where L andM denote the numbers of range and Doppler
bin CSR measures, N is the length of transmit wave-
form vector, ωM = e

√−12π/M is the Mth root of unity.
The (l,m)th basis element in time-frequency plane can be
defined as

pl,m = Fm · Tl (6)

where l = 1, 2, . . . , L, m = 1, 2, . . . ,M. Assuming the
transmit signal x of length N, the receiver will receive a
signal hl,m = pl,m · x of length L to observe L range bins.
Note that there are necessarily LM grid points in time-
frequency plane; we concatenate these received signals
and obtain the received signal basis dictionary

� = (h1,1|h1,2| · · · |hL,M)

= H 
 x
(7)

where

H = (p1,1|p1,2| · · · |pL,M)


 is the product we define as

(A|B) 
 s = (As|Bs)
A and B are matrices of the same size m × n and s is a
vector of size n × 1. The sparse representation dictionary
� contains all the possible signal reflected from the target
in any grid of time-frequency plane.

2.2 Random filtering measurement
In CS, the sensing matrix measures and encodes P < L
linear projections of the signal. By random filtering mea-
surement, this process can be seen as the convolution of
the received signal and the FIR filter f of length B, which
approximates the analog filtering in the digital domain. To
take P measurements of the signal, downsampling of the
FIR filter output is then carried out. This process can be
represented by a matrix �, where � is a P × L matrix.
This matrix is banded and quasi-Toeplitz: each row has B
nonzero elements, and each row of � is is a shifted copy
of the first row.
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By the fixed filter f which is defined on the region
[0,B− 1], the (p, l)th entry of the sensing matrix � can be
obtained by

φp,l = f (�L/P�p − l)
= f (Kp − l)

(8)

where K = �L/P� is the decimation factor and �·� is the
floor function. The pth row of � can be expressed as

(�T )p = Mpf

Mp is a L × Bmatrix with the following expression

Mp =
⎛⎝ 0Kp×B

IB×B
0(L−Kp−B)×B

⎞⎠
2.3 Scene recovery
The received signal of the target scene can be expressed as

r =
L∑

l=1

M∑
m=1

θl,mhl,m = �θ + n (9)

where θ = [θ1,1, θ1,2, . . . , θL,M]T is the scattering coeffi-
cient vector of the scene and n is the additive Gaussian
white noise vector of length L. The measured signal is
written as

y = �r = ��θ + �n (10)

Then, the target scene can be recovered by reconstruc-
tion methods including using algorithms such as orthogo-
nal matching pursuit [21,22] and basis pursuit [23,24]. The
latter program is solving the following convex problem:

min‖θ‖1 s.t. ‖y − ��θ‖22 ≤ ε (11)

where ‖·‖1 denotes the l1 norm of a vector ormatrix which
is equal to the sum of absolute value of all the elements and
ε > 0 takes into account the possibility of noise in the lin-
ear measurements and of nonexact sparsity. Regularized
orthogonal matching pursuit (ROMP) has been proposed
to take advantage of OMP and BP algorithms [25].

3 The FIR filter and transmit waveform design for
compressive sensing radar

Equation 3 defines the maximum absolute value of nor-
malized inner product between all columns in the equiva-
lent dictionary D. Suppose the sparsity of the target scene
‖θ‖0 satisfies the following inequality

‖θ‖0 <
1
2

(
1 + 1

μ(D)

)
(12)

where ‖ · ‖0 denotes the l0 norm counting the number of
nonzeros in a vector ormatrix. θ is necessarily the sparsest
solution (min‖θ‖0) such that y = Dθ .
A fast greedy algorithm such as OMP is guaranteed to

succeed in finding the correct solution in the presence

of noise n. The root mean square error (RMSE) of the
solution θ̃ obeys [14]

‖̃θ − θ‖2 ≤ (δ + ε)√
1 − μ(D)(2‖θ‖0 − 1)

(13)

where ε = ‖n‖2 and δ ≥ ε = ‖y − Dθ‖2. The mutual
coherence μ(D) that affects both the recoverable sparsity
of target scene and the recovery accuracy is demonstrated
in (12) and (13).
We note that in the equivalent dictionary D, the FIR fil-

ter f in the sensing matrix � and the transmit waveform
x are variables in the CSR system. Therefore, the FIR fil-
ter f and transmit waveform x design problem in the CSR
system can be described as

argmin
f,x

(
max
i�=j

∣∣∣∣∣ dHi dj
‖di‖2‖dj‖2

∣∣∣∣∣
)

(14)

where (·)H denotes the conjugate transposition. Here, we
replace the transposition (·)T in Equation 3 by the con-
jugate transposition (·)H to process the columns of the
complex equivalent dictionary D in the CSR system.

3.1 The transmit waveform optimization
With the fixed FIR filter f, the transmit waveform x opti-
mization problem can be given by

argmin
x

(
max
i�=j

μi,j

)
(15)

where

μi,j =
∣∣∣∣∣ dHi dj
‖di‖2‖dj‖2

∣∣∣∣∣
di = ��i = �FmTlx

i = (l − 1)M + m

j = (l′ − 1)M + m′

l, l′ = 1, 2, . . . , L m,m′ = 1, 2, . . . ,M
μi,j is a variable correlated with the cross-correlations
between di and dj and the auto-correlations of di, dj.
We use the square of μi,j and transform this fraction in
(15) into a weighted summation. This expression can be
obtained by

γi,j = ‖dHi dj‖22 − λ‖di‖22‖dj‖22
= xHPi,jx − λ · xHQix · xHQjx

(16)

where λ is the weighted coefficient,

Pi,j = (Tl′)H(Fm
′
)H(�)H�FmTlx

· xH(Tl)H(Fm)H�H�Fm
′
Tl′

Qi = (Tl)H(Fm)H�H�FmTl

Qj = (Tl′)H(Fm
′
)H�H�Fm

′
Tl′



Zhang et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:94 Page 5 of 11
http://asp.eurasipjournals.com/content/2014/1/94

This transformation is valid by taking the log in (15) (due
to the monotonicity of the log function). The optimization
problem in (15) can be transformed to

argmin
x

(
max
i�=j

γi,j

)
(17)

This minimax problem is difficult for us to solve, and
we replace by minimum summation of γi,j and can be
described as

argmin
x

⎛⎝∑
i

∑
j �=i

γi,j

⎞⎠
= argmin

x
xH�x

(18)

where

� =
∑
i

∑
j �=i

(
Pi,j − λQixxHQj

)
This transformation is also valid because it is noted that

for any vector x ∈ R
N , we have 1/

√
N‖x‖2 ≤ ‖x‖∞ ≤

‖x‖2. Thus, the optimization problem is simplified to
the minimization problem defined in (18), in which the
transmit waveform x has constant energy constraint

xHx = E0

When the transmit vector x is equal to the eigenvec-
tor of � corresponding to the smallest eigenvalue, the
minimization of xH�x in (18) is achieved subject to the
energy constraint of xHx = 1. However, the matrix �

which depends on x lead to indirect solution. Therefore,
an iterative procedure must be applied. The specific steps
involved in this iterative procedure are described below:

• Step A1: Set the x with random generated values or
use some existing sequence (i.e., Frank sequence or
Golomb sequence), k = 0.

• Step A2: Compute the matrix �k+1 in terms of xk .
• Step A3: Find the smallest eigenvalue and the

corresponding normalized eigenvector vk+1 of the
matrix �k+1.

• Step A4: Repeat the above steps until the convergence
criteria is satisfied, e.g., ‖xk − xk+1‖2 < ε1, where
xk+1 = vk+1 is the waveform obtained at the kth
iteration and ε1 is a predefined threshold.

3.2 The FIR filter optimization
We define the complex Gram matrix G = DHD whose
entry at the ith row and jth column is gi,j. Unlike the Gram
matrix definition in [18], we do not compute G using
the matrix D after normalizing each of its columns. In
practice, the small absolute off-diagonal elements in G is

desired. In the ideal case, minimum possible coherence
occurs when gi,j = 0, i �= j, and we have

G̃ =

⎛⎜⎜⎜⎜⎝
g1,1 0 · · · 0

0 g2,2
. . .

...
...

. . . . . . 0
0 · · · 0 gLM,LM

⎞⎟⎟⎟⎟⎠ (19)

where G̃ is a LM×LM diagonalmatrix with self-coherence
of each columns. We might be able to design the sens-
ing matrix � making the Gram matrix G close to G̃ as
possible. This process can be written as follows:

argmin
�

‖G − G̃‖2F (20)

where ‖ · ‖F is the Frobenius norm for a matrix. By (10)
and (11), the Gram matrix can be rewritten as

G = DHD = (��)H��

= �H�H��
(21)

According to (20), the sensing matrix optimization
problem with the fixed sparse representation matrix �

can be described as

argmin
�

∥∥∥�
H

�H�� − G̃
∥∥∥2
F

(22)

With the successful case in [26], simpler criteria can be
given to replace (22) and written as

argmin
�

∥∥�� − Ũg
∥∥2
F (23)

whereU is a P×N semiunitary matrix (i.e.,UHU = I), g̃ =
Diag(√g11,

√g22, . . . ,
√gNN ), Diag(·) denotes the diagonal

matrix with diagonal elements as indicated.
Considering the sensing matrix � also has energy con-

straint, the above criteria can be rewritten as

argmin
�

∥∥��g̃−1 − U
∥∥2
F

s.t. UHU = I
‖�‖22 = c

(24)

� and U are both unknown variables in (24). Our strategy
to solve this minimization problem is calculating one vari-
able while the other is fixed and iterating this process until
convergence appears.
First, we consider the minimization problem with the

known sensing matrix � in (24) has the following solution
[27]

U = UH
2 U1 (25)

whereU1 andU2 can be obtained by the following singular
value decomposition (SVD) expression

��g̃−1 = U1
UH
2 (26)
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here U1 is a P × P unitary matrix, U2 is an P × LM
semiunitary matrix, and 
 is a P × P diagonal matrix.
Then, we try to find f which determines the sensing

matrix � with givenU. We decompose the sensing matrix
by rows and have

fT
(
MT

1 MT
2 · · ·MT

P

)
� = vec(Ũg)T (27)

After transforming the above expression, we obtain

Af = b (28)

where

A = �
T (

MT
1 MT

2 · · · MT
P

)T
(29)

b = vec(Ũg) (30)
The FIR filter f can be obtained by the least square (LS)

estimator

f = (AAH)−1Ab (31)

The FIR filter f optimization method can be summa-
rized as follows:

• Step B1: Generate the FIR filter f with random
complex values, then compute the initial sensing
matrix �, set k = 0.

• Step B2: Compute the SVD of �k�g̃−1
k and the

unitary matrix U.
• Step B3: Compute the FIR filter fk+1 that minimizes

(24) by (31); under the constraint ‖fk+1‖22 = c,

fk+1 = cfk+1

‖fk+1‖22
.

• Step B4: Repeat the above steps until the convergence
criteria is satisfied, e.g., ‖fk − fk+1‖2 < ε2, where fk+1
is the FIR filter obtained at the k + 1th iteration and
ε2 is a predefined threshold.

Because P � LM, the SVD of the P×LMmatrix��g̃−1

in Step B2 requires a large computation amount for large
values of L andM.

3.3 Joint optimization
With the above discussion, now we turn to the transmit
waveform x and FIR filter f joint optimization problem.
Themethod will be considered to combine the introduced
iterative approaches for optimizing the transmit wave-
form and FIR filter. Considering these two variables can-
not be optimized simultaneously in an iteration, we split
each iteration into two parts, which optimize one variable
while the other is fixed. With the transmit waveform and
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Figure 3 Histogram of the cross-correlations between different target responses. (a) Frank sequence, (b) LFM sequence, (c) Alltop sequence,
and (d) optimized waveform sequence.
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Figure 4 Histogram of the cross-correlations between different target responses. (a) Alltop sequence + optimized sensing matrix and
(b) optimized transmit waveform + optimized sensing matrix.

FIR filter optimization approaches in Sections 3.1 and 3.2,
the joint optimization method can be summarized as

• Step C1: k = 0, generate the transmit waveform xk
with random complex values and constant energy,
and set the FIR filter fk with random complex values;
compute the corresponding sensing matrix �k , the
sparse representation matrix �k , the equivalent
dictionary Dk , and the Gram matrix

Gk = DH
k Dk .

• Step C2: Assume the deterministic sensing matrix
� = �k , optimize the transmit waveform using Step
A2 to Step A4, and obtain x̃.

• Step C3: With the deterministic waveform x = x̃,
optimize the FIR filter using Step B2 to Step B4 and
obtain f̃.

• Step C4: k = k + 1,

xk+1 = x̃

fk+1 = f̃.
• Step C5: Compute the Gram matrix

Gk+1 = DH
k+1Dk+1.

Repeat the above steps until the convergence criteria
is satisfied, e.g., ‖Gk − Gk+1‖2 < ε3, where ε3 is a
predefined threshold.

The proposed three algorithms in this section is stopped
whenever the innovations is less than a certain value
(ε1, ε2, and ε3, respectively). The order of the magnitude
of these values will be given in the simulation section.
Similarly, the number of iterations will also be tested.

4 Simulation
In this section, we will complete computer simulations
with three aspects. First, simulation examples will be given
to demonstrate the effectiveness of our proposedmethods

for decreasing the coherence between the sparsifying rep-
resentation and sensing matrices. Second, in CS theory,
RIP is an important rule. Simulation results will show that
our designed result can ensure this rule finely. Third, the
target scene recovery experiment will be given to show the
improved recovery accuracy by our methods.

4.1 Transmit waveform and sensing matrix optimization
results

The CSR system transmits a waveform of length N = 19
and measures a target scene with L = 80 range andM = 1
Doppler bin. The sensing matrix compresses the received
signal with the FIR filter f of length B = 40 and obtains the
measured data of length P = 40.We optimize the transmit
waveform x and FIR filter f of the CSR system separately
and simultaneously, and results are compared for these
different approaches. The parameters ε1, ε2, and ε3 are set
to be 10−8, 10−5, and 10−5, respectively. These algorithm
will stop after hundreds of iterations in our simulations.
The recovery algorithm used here is OMP.
In [6], Herman has proved that the Alltop sequence has

nearly ideal incoherence properties for the dictionary � .
This sequence is defined as

sn = 1√
N
e
√−1 2π

N n3

where n ≥ 5 is a prime. Considering the impor-
tant property of the Alltop sequence, we use it as a

Table 1 Average andmaximum values of the
cross-correlations

Average/max Random� Optimized�

Frank 0.1992/0.9470 -

LFM 0.1641/0.7944 -

Alltop 0.1731/0.7855 0.1060/0.4633

Optimized sequence 0.1070/0.4944 0.0800/0.3411
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Figure 5 The smallest and largest eigenvalues (λmin, λmax). (a) Alltop sequence + random sensing matrix and (b) optimized transmit
waveform + optimized sensing matrix.

standard sequence for comparing with our optimization
result. In the process of the sensing matrix optimiza-
tion, we also use this sequence as the fixed transmit
waveform.
Figure 3 shows the histogram of the cross-correlations

between different target responses with random sens-
ing matrix. The optimized waveform is compared with
the Frank, LFM, and Alltop sequences. As a stan-
dard sequence, the maximum and average values of
the histogram of the Alltop sequence obviously outper-
form Frank and LFM sequences. However, our proposed
method can provide a sequence with better performance
than the Alltop sequence. The average and maximum

cross-correlations are decreased about 0.07 and 0.27,
respectively.
In Figure 4a, the result for the optimized sensing matrix

is given. The Alltop sequence is used as the fixed trans-
mit waveform. As we can see, the cross-correlations of the
optimized sensing matrix are obviously smaller than that
of the random matrix. The average and maximum cross-
correlations are lowered about 0.17 and 0.32, respectively.
The result for the optimized transmit waveform and
sensing matrix are also shown in Figure 4b. Compared
with that of the Alltop sequence with random sensing
matrix, the average and maximum cross-correlations are
decreased about 0.09 and 0.44, respectively.
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Figure 6 Two different target scenes: (a) scene 1 and (b) scene 2.
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The detailed information of the cross-correlations is
summarized in Table 1. From the above results, we
may conclude that the sensing matrix optimization offers
greater performance improvement than the optimized
transmit waveform because it can provide more optimiza-
tion variables.

4.2 RIP verification
With normalized ‖̂θT‖, i.e., ‖̂θT‖22 = 1, the RIP in (2) can
be simplified to

∀T ≤ S : (1 − δS) ≤ ‖DT̂θT‖22 ≤ (1 + δS) (32)

We note that

λmin ≤ ‖DT̂θT‖22 = ̂θ
H
TDH

TDT̂θT ≤ λmax (33)

where λmin and λmax are the smallest and largest eigenval-
ues of DH

TDT . The S-restricted isometry constant can be
obtained by

1 − δS ≤ λmin

1 + δS ≥ λmax
(34)

With the constraint 0 < δS < 1 [15], the eigenvalues
λmin and λmax should satisfy

0 < λmin ≤ λmax < 2 (35)

Thus, to verify if the equivalent dictionary DT satis-
fies the RIP, we should compute the eigenvalues λmin and
λmax of all the possible subset matrix DT . This opera-
tion needs great amount of computation. We use 1,000
times Monte Carlo simulations instead. The smallest and
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Figure 7 RMS error of the recovery performance for two scenes. (a) RMS error of scene 1 with Alltop sequence and random sensing matrix,
(b) RMS error of scene 1 with optimized waveform and sensing matrix, (c) RMS error of scene 2 with Alltop sequence and random sensing matrix,
and (d) RMS error of scene 2 with optimized waveform and sensing matrix.
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largest eigenvalues (λmin, λmax) are plotted in Figure 5. As
we can see, (35) holds with the sparsity K ≤ 3 for All-
top sequence and random filtering measurement matrix.
However, with optimized transmit waveform and FIR fil-
ter, (35) can be satisfied until the sparsity is increased to 8.
We note that this simulation does not verify the RIP but
instead provides to proxy to it.

4.3 Target scene recovery
To verify the effectiveness of the transmit waveform and
sensingmatrix optimization in random filtering structure-
based CSR system, we assume that a sparse target scene
has L = 25 range andM = 25 Doppler bins. The CSR sys-
tem transmits a waveform of lengthN = 31 and measures
the received signal with a sensing matrix of P × L, where
P = 25. There are two target scenes in Figure 6. The scene
is recovered by the Alltop sequence and random sens-
ing matrix or optimized waveform and sensing matrix,
and this process is carried out by 1,00 times. Figure 7
shows the root mean squared (RMS) errors of the recov-
ery results of the two target scenes versus SNR. As we
can see, recovery errors with optimized waveform and
sensing matrix are much smaller than the result with All-
top sequence and random sensing matrix. With increased
SNR, the recovery error is obviously decreased.

5 Conclusions
A new notion of random filtering structure-based com-
pressive sensing radar was proposed in this paper. To
decrease the coherence between the sparse represen-
tation and sensing matrices, a computational frame-
work for optimizing the transmit waveform and sensing
matrix separately and simultaneously was introduced. We
showed that optimized transmit waveform and sensing
matrices lead to smaller mutual coherence between differ-
ent target responses.We also useMonte Carlo simulations
to verify whether our optimized results satisfy RIP. Sim-
ulation results demonstrate that our optimized results
can obey RIP with much higher sparsity than nonopti-
mized waveform and sensing matrix. As we can see, the
reconstruction accuracy was significantly improved by the
optimized transmit waveform and sensing matrices for a
given target scene.
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