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Abstract

In this paper, a SAR target recognition method is proposed based on the improved joint sparse representation
(JSR) model. The 1JSR model can effectively combine multiple-view SAR images from the same physical target to
improve the recognition performance. The classification process contains two stages. Convex relaxation is used to
obtain support sample candidates with the £;-norm minimization in the first stage. The low-rank matrix recovery
strategy is introduced to explore the final support samples and its corresponding sparse representation coefficient
matrix in the second stage. Finally, with the minimal reconstruction residual strategy, we can make the SAR target

representation classification (SRC) method.

classification. The experimental results on the MSTAR database show the recognition performance outperforms
state-of-the-art methods, such as the joint sparse representation classification (JSRC) method and the sparse
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1 Introduction

Synthetic aperture radar (SAR) is a high-resolution imaging
radar. It can work regardless of climatic circumstances and
time constraint. Thus, it is widely applied in kinds of mili-
tary and civilian areas such as disaster assessment, resource
exploration, and battlefield reconnaissance. SAR target rec-
ognition plays an important role in the automatic analysis
and interpretation of the SAR image data. Over the past
several decades, although lots of algorithms are exploited
in SAR target recognition [1-3], it is a challenging issue
due to the complexity of the measured information such as
speckle noises, variation of azimuth, and poor visibility.
Therefore, there is still no commonly agreed-upon system
that settles SAR target recognition so far.

SAR target recognition includes two important parts,
feature extraction and classifier construction. For feature
extraction, classic methods, such as principal component
analysis (PCA) [4], independent component analysis (ICA)
[5], linear discriminant analysis (LDA) [6], nonnegative
matrix factorization (NMF) [7,8], and their improved algo-
rithms [9], have been successfully used in SAR target
recognition. Beyond those, in consideration of most fea-
tures in nature distributing as a manifold structure, the
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manifold-based feature extraction algorithms become a
new trend [10,11]. Though kinds of feature extraction
methods have their own advantages, no method exten-
sively can be accepted. As for the classifier, support vector
machine (SVM) and K-nearest neighbor (KNN) are the
most common choices. To improve the performance of
SAR target recognition, the classifying results under differ-
ent features are fused to make the final classifier [12]. In
addition, sparse representation which closely bonds the
feature extraction with the classifier has gradually aroused
researchers' attention. Some advantages of sparse repre-
sentation for recognition are mentioned in [13] such as its
insensitivity to feature extraction method under certain
conditions and the natural discriminative information in
sparse representation coefficients, i.e., feature extraction is
implicit in recognition and the classifier can be designed
according to the sparse representation coefficients. The re-
sults for face recognition show the great competitiveness
compared with other methods [13]. Due to these advan-
tages of sparse representation, Thiagarajan et al. [14] and
Estabridis [15] both introduced sparse representation in
target recognition. Thiagarajan et al. explained sparse rep-
resentation from the point of manifold, which indicates
the strength of sparse representation for SAR target recog-
nition. They selected random projections as the feature
extraction method and solved sparse representation using
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the greedy algorithm. Knee et al. [16] used image parti-
tioning and sparse representation based feature to handle
SAR target recognition.

The preceding methods only take one SAR image as
the input signal to decide which class the target in the
image belongs to. In practice, we can obtain multiple-view
SAR images of the same physical target. Thus, some tried
to make use of multiple-view SAR images under the the-
ory framework of sparse representation. Exploring the
sparse representation for the multiple input signals at the
same time is a joint sparse representation problem [17,18].
Therefore, Zhang et al. [19] used the joint sparse represen-
tation (JSR) model to seek common sparse patterns
between multiple-view SAR images. In the JSR model,
multiple-view SAR images are integrated in a matrix form.
Under this context, the JSR model finally becomes a
mixed-norm problem. An efficient and accurate greedy al-
gorithm, CoSaMP [20,21], is utilized to solve the model,
and the classification algorithm is named as joint sparse
representation classification (JSRC) which is similar with
sparse representation classification (SRC).

With the inspiration from the JSR model, we propose
an improved joint sparse representation (IJSR) model for
SAR target recognition with multiple-view images. Com-
pared with the original JSR model, there are two im-
provements in the IJSR model. The first is that sparse
representation for the single-view image is described by
a ¢;-norm minimization model. The second is that com-
mon patterns in sparse representation coefficients of
multiple-view images are sought by low-rank matrix re-
covery. The ¢;-norm minimization model has two bene-
fits for SAR target recognition. One benefit is that the
proper sparse level parameter which is hard to choose in
the original JSR model is not needed anymore. Another
benefit is that sparse representation coefficients of the ¢;-
norm minimization are more concentrated in one class,
which enhances the discrimination of sparse representa-
tion coefficients. Different from the greedy algorithm in
the original JSR model, the £;-norm minimization usually
produces more nonzero entries in sparse representation
coefficients of SAR target images. With the excessive non-
zero entries, it becomes difficult to seek support samples
which refer to the samples in the dictionary that associate
with the nonzero entries in sparse representation coeffi-
cients. To tackle this problem, we further make some hy-
potheses that the matrix of joint sparse representation
coefficients associating with support samples is low rank,
and the rest that excludes the joint sparse representation
coefficients associating with support samples is a sparse
matrix. These hypotheses are based on the following rea-
sons. According to the common sparse pattern assump-
tion in the JSR model, these images with close views share
the same support sample set. The common sparse pattern
means important sparse representation coefficients which
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correspond to the support sample set have the same in-
dexes in the dictionary and occupy the most nonzero en-
tries in sparse representation coefficients. The problem of
seeking the support samples converts to a low-rank matrix
recovery problem; meanwhile, the low-rank matrix recov-
ery algorithm could directly obtain the proper sparse rep-
resentation coefficients on support samples.

The paper is organized as follows: In Section 2, we re-
view the joint sparse representation model and describe
the classification strategy. Section 3 analyzes the disad-
vantages of joint sparse representation and proposes the
improved joint sparse representation model along with
the classification strategy. In Section 4, we verify the
proposed method with experiments on publicly available
MSTAR database and compare with the classical SRC
method and the original JSRC method.

2 Joint sparse representation for SAR target
recognition

In the real scenario, the multiple-view SAR images from
one same target can be captured, and those images are
highly correlated. When a uniform dictionary is used for
these multiple-view images' sparse representation, an im-
plicit correlation in the sparse representation coefficients
can emerge. The correlation is defined as the common pat-
terns which specifically mean the same positions of the
nonzero entries in the sparse representation coefficients in
the work of Zhang et al. [19]. The JSR model, which can
combine the sparse representation coefficients of multiple-
view images to extract the common patterns, is introduced
in SAR target recognition.

2.1 Joint sparse representation model

Supposing each image under different views has been
translated to a vector y;, given J views of the same phys-
ical target, the J sparse representation problems can be
defined together as

{f(/}}(:l: mAin] 211‘:1“yi_Dxi”z subject to (1)
S j=1
l|xil|, <K, V1<j<]

where D is the dictionary which usually consists of the
training sample vectors, X; is the sparse representation
coefficient vector associating with the jth inputting image
vector yj, and K is a preset parameter that controls the
sparse level. Using the matrix notations X = [x1, X, ..., X7,
X = [X1,%2,...,%],and Y = [yl,yz, ...,y]], the above model
can be rewritten as

X = n)l(in||Y—DX||52E subject to || X, <JK (2)

where || - Il represents the Frobenius norm which calcu-
lates the sum of squares of every entry in the matrix,
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and || - lly is the €y-norm of the matrix, which is defined
as the number of nonzero entries in the matrix. Since X
is decomposed to compute the column one by one, this
model cannot embody the correlation information be-
tween the multiple-view SAR images. To combine the
sparse representation coefficients under the multiple
views, an assumption that the multiple views of the same
physical target share a common pattern in their sparse
representation coefficient vector with respect to the
same dictionary is made. The common pattern means
the indexes of atoms in the dictionary that participate in
the linear reconstruction of the inputting SAR images
are the same for multiple-view SAR images, though the
coefficients corresponding to the same atom may be dif-
ferent for each view. Specifically, this assumption allows
all the J observations sparsely represented by a same small
set of atoms selected from the dictionary while weighted
with different coefficient values. This can be achieved by
solving an optimization problem with the £y/f, mixed-
norm regularization as

X = rr)l(in||Y—DX||§: subject to [|X]|,, ,, <K (3)

where the |[X||,, ,, is the mixed-norm of the matrix X
which is defined by two computing processes. Firstly,
the £y-norm is applied on each row of the matrix, and
then the £y-norm of the resulting vector is computed as
the result of the mixed-norm. The K training samples
corresponding to the nonzero entries in the resulting
vector are the support samples whose class labels reflect
the label of the testing SAR target in some sense. The
number of support samples is usually far less than the
total number of samples.

2.2 Joint sparse representation classification

The classification strategy for the JSR model is similar
with the SRC model, and the minimal reconstruction re-
sidual/error criterion is used. The classification model is
defined as

= min YD), @)

c= rrzin HY_YCH}"
i

i=1,%.,
where ¢ and ¢ are the class labels, Y¢ is the recovery for Y
with only the cth training samples involve in the recon-
struction, and the operation &(-) is redefined as preserving
the rows corresponding to class ¢ in the matrix X and set-
ting all others to be zeroes. The Frobenius norm indicates
that the decision is based on the total reconstruction error
of multiple views. This whole classification algorithm is
named as JSRC, and greedy algorithm can solve this
problem in an approximate sense. Since greedy algorithm is
one way to solve sparse representation without any
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transformation for the original sparse representation model,
we call it £y-norm model/minimization in this paper.

3 Improved joint sparse representation

In the JSR model, the common pattern is sought on the
fo-norm minimization model whose performance de-
pends on a proper choice of parameter K. According to
the ¢yp-norm minimization, the mixed-norm strategy is
used to explore the common patterns in sparse repre-
sentation coefficients of multiple SAR images. However,
the proper K is hard to determine. Therefore, in this sec-
tion, we propose an improved joint sparse representation
model which firstly replaces €o-norm minimization with
£1-norm minimization to avoid the parameter K selection
problem and then adopts the low-rank matrix recovery
strategy to seek the common patterns based on the char-
acteristics of the £;-norm minimization solutions.

3.1 Improved joint sparse representation model
As Section 2.2 says, greedy algorithm is one way to solve
sparse representation in the approximate sense. Another
way, which has strong theoretical foundations, is convex
relaxation. Under the theoretical framework of convex
relaxation, the £y-norm in the original sparse representa-
tion model is replaced with the ¢;-norm, and then the
original model is converted as a convex quadratic pro-
gramming problem. This solving strategy is called the ¢;-
norm minimization in this paper. Zhang et al. did not dis-
cuss the possibility to use convex relaxation in the JSR
model [19]. So, we firstly explore the potentiality of the ¢;-
norm minimization through an elaborate experiment.
There is a key parameter K in the JSR model. It represents
the sparse level of the inputting signals and needs to be set
manually. However, no algorithm can predict K accurately,
and K may be a variable even with a fixed number of views.
Figure 1 gives a pictorial illustration for the JSR coefficient
matrix with different parameter K. Dimensionality of each

Proper K Small K Big K

s

27 = ~
X X X?
Figure 1 The JSR coefficient matrix with different parameter K. The
sparse representation coefficients from four views denoted as {x/ };.;
.3
and the JSR coefficients matrix denoted as {X’}_ with different K.
.
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sparse representation coefficient vector is 10, and every
entry in sparse representation coefficient vector is repre-
sented with one block. Colored blocks indicate nonzero en-
tries and white blocks indicate zero entries. Let us assume
that the first five blocks in each sparse representation vector
correspond to the samples from one same class, and the rest
correspond to the sample set of another class. To demon-
strate the performance of the different parameter K, we sup-
pose the SAR images are from the first class target in
Figure 1. If a proper parameter K is set, all support samples
in the JSR coefficient matrix will concentrate in the first
class which is shown as X'. However, the perfect choice of
the parameter K is very difficult in real situation. If a too
small K is selected, a JSR coefficient matrix with less support
samples would be obtained. X? is the JSR coefficient matrix
with K = 2. Though support samples in X2 are still from the
first class, the reconstruction error becomes bigger with less
support samples. In worse case, if SAR images from differ-
ent classes are similar, the support samples will distribute on
different classes. Under this context, the recognition be-
comes more difficult. If a too big K is chosen, the JSR coeffi-
cient matrix would contain more support samples as X3
whose parameter K is 5. As Figure 1 shows, the support
samples scatter on different classes, and it results in two
close residuals that may classify the target to the second
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class. To avoid seeking the perfect K, €y-norm minimization
is replaced with ¢;-norm minimization without setting the
parameter K.

A more important motivation behind this replacement
is that a more discriminative ability is shown with the
¢1-norm minimization in SAR target recognition accord-
ing to our experiments. In our experiments, two kinds
of sparse representation coefficients of three samples
from BMP2, T72, and BTR70, which are the class labels
in the public database MSTAR, are shown in Figures 2,
3, and 4. One kind of sparse representation coefficients
is obtained via £,-norm minimization and another one is
solved through ¢;-norm minimization. To be fair, we
firstly solve ¢;-norm minimization, and then, according
to the number of nonzero entries in the £;-norm solu-
tion, we specify the number of nonzero entries which is
defined as the parameter K in the £)-norm solution. The
dictionary is composed of 698 training samples. Each
dictionary atom index in Figures 2, 3, and 4 is associated
with one training sample. The first 233 training samples
are from BMP2. The coefficients associated with BMP2
are presented in blue lines which are ended up with a
blue circle mark. The training samples that have index
from 234 to 465 belong to T72, and the corresponding
coefficients are indicated as red lines with a red circle
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Figure 2 Sparse representation coefficients of a BMP2 sample solved via £,-norm minimization and £;-norm minimization.
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Sparse Representation Coefficients Distribution of a T72 sample (L0-norm)
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Figure 3 Sparse representation coefficients of a T72 sample solved via £,-norm minimization and £;-norm minimization.

Sparse Representation Coefficients Distribution of a T72 sample (L1-norm)
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mark in their ends. The rest of the training samples,
whose coefficients are described by green lines with the
green circle mark in their tails, come from BTR70.
Though some big coefficients exist in the £,-norm solu-
tion, sparse representation coefficients scatter on differ-
ent classes. Meanwhile, the coefficients of the £;-norm
solution almost concentrate on one class as well as the
right class. Obviously, more concentrated coefficients re-
veal more discriminative information.

With the experimental results and the analysis, we adopt
the ¢;-norm minimization based algorithm to solve sparse
representation coefficients for SAR image under each view.
The ¢;-norm minimization model can be expressed as

J
{’A‘i},]'ﬂ: min ZH"/‘Hl

{ij}/:l j=1 (5)

subject to ‘yj—ijHT <e, Vi<j<],

This model can be solved by computing the sparse
representation coefficient vectors one by one as well.
However, there are another two problems for the £;-norm
minimization model. First, the solution {*1},1-:1 using (5)
usually contains more nonzero items. In ideal case, we ex-
pect a few nonzero items in {x; };:1 because this can give us

a clear position indication of support samples. Second, the
sparse representation coefficients of each inputting
image with close azimuth are obtained independently.
Therefore, the combination between multiple-view im-
ages is lacking, which makes the solution lost the joint-
ing meaning.

Although the sparse representation coefficients from
different views may be different in the coefficient distri-
bution, they share most support samples. The sparse
representation coefficients %/, j=1,...,J with J views
can be combined as the matrix X = [x!, x2,...,%/]. Non-
zero items associated with support samples in sparse rep-
resentation coefficients occupy the majority. With this
characteristics, we can consider that the matrix X is com-
posed of a joint sparse representation coefficient matrix S
that is named as the signal matrix and a noise matrix N.
Since the number of nonzero entries of S is expected to
be smaller to improve the discriminative ability of the sup-
port samples and the positions of the nonzero entries in
each column are expected to be the same, we suppose S is
low rank. With regard to the noise matrix N, since the in-
putting images are highly correlated, it should have only a
few nonzero items. Therefore, it can be considered as a
sparse matrix. The goal is to solve S which really helps the
recognition. Under this context, the problem is converted
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Figure 4 Sparse representation coefficients of a BTR70 sample solved via £,-norm minimization and £;-norm minimization.

into a low-rank matrix recovery problem. The low-rank
matrix recovery can be defined as

rsnli\fn rank(S) +A\|N||, subjectto X=S+N (6)
where rank(-) stands for the rank of matrix and A bal-
ances the rank of the signal matrix S and the €y-norm of
the noise matrix N. Since it is hard to find the solution
of (6), some relaxations are made to simplify it. The op-
eration rank(-) is replaced with the nuclear norm |||l
which computes the sum of singular values of a matrix,
and the operation |-l is substituted with operation
[l - l; which is defined by adding every absolute value of
entries in the matrix. Then, (6) can be rewritten as (7).

This becomes a robust principal component analysis
problem [22].

r;lli\ln IIS]|, +A|INJ|; subjectto X=S+N (7)

Apparently, the rank of the signal matrix rank(S) in
the JSR matrix, the number of view J, and the proper
sparse level K have close relations, which affects the rec-
ognition performance in some sense. With consideration
of the computation cost, the number of views should be
limited in a proper range. Generally, ] is far less than the
dimensionality of the inputting sparse representation

coefficient vector. Therefore, the maximal rank of the
signal matrix is definitely no more than the number of
views. When rank(S) < K, the nonzero entries with the
same indexes are not enough to reveal real support sam-
ples. The support samples in this case tend to be the lin-
ear combinations of K real support samples, which also
can make the right recognition. When rank(S) = K, the
low-rank matrix S is very likely to attain the K real sup-
port samples which contains explicit classification infor-
mation. This is the best situation for recognition. When
rank(S) > K, the low-rank matrix S fails to find the support
samples. As a result, small coefficients tend to appear on
nonsupport sample to meet the low-rank condition, while
most sparse representation coefficients solved by (5) will
remain in the signal matrix S. The reconstruction to the
multiple-view SAR images may become worse than the re-
construction by £;-norm solutions in (5) as small coeffi-
cients' influence. However, the recognition is still right for
most cases due to the sparse representation coefficients
via (5) almost concentrating on one class.

According to the above analysis, the IJSR model can
be described as two stages. The first stage is seeking the
¢1-norm solutions for multiple-view SAR images via (5).
The second stage is combining the ¢;-norm solutions
from the first stage to recover a low-rank matrix which
can indicate the common patterns through (7). Different
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from the JSR model, in the first stage, the ¢;-norm
minimization in the IJSR model avoids choosing a
proper sparse level which is hard to predict. In addition,
the solution for the ¢;-norm minimization contains
more discriminative information. In the second stage,
discarding the mixed-norm strategy in JSR, the problem
of finding the support samples is converted into a low-
rank matrix recovery problem.

3.2 Improved joint sparse representation classification

Similar with the classification strategy in SRC and
JSRC, we classify a testing sample based on how well
the new low-rank matrix associated with each class re-
produces the testing sample under J views. 6°(-) is an
operator that has the same meaning with 6°(-) in Sec-
tion 2.2. Here, 6°(S) represents a new matrix whose
nonzero entries are the entries in the matrix S associ-

, T .

ated with class c¢. Let S = [S?,...,SCT,...,SE , C is the
number of class, and the sub-matrix S, stands for a
matrix composed of rows in S associated with the cth

Then, &°(S) 5(S) =
[OlT, ...,Ochl,SCT,OCTH, ...,OE]T. The given testing sample
matrix under J views can be approximated as

class. can be defined as

Y, = D&(S) (8)
Based on the approximation residuals on each class,
we can make the classification by the minimum approxi-

mation residual criteria, which can be described as

¢ = min [Y-Y, (9)

The improved JSR classification (IJSRC) algorithm is
summarized in Algorithm 1.
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4 Experiments

In this section, our experiments are implemented on the
public database MSTAR. All SAR images in the MSTAR
database are X-band with 0.3 mx 0.3 m resolution.
Three kinds of targets with depression angle 17° are
chosen as the training samples and seven categories with
depression angle 15° as the testing samples. The depres-
sion angle, class, serial number, and sample size are
listed in Table 1.

The database is firstly preprocessed as follows: The
logarithm transformation is made to turn the multiplica-
tive speckle to the additive noise. To reduce the disturb-
ance from the background of SAR image, a 50 x 50
sub-image which mainly contains the SAR target is ex-
tracted in the center of the original SAR image. Then,
PCA is used as the feature extraction algorithm for its
convenience and effectiveness.

4.1 One important precondition

The JSR model presumed that inputting samples that
are from the same class share the same patterns which
means samples from the same class should be a linear
combination of the same support sample set [19]. How-
ever, it is known that the SAR images of the same phys-
ical target change a lot along with the azimuth variation.
So, it cannot be ensured that the images with a huge azi-
muth variation still share the same pattern. Thus, it is
worth pointing out that the inputting samples sharing
one same pattern has one important precondition that
all multiple-view images involved in the joint decision
should be similar, i.e., the multiple-view images should
have close azimuths. One verification experiment is con-
ducted. Two groups of five inputting images that belong
to BMP2-c21 with depression angle 15° are sparsely rep-
resented. One group of images has greatly different

Algorithm 1. IJSRC

1. Input: Multiple view SAR images matrix Y, training sample set/dictionary D, (and
optional error tolerance € > 0 and low-rank recovery parameter A.)

2. Normalize each column of Y and D.

3. Compute sparse representation coefficient matrix X using (5).

4. Solve the low-rank matrix recovery problem (7) to obtain the optimal low-rank

matrix S.

5. Compute the approximation residuals associated with each class, and deduce the

class label by (9).
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Table 1 Experimental database information

Type Depression angle (deg) Size
Training set BMP2-c21 17 233
BTR70-c71 17 233
T172-132 17 232
Testing set BMP2-c21 15 196
BMP2-9563 15 195
BMP2-9566 15 196
BTR70-c71 15 196
172-132 15 196
172-812 15 195
T72-s7 15 191

azimuths. Another group of images has close azimuths.
The dictionary atoms belong to BMP2-c21 with depres-
sion angle 17°. There are 233 training samples (i.e., 233
dictionary atoms). For convenience, we use the greedy
algorithm to select the support samples. The number of
support samples is set as 5 in this experiment. The test-
ing sample and corresponding support samples indexes
are shown in Tables 2 to 3.

The testing samples have greatly different azimuths in
Table 2 and have close azimuths in Table 3. As shown in
Table 3, five samples with close azimuths apparently
have a more similar support sample set. For the samples
with greatly different azimuths, the common support
samples cannot be found as example in Table 2. It is ob-
vious that the right recognition cannot be made if we
adopt testing samples in Table 2. Therefore, we expect
more samples with a closer azimuth interval in practice.
Fortunately, in real case, one can capture more SAR im-
ages of one physical target in a much smaller azimuth
interval. In this paper, all experiments are performed
under the condition that multiple-view images have
close azimuths.

4.2 Experimental results and discussions
To demonstrate the performance, our proposed IJSRC al-
gorithm is compared with the state-of-the-art methods,

Table 2 The support sample indexes of five samples with
greatly different azimuths

Testing sample Azimuth (deg) Support sample
number set indexes

1 20.0678 50, 51, 53, 103, 166

2 91.0678 59, 60, 114,176, 177
3 243.0678 28,171,198, 199, 200
4 301.0678 38, 40, 87, 88, 150

5 336.0678 44,96, 158, 159, 160
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Table 3 The support sample indexes of five samples with
close azimuths

Testing sample Azimuth (deg) Support sample

number set indexes

1 243.0678 28,171,198, 199, 200
2 2440678 27,28, 139,198, 199
3 248.0678 29, 140, 142, 199, 200
4 249.0678 29, 30, 140, 199, 201
5 250.0678 30, 140, 199, 200, 201

such as SRC [13] and JSRC [19]. Since the SRC algorithm
is applied for the single image, the comparison experiment
is implemented by concatenating the images under J views
as a vector to form the final inputting vector in SRC.
Then, the multiple-view sparse representation could be
regarded as a single-view problem and solved by SRC. The
SLEP toolkit [23] is applied for seeking the £;-norm solu-
tions in IJSRC. Considering the efficiency as well as the ac-
curacy, we still use CoSaMP greedy algorithm in JSRC as
[19] does.

The first experiment is implemented to show the rec-
ognition performance of SRC, JSRC, and IJSRC with dif-
ferent feature dimensionalities. The results are shown in
Figure 5. IJSRC outperforms SRC and JSRC when the
dimension is less than 160. IJSRC achieves maximum
recognition rate 98.535% with dimension 48. The max-
imum recognition rates for JSRC and SRC are 98.022%
and 97.363%. That is to say, IJSRC performs better in
low dimension. This result can well fit the practical re-
quirement that SAR target recognition systems hope a
better recognition result with a lower feature dimension.
However, the recognition rate of IJSRC decreases with
increasing of dimension, especially when the dimension
exceeds 160. There is one reason in our opinion. Since
the noises exist both in training samples and testing
samples, the noises become strong with the increasing
of the feature dimensionality, which can reduce the rele-
vance of features for the multiple-view SAR images.
Therefore, an improper low-rank matrix is generated by
IJSRC, which leads to a bad recognition.

In the second experiment, we compare the recognition
performance of SRC, JSRC, and IJSRC with different
number of views. Figure 6 shows the recognition results
with the dimensionality fixed as 64. Three approaches all
present the ascending trend along with the increase of
the number of view. Recognition rate of IJSRC grows
faster than one of JSRC and SRC. As for the best recog-
nition performance, the maximal recognition rate of
JSRC is 98.75% and the maximal recognition rate for
SRC is 99.927%, both with the number of view as high
as 15. In comparison, IJSRC reaches 100% when the
number of view reaches J > 10.
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Figure 5 Recognition rates of SRC, JSRC, and IJSRC. The number of view is fixed as 5 and the dimensionality ranges from 32 to 320.
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Since IJSRC is improved on the foundation of JSRC,
the third experiment is carried to exhibit the improve-
ment of IJSRC through reconstructing the feature matrix
of testing samples. Figures 7, 8 and 9 give the recon-
struction errors of three examples from three classes by
using the IJSR model and the JSR model, respectively.
Three black bars in each subplot denote the reconstruc-
tion errors on three classes. As the reconstruction errors
shown in Figure 7, JSRC gives a wrong prediction while
IJSRC makes a right decision according to the minimum
approximation residual criteria. For the class BMP2, the

reconstruction error using the JSR model is maximal,
which is the worst case in recognition. Figure 8 shows
the situation that the JSR model infers a wrong result
while the IJSR model obtains the right predication of the
class label with a slightly smaller reconstruction error on
T72 than on BMP2. In Figure 9, both the JSR model and
the IJSR model can make the right prediction. However,
the IJSR model slightly outperforms the JSR model with
a smaller reconstruction error. Actually, the recognition
rate of both the JSR model and the IJSR model can reach
100% on the class BTR70. Though we sometimes find

Dimensionality=64
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Figure 6 Recognition rates of SRC, JSRC, and IJSRC. The dimensionality is fixed as 64 and the number of view ranges from 2 to 15.
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Figure 7 Reconstruction errors of a BMP2 sample via IJSR model and JSR model, respectively.

that the reconstruction error on the right class in the reconstruction errors on the wrong class. That is to say,
JSR model is slightly smaller than the reconstruction though the IJSRC algorithm may have poor reconstruc-
error on the right class in the IJSR model, this situation  tion to the inputting SAR images, the right recognition
tends to happen when the reconstruction errors on the result is still guaranteed. This phenomenon fits the ana-
right class are both remarkably smaller than the lysis with regard to rank(S) > K in Section 3.2. In most
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Figure 8 Reconstruction errors of a T72 sample via IJSR model and JSR model, respectively.
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Figure 9 Reconstruction errors of a BTR70 sample via IJSR model and JSR model, respectively.
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cases, the reconstruction via IJSRC outperforms the re-
construction with JSRC according to our experiment.
Therefore, the IJSR model outperforms the JSR model
generally.

5 Conclusions

An IJSR model for SAR target recognition under mul-
tiple views is proposed in this paper. In the IJSR model,
the €y-norm minimization is replaced by the £;-norm
minimization to solve the sparse representation of single-
view SAR image, which can overcome the problem of
choosing the proper sparse level and concentrates sparse
representation coefficients in one class. Moreover, the
low-rank matrix recovery strategy is proposed to seek the
common support samples for SAR target recognition
under multiple views. Experiments on the MSTAR data-
base show that our algorithm outperforms JSRC and SRC
in a low-dimensional feature space. With the increase of
the number of view, the recognition rates of IJSRC in-
crease faster and reach a higher point than those of JSRC
and SRC. In conclusion, IJSRC generally outperforms
JSRC and SRC.
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