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Abstract

This paper is concerned with linear precoding designs for multiuser downlink transmissions. We consider a
multiple-input single-output (MISO) system with multiple single-antenna user equipment (UE) experiencing non-
homogeneous average signal-to-noise ratio (SNR) conditions. The first part of this work examines different precoding
schemes with perfect channel state information (CSI) and average SNR at the base-station (eNB). We then propose a
weighted minimummean squared error (WMMSE) precoder, which takes advantage of the non-homogeneous SNR
conditions. Given in a closed-form solution, the proposed WMMSE precoder outperforms other well-known linear
precoders, such as zero-forcing (ZF), regularized ZF (RZF), while achieving a close performance to the locally optimal
iterative WMMSE (IWMMSE) precoder, in terms of the achievable network sum-rate. In the second part of this work, we
consider the non-homogeneous multiuser system with limited and quantized channel quality indicator (CQI) and
channel direction indicator (CDI) feedbacks. Based on the CQI and CDI feedback models proposed for the Long-Term
Evolution Advanced standard, we then propose a robust WMMSE precoder in a closed-form solution which takes into
account the quantization errors. Simulation shows a significant improvement in the achievable network sum-rate by
the proposed robust WMMSE precoder, compared to non-robust linear precoder designs.

Keywords: MMSE; Multiuser; Precoding; Beamforming; Zero-forcing; Regularized zero-forcing; Quantized feedback;
Convex optimization

1 Introduction
Multiuser downlink precoding in a wireless system refers
to a scenario where a multiple-antenna base station (eNB)
multiplexes several user data streams in space, then simul-
taneously transmits to multiple-user equipment (UE).
When full channel state information (CSI) is available at
the eNB, it is possible to improve the system’s spectral
efficiency, albeit proper precoding techniques at the eNB.
Research onmultiuser precoding designs is plentiful in the
literature. Dirty-paper coding (DPC) has been proved as
the capacity-achieving multiuser precoding strategy [1-4].
Unfortunately, due to its high complexity implementation
that involves random nonlinear coding, DPC only remains
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as a theoretical benchmark. This makes linear beamform-
ing techniques an attractive alternative because of their
reduced complexity relative to DPC.
Finding the optimal transmit beamforming design to

maximize the network sum-rate subject to a transmit
power constraint is a non-convex and non-trivial prob-
lem [5]. Thus, it is desirable to study suboptimal beam-
forming strategies whose performance is close to that of
DPC. In zero-forcing (ZF) precoding, the beamforming
weights are designed to eliminate all inter-user interfer-
ence. While ZF precoding is simple to implement, its
performance is poor, especially at low signal-to-noise
ratio region [6]. Regularized ZF precoding [6] was then
proposed to address the drawback of ZF precoding and
improve its performance significantly. Interestingly, regu-
larized ZF precoding can also be interpreted as a Wiener
transmit filter, i.e., minimummean squared error (MMSE)
precoding, which is obtained from theminimization of the
non-weighted sum mean squared error (MSE) [7,8].
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Another approach to find the optimal transmit beam-
forming vectors is to directly solve the non-convex sum-
rate problem [5,9]. In particular, the work in [9] proposed
an iterative algorithm based on the uplink-downlink MSE
duality. Using the MSE duality, the algorithm’s approach
is to iterate between the optimization of the uplink
power using geometric programming, uplink receive fil-
ters, and downlink receive filters. Different from [9], the
approach in [5] was to establish the equivalence between
the sum-rate maximization problem and the minimiza-
tion of weighted sumMSE problem. Thus, the non-convex
former problem can be solved via the latter by iteratively
updating the weights, the receive filters, and the trans-
mit filters. While both approaches in [5,9] are capable of
achieving at least a local optimum, they come with the
drawback of high complexity due to the iterative optimiza-
tion procedure.
In this work, we are interested in designing linear

MMSE precoders for a multiple-input single-out (MISO)
system with non-homogeneous average signal-to-noise
ratio (SNR) conditions. In particular, the UEs, each
equippedwith a single antenna, are assumed to experience
different channel strength statistics and the background
noise power, which reflects in different average SNRs.
The reason for our consideration to a non-homogeneous
system arises from practice where the UEs are ran-
domly located within the eNB’s cell limit. Since the
large-scale fading depends on the transmission envi-
ronment and the distance between the eNB and each
individual UE, the channel strength statistics to distinct
UEs are effectively different. Similarly, the background
noise including both thermal noise and co-channel inter-
ference from nearby cells, should be also different for
each UE.
In the first part of this work, we study the MMSE pre-

coder for the system with perfect CSI and average SNR
knowledge at the eNB. Due to the consideration of non-
homogeneous SNR conditions, the approach in [6] to
derive the regularized ZF precoder is no longer possi-
ble. On the other hand, the MMSE precoder obtained
from the non-weighted sum-MSE minimization [7,8] may
result in poor network sum-rate performance. Inspired
by the iterative weighted minimization of MSE algorithm
[5], we propose a weighted MMSE (WMMSE) precoder
where the weights and receive coefficients are predeter-
mined. The key aspect of the proposedWMMSE precoder
is that it does take advantage of the non-homogeneous
average SNR conditions at the UEs to judiciously deter-
mine the weights and receive coefficients. The proposed
WMMSE precoder will be presented in a closed-form
solution using a non-iterative procedure, which is much
simpler to obtain than the iterative WMMSE precoder
in [5]. Interestingly, numerical results show that the pro-
posed precoder can achieve the sum-rate performance

close to the locally optimal one obtained by the iterative
algorithm in [5].
In the second part of this work, we examine the MMSE

precoding design for the system with limited and quan-
tized channel quality indicator (CQI) and channel direc-
tion indicator (CDI) feedbacks. Under this consideration,
the eNB only acquires imperfect CSI and average SNR
through the quantized CDI and CQI feedbacks from
each UE. Thus, robust precoding designs are necessary to
address the errors in the quantization process. Robust reg-
ularized ZF precoding and robust MMSE precoding have
been investigated in [10,11] for the system with homo-
geneous SNR conditions. Applying the same method to
predetermine the weights and receive coefficients, we
then propose a robust WMMSE precoder in a closed-
form solution that accommodates the non-homogeneous
SNR conditions as well as the quantization errors. Simu-
lations show that the proposed scheme outperforms the
robust MMSE precoder proposed in [11] as well as other
non-robust precoding designs.
Notations: (X)∗, (X)T , and (X)H denote the conjugate,

transpose, and conjugate transpose (Hermitian opera-
tor) of the matrix X, respectively; [X]u,p stands for the
(u, p)th entry of the matrix X; Tr{X} denotes the trace
of the matrix X; and x� denotes the optimal value of the
variable x.

2 Systemmodel
Consider the downlink transmission of a multiuser MISO
(MU-MISO) system with an M-antenna eNB sending
independent data symbols to K remote single-antenna
UEs. Let ui be the information symbol of UE-i with
unit average energy, i.e., E[|ui|2]= 1, and w̃i be the
M × 1 beamforming vector for UE-i. By means of lin-
ear precoding, the transmitted signal is formed as x =∑K

i=1 w̃iui, where x ∈ C
M is the signal vector transmit-

ted over the M antennas. Given P as the power budget
at the eNB, the beamformers are imposed by the power
constraint

∑K
i=1 ‖w̃i‖2 = Tr

{
W̃W̃H

}
≤ P, where W̃ =

[w̃1, . . . , w̃K ].
The signal observed at UE-i can be modeled by

yi = √
ρihHi x + ni

= √
ρihHi w̃iui + √

ρihHi
K∑
j �=i

w̃juj + ni, (1)

where h∗
i ∈ C

M×1 is the small-scale fading channel vec-
tor from the eNB to the ith UE, ni is the AWGN at UE-i,
and ρi represents the average SNR of UE-i. Herein, hi and
ni can be normalized such that they contain i.i.d. circu-
lar symmetric complex Gaussian random variables with
zero mean and unit variance. Due to the normalization, ρi
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contains the effects of both large-scale fading and back-
ground noise at UE-i. To reflect the non-homogeneous
SNR conditions, ρi’s are assumed to be different for the K
users. In addition, it is assumed that each UE, say UE-i,
has perfect estimation of its downlink channel hi and its
average SNR ρi, which are then fed back to the eNB.
Denote H = [h1, . . . ,hK ]H , u = [u1, . . . ,uK ]T , and n =

[n1, . . . , nK ]T . By stacking the received signals at the K
UEs into y = [y1, . . . , yK ]T , one has

y = �
1
2HW̃u + n, (2)

where � = diag(ρ1, . . . , ρK ).
For a given beamforming matrix W̃, from Equation 1,

the instantaneous signal-to-interference-plus-noise ratio
(SINR) at the ith UE can be expressed as

SINRi = ρi
∣∣hHi w̃i

∣∣2∑K
j �=i ρi

∣∣hHi w̃j
∣∣2 + 1

. (3)

The system sum-rate is given by
∑K

i=1 log (1 + SINRi).
Thus, subject to the sum power budget P at the eNB, the
system sum-rate is maximized by the following optimiza-
tion

maximize
w̃1,...,w̃K

K∑
i=1

log

⎛⎝1 + ρi
∣∣hHi w̃i

∣∣2∑K
j �=i ρi

∣∣hHi w̃j
∣∣2 + 1

⎞⎠ (4)

subject to
K∑
i=1

‖w̃i‖2 ≤ P.

3 Review of linear precoding strategies for the
multiuser MISO downlink transmission

It is well-known that the optimization problem (4) is non-
convex due to the presence of the variables w̃1, . . . , w̃K in
the denominator of the SINR expression (3). Thus, deter-
mining the optimal w̃i’s is difficult and computationally
complicated in practice. In this section, we briefly review
three exemplary linear beamforming schemes that may
provide good approximated solution to problem (4).

3.1 Zero-forcing precoding
In ZF precoding, the beamforming vectors are designed
such that they do not induce any inter-user interference,
i.e., hHi w̃j = 0 for i �= j. Thus, ZF precoding is only
applicable to the system with K ≤ M. With ZF precod-
ing, the beamformer vector w̃i for UE-i must be scalar to
the unnormalized beamformer vector wi, where WZF =
[w1, . . . ,wK ] is given by

WZF = HH (HHH)−1 . (5)

3.1.1 Equal power scaling allocation
Under this power allocation strategy, each beamformer
vector w̃i is scaled up from the unnormalized beamformer

vector wi with the same normalization factor η, i.e., w̃i =
ηwi. To meet the sum power constraint at the eNB, η is
given by η =

√
P/Tr

{
WZFWH

ZF
}
. Hereafter, this ZF pre-

coding and equal power scaling allocation strategy will be
referred to as the ZF-EPS scheme.

3.1.2 Optimal power allocation - water-filling solution
Under the optimal power allocation strategy, each beam-
former vector w̃i is scaled up from the unnormalized
beamformer vector wi with a distinct factor ηi � √pi,
which is optimally determined. Replacing w̃i = √piwi, the
optimization (4) can be restated as

maximize
p1,...,pK

K∑
i=1

log (1 + ρipi)

subject to
K∑
i=1

γipi ≤ P

pi ≥ 0,

where γi = [
(HHH)−1]

i,i. The optimal solution to the
above problem can be easily found by the water-filling
solution

pi =
[

μ

γi
− 1

ρi

]+
, ∀i, (6)

where [x]+ = max(x, 0) and the water level μ is chosen to
meet the sum power constraint

∑K
i=1

[
μ − γiρ

−1
i

]+ = P.
In general, a user with higher SNR will be allocated with
more power in the water-filling process. Hereafter, the
ZF precoding with the water-filling power strategy will be
referred to as the ZF-WF scheme. Certainly, the ZF-WF
scheme always outperforms the ZF-EPS scheme.

3.2 Regularized zero-forcing precoding
Due to the ill-conditioned behavior of the largest eigen-
value of

(
HHH)−1, the sum-rate obtained by the ZF-EPS

stays constant as M = K → ∞ [6]. To address to the
poor performance of the ZF-EPS scheme, the work in
[6] proposed the regularized ZF precoding where the
unnormalized beamformer matrixWRZF is given by

WRZF = HH (HHH + αI
)−1 , (7)

where α > 0 is the regularizer factor. The normalized
beamformer matrix is then given as W̃ = ηWRZF, where
η is given as η =

√
P/Tr

{
WRZFWH

RZF
}
.

By maximizing the SINR at the UEs, the optimal regu-
larizer was derived as α� = K/P [6]. Note that this optimal
regularizer was only obtained for the case of homoge-
neous SNR conditions ρi = 1,∀i. In contrast, for the
non-homogeneous case, obtaining a closed-form statistic
on the achievable SINR at the UEs is not possible. Thus,
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the technique utilized in [6] is no longer applicable. Fortu-
nately, the regularized ZF precoding can also be obtained
as the MMSE transmit filter through the non-weighted
sum-MSE minimization [7,8]

minimize
WRZF,η

E

{∥∥∥u − η−1�− 1
2 y
∥∥∥2} (8)

subject to η2Tr
{
WRZFWH

RZF
} ≤ P,

where MSEi=E

{∣∣∣ui−η−1ρ
−1/2
i yi

∣∣∣2} is the MSE at UE-i.a

Following the optimization procedure in [7], the optimal
solution to problem (8) can be derived as

WRZF = HH
(
HHH +

∑K
i=1 (1/ρi)

P
I
)−1

. (9)

Again, the normalized beamformer matrix is then given
by W̃ = ηWRZF. Hereafter, the precoder given in (9) will
be referred to as the regularized ZF (RZF) precoder.

3.3 Iterative weightedminimization of mean squared
error algorithm

In [5], the authors proposed a numerical method to solve
the non-convex optimization problem (4) by considering
an equivalent minimization of weighted MSE problem

minimize
�,	,W̃

E

{∥∥∥	 1
2 (u − �y)

∥∥∥2}− log det	 (10)

subject to Tr
{
W̃W̃H

}
≤ P,

where � = diag(λ1, . . . , λK ) is the set of receive coef-
ficients and 	 = diag(ω1, . . . ,ωK ) is the set of weights
associated with the MSEs at the K UEs. Note that the
receive coefficients and the weights are to be optimized
as well as the beamforming matrix W̃ in problem (10).
Compared to the non-weighted MMSE problem (8), the
optimization in (10) assigns distinct receive coefficients
λi’s as well as distinct weights ωi’s to the achievable MSEs
ei � E

{∣∣ui − λiyi
∣∣2}’s for different UEs.

Although problem (10) is not jointly convex, it is con-
vex over each set of variables W̃, 	, and � [5]. Thus, it
is possible to solve problem (10) by alternately optimizing
over one set of variables while keeping the other two fixed.
More specifically, by fixing W̃ andωi’s, the optimal receive
coefficient λi to minimize the MSE is the MMSE receiver

λi = argmin
λi

E

{∣∣ui − λiyi
∣∣2}

=
⎛⎝ K∑

j=1
ρi
∣∣hHi w̃j

∣∣2 + 1

⎞⎠−1
√

ρiw̃H
i hi. (11)

Fixing W̃ and λi’s, the optimal weight ωi can be deter-
mined by the unconstrained optimization

ωi = argmin
ωi

ωiei − logωi

= e−1
i = 1 + SINRi =

∑K
j=1 ρi

∣∣hHi w̃j
∣∣2 + 1∑K

j �=i ρi
∣∣hHi w̃j

∣∣2 + 1
. (12)

Finally, fixing ωi’s and λi’s, the optimal beamformer
vector w̃i is given by

w̃i = argmin
w̃i

K∑
j=1

ωjE
{∣∣uj − λjyj

∣∣2}

=
⎛⎝ K∑

j=1
|λj|2ρjωjhjhHj + μI

⎞⎠−1

hiλ∗
i ωi

√
ρi, (13)

where μ is adjusted to meet the power constraint in (10).
The transmit beamforming set w̃i’s can be put together
into a matrix form as

W̃ = (HH�H	��H + μI
)−1HH�H	�

1
2

= HH
[
HHH + μ

(
�H	��

)−1]−1
�−1�− 1

2 , (14)

where the matrix manipulation A−1B
(
BTA−1B + I

)−1 =(
BBT + A

)−1 B is taken (cf. Equation 162 in [12]).
As proved in [5], the alternate optimization procedure of

λi’s,ωi’s, and W̃ converges monotonically to at least a local
optimal solution. The algorithm, will be referred to as
the iterative minimization of the weighted MSE algorithm
(IWMMSE), can be summarized as follows:

1. Initialize: randomize w̃i,∀i with ‖w̃i‖2 = P/K .
2. Repeat until convergence:

• Update the receive coefficients λi’s as in (11).
• Update the weights ωi’s as in (12).
• Update the transmit beamformer W̃ (14).

4 The proposedWMMSE precoder with perfect
CSI and average SNR knowledge

4.1 The proposedWMMSE precoder
As reviewed in Section 3, the IWMMSE algorithm can
obtain at least a locally optimal solution to the original
sum-rate maximization problem (4). While the IWMMSE
algorithm can significantly outperform the ZF-EPS, ZF-
WF, and RZF schemes, it comes with the drawback of
high complexity due to the iterative optimization proce-
dure. In this section, we propose a WMMSE precoder in
a closed-form solution, which can approach the perfor-
mance of the IWMMSE scheme. The key aspect of the
proposed WMMSE precoder is to take advantage of the
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non-homogeneous SNR conditions at the UE to predeter-
mine the weights and receive coefficients and thus remove
the iterative procedure of the IWMMSE algorithm.
Let gi = ‖hi‖/σni denote the effective small-scale chan-

nel gain to UE-i, one has

H = G[h̃1, . . . , h̃K ]H = GH̃, (15)

where G = diag(g1, . . . , gK ) and h̃i = hi/gi is the unit
norm channel vector to UE-i. Let us define the weighted
MSE cost function

MSE = E

{∥∥∥G�
1
2
(
u − η−1G−1�− 1

2 y
)∥∥∥2} , (16)

where η is normalization factor to meet the power
constraint at the eNB. Herein, η−1g−1

i ρ
−1/2
i is chosen

the receive coefficient, whereas g2i ρi is chosen as
the weight for the MSE at UE-i, which is given as

E

{∣∣∣ui − η−1g−1
i ρ

−1/2
i yi

∣∣∣2}. The intuitions for choosing

these coefficients are as follows:

• The receive coefficients η−1g−1
i ρ

−1/2
i ’s reflect the

different SNR conditions. In addition, these
coefficients can normalize the channels √

ρihi’s to
the same statistics with the same unit norm.

• The weights g2i ρi’s normalize (or whiten) the colored
noises (by g−1

i ρ
−1/2
i ’s) at the UEs. In the IWMMSE

algorithm, the optimal weight ωi, given by 1 + SINRi
as in (12), is analogous to the instantaneous SINR at
the UE-i. Our predetermined weight g2i ρi indeed
reflects this instantaneous SINR, especially at
high-SNR region.

It is to be noted that the proposed approach in minimiz-
ing the weightedMSEmaintains higher emphasis for users
with better SNR conditions. Unlike the non-weighted
MSE minimization in (8), which indirectly leads to bal-
ance the bit-error-rate performance across the users, our
approach is to boost the sum-rate performance instead.
Denote γ = η−2 and let us consider the following

weighted MSE minimization problem

minimize
W,γ

E

{∥∥∥� 1
2G
(
u − √

γG−1�− 1
2 y
)∥∥∥2} (17)

subject to Tr
{
WWH} ≤ γP.

Expanding the cost function, one has

MSE = E

{∥∥∥� 1
2G
(
I − H̃W

)
u − √

γn
∥∥∥2}

= Tr
{
�

1
2G
(
I − H̃W

) (
I − H̃W

)H
G�

1
2

}
+ γK .

(18)

It is observed that both the cost function and constraints
are quadratic in W and linear in γ . Thus, problem (17)

is jointly convex in W and γ , which enables efficiently
optimization techniques to find its optimal solution [13].
Let μ denote the Lagrangian multiplier associated with

the power constraint, the Lagrangian of the convex prob-
lem (17) is then given by

L(W, γ ,μ) = Tr
{
WHH̃H�G2H̃W

}
− Tr

{
�G2H̃W + WHH̃HG2�

}
+ Tr

{
�G2}+ γK + μ

(
Tr
{
WWH}− γP

)
= Tr

{
WH

(
H̃H�G2H̃ + μI

)
W
}

− Tr
{
�G2H̃W + WHH̃HG2�

}
+ γK − μγP + Tr

{
�G2} .

(19)

Since the gradient of the Lagrangian vanishes at opti-
mality [13], one has

∂L(W, γ ,μ)

∂γ

∣∣∣∣
γ=γ �,μ=μ�

= K − μ�P = 0. (20)

Thus, the optimal dual variable μ� is given by μ� = K
P .

In addition,

∂L(W, γ ,μ)

∂W∗

∣∣∣∣
W=W�,μ=μ�

=2
(
H̃H�G2H̃ + μ�I

)
W�

− 2H̃HG2� = 0. (21)

Subsequently, the optimal unnormalized beamforming
matrixW� can be obtained in a closed-form solution

W� =
(
H̃H�G2H̃ + K

P
I
)−1

H̃HG2�

= H̃H
(
H̃H̃H + K

P
�−1G−2

)−1

= HH
(
HHH + K

P
�−1

)−1
G, (22)

where the matrix manipulation A−1B
(
BTA−1B + I

)−1 =(
BBT + A

)−1 B is again utilized. Finally, the optimal nor-
malization factor η� is given by η� =

√
P/Tr

{
W�(W�)H

}
and the optimal normalized beamforming matrix is W̃� =
η�W�. Hereafter, the proposed precoder in (22) will be
referred to as theWMMSE precoder.

Remark 1. It is observed that the proposed WMMSE
precoder resembles the one obtained from the IWMMSE
algorithm in (14). Compared with the RZF precoder (9),
it is interesting to observe that the precoder (22) has a
non-identity regularizer matrix in �−1.
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5 MMSE precoding with quantized CDI and CQI
feedbacks

5.1 CDI and CQI feedback model
This section considers the multiuserMIMO systemwhere
the eNB only possesses imperfect channel and SNR esti-
mation through the limited quantized CDI and CQI feed-
backs from the UEs. No knowledge on the average SNR,
ρi, is available at the eNB. Each UE, say UE-i, has perfect
knowledge of hi, can quantize the direction of its channel
h̃i = hi/‖hi‖ to a unit norm vector ĥi. Let B denote the
number of CDI feedback bits from each UE, and Ci denote
the codebook for UE-i. We assume that the codebook Ci =
{ci1, . . . , ci2B}, consisting of 2B M-dimensional random-
ized vectors with unit norm, is predesigned and known at
the eNB and the corresponding UE-i. It is further assumed
that each codebook is designed independently of each
other. At UE-i, the quantized vector ĥi is chosen by the
criterion

ĥi = arg max
cin∈Ci

∣∣∣h̃Hi cin∣∣∣ . (23)

UE-i then feeds back only the index of ĥi to the eNB,
which requires B bits per feedback.
Besides the CDI feedback, each UE may need to feed

back its CQI to inform the eNB its effective channel con-
dition. Typically, the CQI is based on the instantaneous
SNR at the UE [14]b

SNRi = (P/M)ρi‖hi‖2 = (P/M)g2i ρi. (24)

Instead of transmitting the average SNR ρi or the chan-
nel gain g2i exactly, UE-i uses CQI feedback to inform the
eNB its instantaneous SNR. With unquantized CQI feed-
backs, the eNB can perfectly recover the effective channel
gain g2i ρi for each user.Whereas with quantized CQI feed-
backs, the measured SNR at each UE is mapped into a
certain number of CQI bits. In LTE-Advanced, the num-
ber of CQI feedback bits is typically set at 4 [15]. From
this CQI, the eNB then can apply the CQI-SNR map-
ping to approximate the SNR for each UE [15]. Denote
ŜNRi as the quantized SNR value obtained from the CQI-
SNR mapping at UE-i, its effective channel gain can be
approximated as ĝ2i ρ̂i = (M/P)ŜNRi.
Note that the SINR at UE-i is unchanged by replacing hi

and ρi by h̃i and g2i ρi, respectively. Thus, in case of limited
quantized CDI and CQI feedbacks, the linear precod-
ing strategies ZF-EPS, ZF-WF, RZF, IWMMSEmentioned
in Section 3 can be straightforwardly applied by replac-
ing the channel hi’s with the quantized channel ĥi’s and
replacing the average SNR ρi’s with the approximated
effective channel gain ĝ2i ρ̂i’s. However, these designs are
non-robust to the quantization errors.

5.2 The proposed robust MMSE precoding for limited
quantized feedbacks

In this section, we examine the optimal beamforming
design in order to minimize the MSE cost function (16)
with imperfect CSI and average SNR knowledge obtained
from the limited CDI and CQI feedbacks. Let us start with
the following decomposition on the normalized channel
h̃i to UE-i [16]

h̃i = √1 − ziĥi + √
zisi, (25)

where si is a unit-norm isotropically distributed vector in
the null space of ĥi with zero-mean, i.e., E[si]= 0, and
zi = 1−

∣∣∣h̃Hi ĥi∣∣∣2 is independent of si. As given in [16], the
expectation of zi is given by

E{zi} = M − 1
M

δ, (26)

where δ = 2−B/(M−1). Due to the quantization error, the
channel matrixH can be decomposed as

H = GH̃ = G (I − Z)
1
2 Ĥ + GZ

1
2 S, (27)

where Z = diag(z1, . . . , zK ), Ĥ = [ĥ1, . . . , ĥK ]H , and S =
[s1, . . . , sK ]H . Given the known quantized channel Ĥ, we
attempt tominimize theWMMSE by solving the following
optimization

minimize
W,γ

E

{∥∥∥� 1
2G
(
u − √

γG−1�− 1
2 y
)∥∥∥2∣∣∣∣ Ĥ} (28)

subject to Tr
{
WWH} ≤ γP.

For now, we assume that the effective channel gains
g2i ρi’s in G�

1
2 are perfectly known at eNB for the purpose

of solving this optimization problem. Expanding the cost
function in (28), one has

MSE = E

{ ∥∥∥� 1
2G
(
I − (I − Z)

1
2 ĤW

)
u

−�
1
2GZ

1
2 SWu − √

γn
∥∥∥2∣∣∣∣ Ĥ}

= E

{∥∥∥� 1
2G
(
I − (I − Z)

1
2 ĤW

)∥∥∥2
F

}
+ E

{∥∥∥� 1
2GZ

1
2 SW

∥∥∥2
F

∣∣∣∣ Ĥ}+ γK . (29)
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The first component of the cost function (29) can be
decomposed as

E

{∥∥∥� 1
2G
(
I − (I − Z)

1
2 ĤW

)∥∥∥2
F

}
= Tr

{
�G2}+ Ez

{
Tr
{
WHĤH�G2(I − Z)ĤW

}}
− Ez

{
Tr
{
�G2(I − Z)

1
2 ĤW + WHĤH(I − Z)

1
2G2�

}}
= Tr

{
�G2}+

(
1 − M − 1

M
δ

)
Tr
{
WHĤH�G2ĤW

}
− ζTr

{
�G2ĤW + WHĤHG2�

}
,

(30)

where ζ = E
[√

1 − zi
]
. As will be shown later, the exact

calculation of ζ is not needed.
Note that the expectation of si is 0 and the covariance

matrix of si is given by (cf. Equation 33 in [11])

E
{
sisHi

} = 1
M − 1

(
IM − ĥiĥHi

)
. (31)

Then, one has (cf. Equation 329 in [12])

E
{
sHi WWHsi

} = Tr
{
WHvar [si]W

}+ E{si}HWHWE{si}
= 1

M − 1
Tr
{
WH

(
I − ĥiĥHi

)
W
}
.

(32)

Therefore, the second component of the cost function
(29) can be decomposed as

E

{∥∥∥� 1
2GZ

1
2 SW

∥∥∥2
F

∣∣∣∣ Ĥ} = M − 1
M

δ

K∑
i=1

E
{
ρig2i sHi WWHsi

}
= δ

M

(
Tr
{
�G2}Tr {WHW

}
− Tr

{
WHĤH�G2ĤW

} )
.

(33)

Consequently, the cost function (29) can be simplified as

MSE = Tr
{
�G2}+ (1 − δ)Tr

{
WHĤH�G2ĤW

}
+ δTr{�G2}

M Tr
{
WHW

}
−ζTr

{
�G2ĤW + WHĤHG2�

}
+ γK . (34)

It is observed that the above cost function is quadratic
in W and linear in γ . Thus, like problem (17), problem
(28) is also convex, which facilitates the finding of its
optimal solution. Let μ denote the Lagrangian multiplier

associated with the power constraint, the Lagrangian of
the convex problem (28) is then given by

L(W, γ ,μ) = Tr
{
�G2}+ (1 − δ)Tr

{
WHĤH�G2ĤW

}
+ δTr

{
�G2}
M

Tr
{
WHW

}
− ζTr

{
�G2ĤW + WHĤHG2�

}
+ γK

+ μ
(
Tr
{
WWH}− γP

)
= Tr

{
WH

(
(1−δ)ĤH�G2Ĥ+ δTr

{
�G2}
M

I+μI
)
W
}

− ζTr
{
�G2ĤW + WHĤHG2�

}
+ γK − μγP

+ Tr
{
�G2} .

(35)

Similar to the solution approach for problem (17), at
optimality of problem (28), one has μ� = K

P , and

W = ζ

(
(1 − δ)ĤH�G2Ĥ + δTr

{
�G2}
M

I + μ�I
)−1

ĤH�G2

= ζ

1 − δ
ĤH
(
ĤĤH + δPTr

{
�G2}+ KM

PM(1 − δ)
�−1G−2

)−1

.

(36)

Due to the normalizing step to meet the power con-
straint, scaling W by any positive factor does not affect
the final normalized beamforming matrix W̃. Thus, the
optimal robust WMMSE precoder is given by

W� = ĤH
(
ĤĤH + δTr{SNR} + K

M(1 − δ)
SNR−1

)−1
, (37)

where SNR = diag {SNR1, . . . , SNRK }. Finally, the
optimal normalization factor η� is given by η� =√
P/Tr

{
W�(W�)H

}
and the optimal normalized beam-

forming matrix is W̃� = η�W�. Hereafter, the precoder
(37) will be referred to as the Robust WMMSE precoder.

Remark 2. For the case of unquantized CDI and CQI
feedbacks, one has H̃ = Ĥ, δ = 0, and SNR = (P/M)G2�.
It is easy to verify that the robust WMMSE precoder (37)
is exactly the same as the original WMMSE precoder (22).
This observation allows us to validate the proposed robust
WMMSE precoder.

Remark 3. In solving problem (28), we first assume that
the effective channel gains G2� are known. Interestingly,
the optimal solution given in (37) shows its dependence
on the instantaneous SNRs (P/M)g2i ρi’s at the UEs, but
not on G or � individually. Clearly, the SNRs at the UEs
can be easily estimated at the eNB by the CQI feedbacks.
With unquantized CQI feedbacks, the eNB can apply the



Nguyen and Le-Ngoc EURASIP Journal on Advances in Signal Processing 2014, 2014:85 Page 8 of 12
http://asp.eurasipjournals.com/content/2014/1/85

perfectly estimated SNRs into the precoder as in (37). In
contrast, with quantized CQI feedbacks, the imperfectly
estimated ŜNRi’s can be utilized at the eNB instead.

Remark 4. With the non-weighted MSE cost function
defined in problem (8), the robust MMSE design can be
obtained from the optimization

minimize
W̃,η

E

{∥∥∥u − η−1�− 1
2 y
∥∥∥2∣∣∣∣ Ĥ} (38)

subject to Tr
{
W̃W̃H

}
≤ P.

For the case of homogeneous SNR conditions, i.e., ρi =
1,∀i, with M = K , the optimal robust MMSE precoder,
studied in [11], is given by (cf. Equation 28 in [11])

W̃ = ηĤH
(
ĤĤH + 1 + Pδ

P(1 − δ)
I
)−1

. (39)

For the case of non-homogeneity under considera-
tion, by following the similar procedure in solving prob-
lem (28), the optimal solution to problem (38) can be
derived as

W̃ = ηĤHG
[
GĤĤHG +

(
δTr{G2}
M(1 − δ)

+ Tr{�−1}
P(1 − δ)

)
I
]−1

.

(40)

Although the precoder (40) seems to be different to
the original precoder given in [11], one can validate the
precoder (40) through the following observation. If one
applies, the precoder (40) for the case of homogeneous
SNR conditions by replacing G with its expectation as√
MI, and � with I, the precoder (40) is the same as the

original precoder (39). On the other hand, for the case

of perfect CDI feedbacks, i.e., H̃ = Ĥ (which makes
H = GĤ) and δ = 0, the precoder (40) returns to original
non-robust precoder (9).
It is observed that the precoder (40) requires a per-

fect knowledge of the channel gains in G and average
SNRs in � individually. Thus, the precoder (40) does not
fit into the CQI feedback model (24), unlike our pro-
posed robust WMMSE precoder (37). Nevertheless, we
will present some numerical simulations and compare the
performances obtained by our proposed WMMSE pre-
coder (37) and the precoder (40) (assuming G and �

known at the eNB to implement the precoder (40)).

6 Simulations results
This section presents the simulation results to illustrate
the achievable sum-rate of a MU-MISO system obtained
from our proposed WMMSE precoding schemes, com-
pared to well-known precoding strategies in literature
(ZF-EPS, ZF-WF, RZF, DPC). In order to generate a MU
system with non-homogeneous SNR conditions, we con-
sider a two-cell system, as displayed in Figure 1. The objec-
tive is to maximize the sum-rate of the UEs in the first
cell, where these UEs encounter different levels of back-
ground noise and inter-cell interference induced from the
second eNB. It is assumed that the UEs are randomly
located within the limit of the first cell. Thus, depending
on their relative distances to the first eNB and the second
eNB, the UEs exhibit different levels of channel gain and
background noise, which lead to different SNRs. The sim-
ulation parameters, based on the LTE-Advanced physical
layer architecture [17], are summarized in Table 1. The
transmit power at eNB-2 is fixed at 10 W (10 dBW). In
all simulations, once the eNB acquires the CSI from the
UEs, it is assumed that the channel remains unchanged

Figure 1 A two-cell scenario under consideration.
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Table 1 Simulation parameters and settings

Parameter Value

Number of cells 2

Site-to-site distance 500 m

Antenna height - base station 30 m

Antenna height - mobile station 1.5 m

Carrier frequency fc 2 GHz

Bandwidth per radio block 15 KHz

Number of radio blocks 180

AWGN −174 dBm/Hz

eNB-2 transmit power 10 dBW

Shadowing (small-scale fading) 0 dB

Path loss model (large-scale fading) COST231 [18]

during the training and transmission phases until the next
CSI update, i.e., we assume the CSI updating interval is
appropriately selected such that UE mobility and result-
ing Doppler spread do not cause significant change in CSI
before the next update of CSI.

6.1 Achievable sum-rate with perfect CSI and average
SNR

We first examine the achievable network sum-rates when
perfect CSI and average SNRs are available at the eNB.
Figures 2 and 3 display the achievable network sum-rates
when the network is fully loaded with the number of UEs
K equal to the number of transmit antennas M. Figure 2
plots the achievable sum-rates as a function of the number

of transmit antennas M. The transmit power P of eNB-1
is set at 10 dBW. From Figure 2, we can see a signifi-
cant improvement in the achievable throughput obtained
by the proposed WMMSE precoder over the ZF-EPS, ZF-
WF, RZF schemes, especially at high M (about 10 b/s/Hz
at M = 10). Moreover, the performance of the proposed
WMMSE precoder is very close to that of the IWMMSE
scheme for all values of M, where the latter scheme is
capable of achieving a local optimum to the sum-rate
maximization (4).
In Figure 3, we plot the network sum-rate as a

function of P with four transmit antennas and four
UEs. As the transmit power increases while the aver-
age powers of the intercell interference and background
noise are unchanged, the average received SINR at
each UE is expected to increase. Thus, an increase in
the network sum-rate is observed for each precoding
scheme. Similar to the previous simulation, the pro-
posed WMMSE precoder also outperforms the ZF-EPS,
ZF-WF, and RZF schemes while obtaining a very close
performance to the locally optimal IWMMSE scheme.
It is worth mentioning that the proposed WMMSE pre-
coder is much simpler to compute than the IWMMSE
scheme.
Figure 4 illustrates the evolution of the network sum-

rate obtained from each iteration of the IWMMSE
algorithm. In this simulation, a random channel realiza-
tion (with M = K = 10) was chosen and P is set
at 10 dBW. From a random starting point of W̃, the
IWMMSE algorithmmay take more than 10 s of iterations
to converge. In contrast, the proposed WMMSE precoder
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Figure 2 Network sum-rates versusM (withM = K , P = 10 dBW, and perfect CSI and average SNR knowledge).
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Figure 3 Network sum-rates versus P (withM = K = 4, and perfect CSI and average SNR knowledge).

(22) is directly computed without the need of any itera-
tive procedure. At worst, the computational cost of the
WMMSE precoder is equivalent to one iteration in the
IWMMSE algorithm. Clearly, Figure 4 shows the fore-
most advantage of the proposed WMMSE precoder over
the IWMMSE algorithm in terms of computational com-
plexity. Interestingly, the proposedWMMSE precoder can
serve as a starting point for the IWMMSE algorithm to
speed up its convergence, as being shown in the figure.

6.2 Achievable sum-rate with limited CDI and CQI
feedbacks

These simulations are to present the achievable net-
work sum-rates with quantized CQI and CDI feedbacks,
where we compare performance of the proposed Robust
WMMSE precoder and non-robust precoders such as ZF-
EPS, ZF-WF, RZF, IWMMSE, DPC, and the proposed
WMMSE. For CQI feedbacks, we use the CQI feedback
model (24) with the 4-bit SNR-CQImapping [15]. For CDI
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Figure 4 Convergence of IWMMSE algorithmwith random starting point and starting point obtained from proposedWMMSE precoder.
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Figure 5 Network sum-rates versusM (withM = K , P = 10 dBW, and quantized CQI and CDI feedbacks, B = 2(M − 1)).

feedbacks, the Gaussian codebook is assumed for each
UE. It is stated in [16] that the number of CDI feedback
bits per UE has to increase linearly with the SNR (in dB)
at the rate B ≈ M−1

3 PdB in order to obtain the full multi-
plexing gain of M. Note that the result given in [16] is for
systems with homogeneous SNR conditions (ρ1 = . . . =
ρK ). Thus, with the non-homogeneous system under con-
sideration, we also set the number of CDI feedback bits

growing linearly to the number of transmit antennasM or
the transmit power P (in dBW).
Figure 5 illustrates the achievable sum-rates as a func-

tion ofM with K = M. The transmit power P at eNB-1 is
set to 10 dBW. To obtain the simulation result in Figure 5,
we let B = 2(M − 1). As observed from the figure, the
proposed Robust WMMSE precoder significantly outper-
forms other non-robust linear precoders, such as ZF-EPS,
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Figure 6 Network sum-rates versus P (withM = K = 4 and quantized CQI and CDI feedbacks, B is set to grow equally with P).
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ZF-WF, RZF, and WMMSE, while slightly outperforming
the IWMMSE scheme. When comparing to the robust
MMSE precoder proposed in [11] (assuming thatG and�

are known at the eNB to implement the precoder (40)), the
performance of our proposed Robust WMMSE precoder
(37) is considerably better than that of the precoder (40).
Figure 6 displays the achievable network sum-rate as a

function of P with M = K = 4. The number of CDI
feedback bits per user B is set to grow equally with P.
For instance, if P = 10 dBW, B is set at 10 bits. Similar
to the previous simulation given in Figure 5, the pro-
posed Robust WMMSE precoder outperforms all other
non-iterative precoders, i.e, ZF-EPS, ZF-WF, RZF, and
WMMSE. The proposed Robust WMMSE precoder also
offers a better performance than the robust MMSE pre-
coder (40), which was designed purposely for a homoge-
neous system. It is also deduced from the figure that the
performance of the proposed Robust WMMSE precoder
is very close to and even better than that of the non-robust
precoder obtained from the IWMMSE algorithm at low-P
region.

7 Conclusion
In this work, we proposed two WMMSE precoders for
a multiuser system with non-homogeneous SNR condi-
tions. The first precoder was proposed for the systemwith
perfect CSI and average SNRs at the eNB. Whereas the
second one was proposed for the system with quantized
CDI and CQI feedbacks. The principle of the proposed
WMMSE precoders is to utilize the different SNR condi-
tions to distinctly predetermine the weights and receive
coefficients to the MSE cost function. Both precoders
are presented in closed-form solutions, thus significantly
reduce the complexity in computing them. Simulations
showed that the proposed precoders significantly outper-
formed other well-known linear precoders, e.g., ZF-EPS,
ZF-WF, RZF, while achieving a close sum-rate perfor-
mance to the locally optimal IWMMSE algorithm.

Endnotes
aAs suggested in [8], the conventional MSE

E

{∣∣ui − η−1yi
∣∣2}, is modified to reflect the impact of

different SNR conditions at the UEs.
bThe instantaneous SNR defined by (24) should not be

confused with the SINR defined by (3). We assume that
each UE can perfectly estimate its SNR in the absence of
the intra-cell interference during the training phase.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The work presented in this paper is partly supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC) Discovery Program and
the NSERC Collaborative Research and Development Grant with InterDigital
Canada.

Received: 6 February 2014 Accepted: 22 May 2014
Published: 6 June 2014

References
1. M Costa, Writing on dirty paper. IEEE Trans. Inform. Theory 29(3), 439–441

(1983)
2. G Caire, S Shamai, On the achievable throughput of a multiantenna

Gaussian broadcast channel. IEEE Trans. Inform. Theory 49(7), 1691–1706
(2003)

3. S Vishwanath, N Jindal, A Goldsmith, Duality, achievable rates, and
sum-rate capacity of Gaussian MIMO, broadcast channels. IEEE Trans.
Inform. Theory 49(10), 2658–2668 (2003)

4. W Yu, JM Cioffi, Sum capacity of Gaussian vector broadcast channels. IEEE
Trans. Inform. Theory 50(9), 1875–1892 (2004)

5. SS Christensen, R Argawal, E de Carvalho, JM Cioffi, Weighted sum-rate
maximization using weighted MMSE for MIMO-BC beamforming design.
IEEE Trans. Wireless Commun. 7(12), 4792–4799 (2008)

6. CB Peel, BM Hochwald, AL Swindlehurst, A vector-perturbation technique
for near-capacity multiantenna multiuser communications - Part I:
channel inversion and regularization. IEEE Trans. Commun. 53(1),
195–202 (2005)

7. M Joham, K Kusume, MH Gzara, W Utschick, Transmit Wiener filter for the
downlink of TDD DS-CDMA systems, in IEEE 7th Symposium on
Spread-Spectrum Techniques and Applications (ISSSTA) (Prague, Czech
Republic, 2–5 Sept 2002), pp. 9–13

8. H Lee, I Sohn, D Kim, KB Lee, Generalized MMSE beamforming for
downlink MIMO systems, in Proceedings of IEEE International Conference on
Communications (ICC 2011) (Kyoto, Japan, 5–9 June 2011), pp. 1–6

9. S Shi, M Schubert, H Boche, Rate optimization for multiuser MIMO systems
with linear processing. IEEE Trans. Signal Process. 24(8), 4020–4030 (2008)

10. Z Wang, W Chen, Regularized zero-forcing for multiantenna broadcast
channels with user selection. IEEE Wireless Commun. Lett. 1(2), 129–132
(2012)

11. C Zhang, W Xu, M Chen, Robust MMSE beamforming for multiuser MISO
systemswith limited feedback. IEEE Signal Proc. Lett. 16(7), 588–591 (2009)

12. KB Petersen, MS Pedersen, TheMatrix Cookbook. Available: http://www2.
imm.dtu.dk/pubdb/p.php?3274 (2012). Accessed 01 May 2014

13. S Boyd, L Vandenberghe, Convex Optimization. (Cambridge University
Press, UK, 2004)

14. 4G Americas, 4GMobile Broadband Evolution: 3GPP Release 10 and
Beyond - HSPA+, SAE/LTE and LTE-Advanced,White Paper. (4G Americas,
Bellevue, 2011)

15. C Mehlführer, M Wrulich, JC Ikuno, D Bosanska, M Rupp, Simulating the
long term evolution physical layer, in Proceedings of the 17th European
Signal Processing Conference (EUSIPCO 2009) (Glasgow, Scotland, 24),
pp. 1471–1478

16. N Jindal, MIMO broadcast channels with finite-rate feedback. IEEE Trans.
Inform. Theory. 52(11), 4045–5050 (2006)

17. 3GPP, Further advancements for E-UTRA physical layer aspects. 3GPP,
Tech. Rep. TR 36.814 V9.0.0 (2010)

18. A Goldsmith,Wireless Communications. (Cambridge University Press, UK,
2004)

doi:10.1186/1687-6180-2014-85
Cite this article as: Nguyen and Le-Ngoc:MMSE precoding for multiuser
MISO downlink transmission with non-homogeneous user SNR
conditions. EURASIP Journal on Advances in Signal Processing 2014 2014:85.

http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www2.imm.dtu.dk/pubdb/p.php?3274

	Abstract
	Keywords

	1 Introduction
	2 System model
	3 Review of linear precoding strategies for the multiuser MISO downlink transmission
	3.1 Zero-forcing precoding
	3.1.1 Equal power scaling allocation
	3.1.2 Optimal power allocation - water-filling solution

	3.2 Regularized zero-forcing precoding
	3.3 Iterative weighted minimization of mean squared error algorithm

	4 The proposed WMMSE precoder with perfect CSI and average SNR knowledge
	4.1 The proposed WMMSE precoder

	5 MMSE precoding with quantized CDI and CQI feedbacks
	5.1 CDI and CQI feedback model
	5.2 The proposed robust MMSE precoding for limited quantized feedbacks

	6 Simulations results
	6.1 Achievable sum-rate with perfect CSI and average SNR
	6.2 Achievable sum-rate with limited CDI and CQI feedbacks

	7 Conclusion
	Endnotes
	Competing interests
	Acknowledgements
	References

