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Abstract

This paper first proposes a novel image separation method based on the hyperanalytic shearlet. By combining the
advantages of both the hyperanalytic wavelet transform and the shear operation, hyperanalytic shearlet is easy to
implement and also has a low redundancy. By using such transform and the orthonormal wavelet, a new geometric
separation dictionary is obtained which can sparsely represent points and curviline singularities, respectively. In order
to get the different components of image faster and more accurate, a fast alternating direction method (FADM) is
used to train the dictionary. Our algorithm can greatly improve the computational efficiency without causing damage
to the accuracy of image separation. Furthermore, a proper measure to evaluate the separation performance called
sep-degree is defined. The experimental results have demonstrated the proposed method’s effectiveness and
superiority.

Keywords: Hyperanalytic shearlet; Geometric separation; Sparse approximation; Separation degree

1 Introduction
Astronomical images of the galaxy can be modeled as a
superposition of pointlike and curvelike structures. In the
further analysis, astronomers typically face the problem of
extracting the stars from filaments which mostly are tra-
jectory of the particle and hence separating pointlike from
curvelike structures. Thus, this area is greatly attracting
scholars’ attention in order to find efficient methodologies
for accurately conquering this task.
Although this problem seems unsolvable - the prob-

lem is underdetermined, as there are two unknown (the
images should be extracted) and only one known data (the
given image) - experimental results using morphological
component analysis (MAC) [1,2] suggest that such a prob-
lem is possibly solvable when we get the prior information
about the type of decomposed features and enough mor-
phological difference between those features. For the sep-
aration of pointlike and curvelike features, perfect results
have been achieved by employing a dictionary consisting
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of wavelet and curvelet with combination with l1 mini-
mization techniques [2]. We know that pointlike struc-
tures can be optimally sparse representation in wavelet
dictionary, and curvelike structures also can be optimally
sparse representation in curvelet dictionary. Thus, the
pointlike structures can be expressed by wavelet and the
curvelike structures can be expressed by curvelet with
applying l1 minimization to the expansion coefficients,
and then the image can be separated automatically.
The current papers [3,4] give a newly combined dic-

tionary of orthonormal wavelet and shearlet for sepa-
rating pointlike and curvelike features. And numerical
results give evidence that the shearlet-based decomposi-
tion algorithms have a superior behavior than curvelet-
based algorithms in [4]. In [3,4], the authors introduce a
nonsubsampled shearlet transform to design a separation
dictionary which greatly increase the redundancy. And
they choose an old method called block coordinate relax-
ation (BCR) to solve the l1 problem which is not only
time-consuming but also unable to get an accurate result.
Thus, in this paper, a novel approach to the separation
of pointlike and curvelike features based on hyperanalytic
shearlet is proposed.
Shearlet transform is a new multi-scale geometric anal-

ysis algorithm which inherits the advantages of the con-
tourlet and curvelet transforms. It is also an optimal
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approximation presentation [5,6] for singular curve or
surface that contains C2 high-dimensional signals. A
shift invariant shearlet is achieved by nonsubsampled
Laplace pyramid in [6]. This construction not only greatly
increases the redundancy of the transform but also slows
down the calculation sharply. From [7], we can know
that hyperanalytic wavelet (HWT) just has limited redun-
dancy to achieve multi-scale decomposition without shift
sensitivity, which is similar to dual tree complex wavelet
(DTCWT), but differently, this method is more easily
achievable than dual tree complex wavelet. And the con-
struction of hyperanalytic wavelet also greatly accelerates
the computation. So we propose a new fast discrete shear-
let called hyperanalytic shearlet transform. It is imple-
mented by using hyperanalytic wavelet [3,4] to achieve
multi-scale decomposition, and then shear filter bank is
applied to the high-pass coefficients. This new algorithm
holds the advantages of simpler structure and higher spar-
sity. The hyperanalytic shearlet addresses the problem of
the aliasing phenomenon and greatly reduces the redun-
dancy and computing time compared to nonsubsampled
shearlet transform. In our paper, we apply it to separate an
image into its morphologically different contents. In order
to get the different components of image faster and more
accurate, we also use fast alternating direction method
(FADM) instead of BCR to train dictionary. Our algo-
rithm can greatly improve the computational efficiency
without damage to the accuracy of image separation. To
compare the performance difference between this new
algorithm and the method in [4], we define a new mea-
sure of the separation called sep-degree. The experiment
results will demonstrate that our scheme has a better
separation effect.
This paper is organized as follows. Section 2 intro-

duces the construction of hyperanalytic shearlet trans-
form. Section 3 describes the mathematical theory of
geometric separation of pointlike and curvelike features
and applies a novel algorithm to separate an image into
morphologically different contents. Section 4 illustrates
the numerical results. Finally, Section 5 presents some
conclusions.

2 Hyperanalytic shearlet transform
Shearlet transform theory is based on composite wavelet.
In dimension n = 2, the affine systems with composite
dilations are the collections of the form:

AAB (ψ)=
{
ψj,l,k (x)=|detA|j/2ψ

(
BlAjx−k

)
: j, l ∈ Z, k ∈ Z

2
}

(1)

where ψ ∈ L2(R2),A,B are 2 × 2 invertible matrices and
| detB| = 1. For any f ∈ R

2,AAB(ψ) forms a Parseval
frame (also called tight frame); we call the elements of

AAB (ψ) composite wavelet. Let A = A0 =
(
4 0
0 2

)
be

the anisotropic dilation matrix, and B = B0 =
(
1 1
0 1

)
be shear matrix in (1); we can construct a tiling of the
frequency as shown in Figure 1.
For any ξ = (ξ1, ξ2) ∈ R̂

2, ξ1 �= 0, let ψ(0)(ξ) be given by
the frequency, that is

ψ̂(0)(ξ) = ψ̂(0)(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(
ξ2
ξ1

) (2)

where ψ̂1, ψ̂2 ∈ C∞(R̂), suppψ̂1 ⊂ [− 1
2 ,− 1

16 ]∪ [ 1
16 ,

1
2 ],

suppψ̂2⊂ [−1, 1]. Then, you know suppψ̂(0) ⊂ [− 1
2 ,

1
2 ]

2.
From the above analysis, we can get the support range

of the function ψj,l,k in the frequency domain:

supp ψ̂
(0)
j,l,k ⊂

{
(ξ1, ξ2) : ξ1 ∈ [−22j−1,−22j−4]∪[
22j−4, 22j−1] , ∣∣∣ ξ2

ξ1
+ l2−j

∣∣∣ ≤ 2−j

}
(3)

That is, each element ˆψj,l,k is supported on a pair of
trapezoids, of approximate size 22j × 2j, oriented along
lines of slope l2−j(see Figure 2).
Let D0 =

{
(ξ1, ξ2) ∈ R̂

2 : |ξ1| ≥ 1
8 ,

∣∣∣ ξ1
ξ2

∣∣∣ ≤ 1
}
,

that means ∀(ξ1, ξ2) ∈ D0, the function group{
ψ̂(0)

(
ξA−j

0 B−l
0

)}
forms a tiling of D0 as shown in

Figure 1, notes that D0 is illustrated in solid line.
From [6], we know that the following set is a Parseval

frame for L2(D0).

{
ψ

(0)
j,l,k(x)=2

3j
2 ψ(0)

(
Bl
0A

j
0x−k

)
: j ≥ 0,−2j ≤ l ≤ 2j−1, k∈Z

2
}
(4)

Figure 1 The tiling of the frequency plane.
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Figure 2 The frequency support ofψj,l,k.

Similarly, we can construct the other half tiling of Figure 1,
which is the tiling of D1 in dashed line. D1 is:

D1 =
{
(ξ1, ξ2) ∈ R̂

2 : |ξ2| ≥ 1
8
,
∣∣∣∣ξ1ξ2

∣∣∣∣ ≤ 1
}

(5)

Let A1 =
(
2 0
0 4

)
, B1 =

(
1 0
1 1

)
, and ψ(1) is as follows:

ψ̂(1)(ξ) = ψ̂(1)(ξ1, ξ2) = ψ̂1(ξ2)ψ̂2(
ξ1
ξ2

) (6)

where ψ̂1, ψ̂2 is defined the same as the previous equation.
Then, we get a Parseval frame for L2(D1), that is as follows:{
ψ

(1)
j,l,k(x)=2

3j
2 ψ(1)

(
Bl
1A

j
1x−k

)
: j ≥ 0,−2j ≤ l ≤ 2j−1, k ∈ Z

2
}

(7)

If f ∈ L2(R2), then its continuous shearlet transform is
defined as follows:

SHψ =
〈
f ,ψ(d)

j,l,k

〉
(8)

where j ≥ 0, l = −2j ∼ 2j − 1, k ∈ Z
2, d = 0, 1.

The discrete shearlet in [4] uses nonsubsampled Laplace
pyramid to achieve multi-scale decomposition, which
greatly increases the redundancy of the transform. Also, it
greatly increases the computing time.
Due to the high redundancy and massive calculation

of nonsampled wavelet, DTCWT, one that is constructed
through a pair of wavelet trees, is proposed in [8].
Although DTCWT is an invertible quasi shift invariant
and its 1-D case a redundancy of 2, the design of these
quadrature wavelet pairs is so complicated that it can
be done only through approximations. It means that the
DTCWT requires special mother wavelet function. To
overcome this restraint, in [7], Firoiu has proposed a new
shift invariant called HWT using Hilbert transform and
a two-stage mapping-based complex wavelet transform
(MBCWT) in soft space [9]. And she also gives the proof
that HWT is equivalent to DTCWT. That means that

HWT’s redundancy ratio is 2, the same as that of DTCWT.
Moreover, HWT can be realized through classical mother
wavelet function like those conceived by Daubechies.
Using this method, we can get a higher degree of shift
invariance and a better directional selectivity [9].
So we use HWT to achieve multi-scale decomposition

and apply shear filter bank to the HWT coefficients. For
short, we name this new algorithm hyperanalytic shear-
let transform, which holds the advantages of a simpler
structure and a higher sparseness. What is more, it has
greatly improved the redundancy compared with shear-
let transform and greatly reduced the computing time.We
first introduce HWT and then construct hyperanalytic
shearlet.
Figure 3 gives the construction of 2-DHWT.We can see

that f D4
M denotes the low-pass coefficients and zk(k = ±i,

±r) denotes the high-pass coefficients.
Figure 3 shows that the 2-D HWT of the image f (x1, x2)

can be computed with the aid of the 2-D DWT and its
associated hypercomplex image. To simplify the calcula-
tion, the hypercomplex mother wavelet function associ-
ated to the real mother wavelet ψ(x1, x2) is defined [7,9]
as:
ψa (x1, x2) =ψ (x1, x2) + iHx1 {ψ (x1, x2)}

+ jHx2 {ψ (x1, x2)} + kHx1
{
Hx2 {ψ (x1, x2)}

} (9)

where i2 = j2 = −k2 = −1 and ij = ji = k , Hx1 and
Hx2 respectively denotes the 1-D Hilbert transform of the
lines and columns of the input image. So the 2-D HWT of
the image f (x1, x2) shown in Figure 3 is as follows:

HWT
{
f (x1, x2)

} = 〈
f (x1, x2),ψa (x1, x2)

〉
= DWT

{
f (x1, x2)

}+iDWT
{
Hx1

{
f (x1, x2)

}}
+ jDWT

{
Hx2

{
f (x1, x2)

}}
+ kDWT

{
Hx1

{
Hx2

{
f (x1, x2)

}}}
(10)

Figure 3 2-D HWT implementation architecture.
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Next, we will demonstrate the construction for hyperan-
alytic shearlet. Let the dilationsAj be associated with scale
transformation, and the matrices Bl be associated to area-
preserving geometrical transformation. For ∀(ξ1, ξ2) ∈
R̂
2, j ≥ 0, k ∈ Z

2, d = 0, 1, l = −2j ∼ 2j − 1, the hyperan-
alytic shearlet transform of f ∈ L2

(
R
2) can be computed

via:

〈
f ,ψ(d)

j,l,k

〉
= 2

3j
2

∫
f̂ (ξ)V

(
2−2jξ

)
W (d)

j,l e2π iξA
−jB−lkdξ

(11)

where ψ is wavelet function of hyperanalytic shearlet, W
is a window function localized on a pair of trapezoid.
And V

(
2−2jξ

)
is the Fourier coefficients of the multi-

scale analysis. The 2-D discrete Fourier transform (DFT)
of imagef ∈ L2

(
R
2) is f̂ [k1, k2] (−N

2 � k1, k2 � N
2 ). Here,

we adopt the convention that brackets [,] denote arrays of
indices, parentheses (,) denote function evaluations, and
N × N denotes the image size.
At the jth scale, we utilize HWT instead of

Laplace transform to compute the equation f̂ (ξ1, ξ2)
V

(
2−2jξ1, 2−2jξ2

)
[6,7,9]. So we can decompose the father

sub-band coefficients f j−1
a [n1, n2] into one low-pass sub-

band coefficient f ja [n1, n2] whose size is half of the father
sub-band size (In fact, it produces two low-pass sub-band
coefficients through HWT. In order to conduct a HWT
pyramids conveniently, we make two low-pass sub-band
coefficients decomposed from each scale to one low-pass
sub-band coefficient.) and six high-pass sub-band coef-
ficients f jd(γ )

[n1, n2] , γ = 0 ∼ 6. The sizes of f ja [n1, n2]
and f jd(γ )

[n1, n2] are Na
j = 2−j+1N and Nd

j = 2−jN ,
respectively. So we have

f̂ jd(γ )
[n1, n2] = f̂ (ξ1, ξ2)V

(
2−2jξ1, 2−2jξ2

)
(12)

To achieve the direction filter of the high frequency
coefficients after decomposition of f jd(γ )

[n1, n2], we
should construct a shear direction filter using window
function. Let δ̂p represent the DFT of the delta function
in the pseudo-polar grid. And ϕp is the mapping func-
tion from the Cartesian grid to the pseudo-polar one
[10], which can be described as a selection matrix S with
the property that its elements si,j satisfy the property
s2i,j = si,j. Then, the hyperanalytic shearlet coefficients
f̂ jd(γ )

[n1, n2] ŵs
j,l [n1, n2] in the Cartesian grid are as fol-

lows:

ŵs
j,l [n1, n2] = ϕ−1

p

(
δ̂p [n1, n2] W̃

[
2jn2 − l

])
(13)

where W̃ is a Meyer window function. Finally, let ws
j,l

denote inverse Fourier transform of ŵs
j,l. Then, we give the

hyperanalytic shearlet transform of f ∈ L2
(
R
2), which is

defined as:

DSTψ(f ) = f Ja +
J∑

j=0

2j−1∑
l=−2j

3∑
γ=0

f jd(γ )
∗ ws

j,l (14)

Here, J is the final scale.
The hyperanalytic shearlet eliminates the aliasing phe-

nomenon and has better direction selectivity and lower
redundancy than the nonsubsampled shearlet. Moreover,
hyperanalytic shearlet realizes the multi-scale decompo-
sition by using addition, subtraction, and FFT. All the
analysis shows that the calculation speed of hyperana-
lytic shearlet is quite fast; at the mean time, it can have a
good visual effect as nonsubsampled shearlet does. Then,
we apply it to separate an image into its morphologically
different contents.

3 Apply hyperanalytic shearlet transform to
geometric separation

It is an important technique to separate an image into
its morphologically different contents using MCA [1]
from prior information about the type of features to be
decomposed. Recently, Donoho and Kutyniok presented
a mathematical framework in [3] for image separation
and constructed geometric separation mathematical the-
ory of separating pointlike from curvelike features. And
Kutyniok and Lim gave a new wavelet-shearlet dictionary
based on their analysis in [4]. After analyzing the advan-
tages of hyperanalytic shearlet in Section 2, it is natural
to construct a new combined dictionary of wavelet and
hyperanalytic shearlet. In order to improve the computa-
tional efficiency, we first apply the new dictionary to solve
the problem about the separation of pointlike and curve-
like features to an l1 optimization model. And then, we
use fast alternating direction method in [11] to obtain the
optimal solution. Compared with separation algorithms
using wavelet and shearlet in various ways, such approach
is proved superior by numerical results especially when it
comes to the speed. In the following, we briefly review this
theoretical approach to the geometric separation problem
and present our method.
Let function P denote a ‘pointlike’ object and function

C denote a ‘curvelike’ object. The image function f is
expressed as:

f = P + C (15)

The geometric separation problem now is turned into
recovering P and C from the observed signal f . Since
curvilinear singularities can be sparsely represented by
shearlet, they can also be sparsely represented by hyper-
analytic shearlet, while point singularities can be opti-
mally sparsely represented by wavelet. So we choose the
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orthonormal separable Meyer wavelet and hyperanalytic
shearlet to construct a dictionary to separate pointlike
from curvelike structures.
Let

(
Fj

)
j denote a family of filters including wavelet and

hyperanalytic shearlet filters. Then, the function f can be
decomposed into pieces fj with different scales j based on
different sub-band filters. So we can get the equation fj =
Fj ∗ f , and the original function can be reconstructed by
using f = ∑

j
Fj ∗ fj, f ∈ L2

(
R
2).

With these conceptions above, we can solve the geomet-
ric separation problem step by step. For this, the model
(15) can be rewritten as fj = Pj + Cj for every scale. Let
�1 and �2 be the basis of orthonormal separable Meyer
wavelet and hyperanalytic shearlet. Then, for each scale j,
we consider the optimization problem as follows:
(
Ŵj, Ŝj

)
=argmin

Wj ,Sj

∥∥∥�T
1 Wj

∥∥∥
1
+

∥∥∥�T
2 Sj

∥∥∥
1

s.t. fj = Wj+Sj

(16)

Figure 4 Comparison results betweenW-SD andW-HSD for artificial image, computing times: 164.75 s (W-SD) and 30.43 s (W-HSD). (a)
Original image (512 × 512). (b) Noise image. (c) Curvelike component (W-SD). (d) Pointlike component (W-SD). (e) Curvelike component (W-HSD).
(f) Pointlike component (W-HSD).
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Table 1 The performance of different methods

The dictionary using for image separating W-SD W-HSD

The computing times (s) 164.75 30.43

The sep-degree 7.0835 7.3758

where Wj denotes the pointlike signal composition of fj,
Sj denotes the curvelike signal composition of fj. �T

1 Wj
denotes the Wavelet coefficients of the signal Wj, and
�T

2 Sj denotes hyperanalytic shearlet coefficients of Sj.

Obviously, the solution of (16) is the l1 minimization prob-
lem. In practice, the signal f is often contaminated by
noise, and in [4], the authors have presented a new model
to solve this problem adaptively. That is, for each scale j,
the optimization problem can be presented through the
following model:

(
Ŵj, Ŝj

)
= argmin

Wj ,Sj

∥∥∥�T
1 Wj

∥∥∥
1
+

∥∥∥�T
2 Sj

∥∥∥
1
+λ

∥∥fj−Wj−Sj
∥∥2
2

(17)

Figure 5 Comparison results betweenW-SD andW-HSD for biological image, computing times: 167.77 s (W-SD) and 31.23 s (W-HSD).
(a) Original image (512 × 512). (b) Noise image (512 × 512). (c) Curvelike component (W-SD). (d) Pointlike component (W-SD). (e) Curvelike
component (W-HSD). (f) Pointlike component (W-HSD).
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In (17), the noise cannot be represented sparsely by
either wavelet or hyperanalytic hearlet, and then it can be
related with the residual fj − Wj − Sj.
It costs a lot of computational time to solve (17) for

all scales. Kutyniok and Lim [4] show that it has been
sufficient for separating pointlike from curvelike struc-
tures with sufficiently large scales j. So we re-weight the
different scales coefficients which strengthen the high-
frequency sub-band to avoid high complexity like [4]. For
each scale j, we choose such a weight vector w, and the
elements of w are all positive and wj < wi, if j < i. Then,
we can get the new signal f̃ by computing

f̃ =
∑
j
wj

(
Fj ∗ fj

)
, f ∈ L2

(
R
2) (18)

where f = ∑
j
Fj ∗ fj and fj = Fj ∗ f .

From (17) and (18), we can separate pointlike from
curvelike structures by solving the follow problem:
(
Ŵ , Ŝ

)
= argmin

W ,S

∥∥∥�T
1 W

∥∥∥
1
+

∥∥∥�T
2 S

∥∥∥
1
+λ

∥∥∥f̃ − W − S
∥∥∥2
2

(19)

We can focus on the high frequencies by using signal f̃
which greatly improves the computational efficiency. But
we do not calculate the optimization problem like in [4]
because BCR method in [12] is not precise enough and
also it is slow. In this paper, we use the fast numerical
schemes - FADM in [11] - to solve (19) since we can get
more accurate results and have a faster computing speed.
Apply FADM to (19).

(a) First, fix S; then, we can get the solution ofW :

Ŵ (k) =argmin
W

∥∥∥�T
1 Ŵ

(k−1)
∥∥∥
1
+

∥∥∥�T
2 S

∥∥∥
1
+λ2

∥∥∥f̃ −Ŵ (k−1)−S
∥∥∥2
2

= argmin
W

∥∥∥�T
1 Ŵ

(k−1)
∥∥∥
1
+λ2

∥∥∥g(k)
1 − Ŵ (k−1)

∥∥∥2
2

(20)

(b) Then, fixW ; then, we can get the solution of S :

Ŝ(k) =argmin
S

∥∥∥�T
1 W

∥∥∥
1
+

∥∥∥�T
2 Ŝ

(k−1)
∥∥∥
1
+λ2

∥∥∥f̃ −Ŝ(k−1) − W
∥∥∥2
2

=argmin
S

∥∥∥�T
1 Ŝ

(k−1)
∥∥∥
1
+ λ1

∥∥∥g(k)
2 − Ŝ(k−1)

∥∥∥2
2

(21)

where k ≥ 1, g(k)
1 = f̃ − Ŝ(k−1), g(k)

2 = f̃ − Ŵ (k).

Minimization problem (20) and (21) can be uniformly
written as the following minimization problem:

v̂ = argmin
v∈RN

ρ(v) + λ
∥∥g − v

∥∥2
2 (22)

where ρ(·) denotes l1 norm. Then, we can solve (22) by
using two-step iterative shrinkage algorithm in [13], which
is an easy and fast method, see the details in [13].
In order to verify the reliability and validity of the

proposed algorithm, we introduce a measure named sep-
degree to evaluate the separation performance of our
transform. f denotes the noise image, fc denotes the sepa-
rated image containing curvelike features, and fp denotes
the separated image containing pointlike features. Let
μ(f ) denote the mathematical expectation of f . Then, we
can define the sep-degree as follows:

Definition 1. The sep-degree ζ of an algorithm for sep-
arating pointlike and curvelike features can be defined as
the following:

� =

M∑
i=1

N∑
j=1

(
f G

)
i,j ·

(
(f S)G

)
i,j√√√√(

M∑
i=1

N∑
j=1

((
f G

)
i,j

)2) ·
(

M∑
i=1

N∑
j=1

((
(f S)G

)
i,j

)2
)

(23)

ς = �

abs(μ(f − f S))
(24)

where
(
f
)G = Gradient(f ), which denotes the gradient

map of the image f , and f S = fp + fc,
(
f S

)G=Gradient(f S).
abs(·) denotes the absolute value of the function, and �

denotes the similarity between
(
f
)G and

(
f S

)G.
The definition of sep-degree shows that the separation

method’s performance is better when ς is larger. It is
because that μ(f − f S) should be smaller enough for a
better separating method, which means we get a most
approximate image of f . From Jensen’s inequality, we know
� ≤ 1 in (23), and the closer � to 1 is, the more similar(
f
)G and

(
f S

)G are, which means that the extracted curve-
like component is more perfect. For a better separation
method, μ(f − f S) should be smaller and � should be
larger, so sep-degree ζ should be larger based on (24).
In the following, ζ is used to distinguish the numerical
experiments.

4 The numerical results
In this section, we compare our scheme of wavelet and
hyperanalytic shearlet dictionary (W-HSD) with FADM
against the separation algorithm based on wavelet and

Table 2 The performance of different methods apply to
neuron image

The dictionary using for image separating W-SD W-HSD

The computing times (s) 167.77 31.23

The sep-degree 7.1825 7.6578
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shearlet dictionary (W-SD) with BCR in [4]. And the scale
of all is four; for hyperanalytic shearlet and nonsubsam-
pled shearlet, the direction vector is [2 3 3 4]. All routines
were run using the Matlab R2009a which is based on an
Intel 2.00GHz CPU.
The different methods for separating pointlike features

and curvelike features from an artificial image are shown
in Figure 4, and Table 1 shows the computing times and
sep-degree of separating methods through W-SD and W-
HSD.
In the experimental results, Figure 4a is an artificial

image consisting of a composition of pointlike and curve-
like structures on a smooth background, and Figure 4b
is the same image added by some additive white Gaus-
sian noise with variance 20. Figure 4c shows the curvelike
component of image separating by W-SD, and Figure 4d
shows the pointlike component of image separating by
W-SD. Correspondingly, Figure 4e,f shows the curvelike
and pointlike components of image separating byW-HSD.
Compared with Figure 4c separated via W-SD method,
Figure 4e shows that W-HSD does not keep all circle-like
contents, which makes the circle of our scheme a little
pale. Though the visual effect of Figure 4e is just a little
worse than Figure 4c, the visual effect of Figure 4f is much
better than Figure 4d. From Figure 4d, we know that the
separating methodW-SD can bring some visible artifacts,
but our new algorithm will solve this problem. Finally, the
comparison of the computing time shows that the separa-
tion can bemuch faster performed by our scheme because
hyperanalytic shearlet has a low redundancy which greatly
reduces the computational complexity. Table 1 shows that
our algorithm can reduce the computing time to one fifth
of the time of separating image by W-SD. Table 1 also
shows that our algorithm can get a higher sep-degree than
separating image by W-SD. It means that our algorithm
can get a better performance in separating an artificial
image consisting of a composition of pointlike and curve-
like structures.
Let us consider the performance of our scheme and

W-SD on the real-world images. Figure 5a shows the
experimental results on a test image of a neuron gener-
ated by fluorescence microscopy from the research group
by Roland Brandt, which is composed of ‘spines’ (point-
like features) and ‘dendrites’ (curvelike features). Figure 5b
is the noise image added by some additive white Gaussian
noise. Comparing Figure 5c with Figure 5e, we see that our
scheme extracts the curvelike structures much more pre-
cise than W-SD. Comparing Figure 5d with Figure 5f, we
can also see that our scheme extracts the pointlike struc-
tures much more clearly thanW-SD, and the computation
time is greatly reduced, also shown in Table 2.
Table 2 shows that our algorithm gets a better perfor-

mance in separating a neuron image of a composition of
pointlike and curvelike structures.

5 Conclusions
This paper proposes a novel approach of separation of
pointlike and curvelike features exploiting a new com-
bined dictionary of wavelet and hyperanalytic shearlet
and defines a new objective measure called sep-degree
to evaluate the separation performance. The experimen-
tal results demonstrate that the proposed method is more
applicable to geometric separation. It has a better visual
effect as wavelet and shearlet dictionary, and its comput-
ing time decreases sharply.
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