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Abstract

Multi-static passive radar (MPR) systems typically use narrowband signals and operate under weak signal conditions,
making them difficult to reliably estimate motion parameters of ground moving targets. On the other hand, the
availability of multiple spatially separated illuminators of opportunity provides a means to achieve multi-static
diversity and overall signal enhancement. In this paper, we consider the problem of estimating motion parameters,
including velocity and acceleration, of multiple closely located ground moving targets in a typical MPR platform with
focus on weak signal conditions, where traditional time-frequency analysis-based methods become unreliable or
infeasible. The underlying problem is reformulated as a sparse signal reconstruction problem in a discretized
parameter search space. While the different bistatic links have distinct Doppler signatures, they share the same set
of motion parameters of the ground moving targets. Therefore, such motion parameters act as a common sparse
support to enable the exploitation of group sparsity-based methods for robust motion parameter estimation. This
provides a means of combining signal energy from all available illuminators of opportunity and, thereby, obtaining
a reliable estimation even when each individual signal is weak. Because the maximum likelihood (ML) estimation of
motion parameters involves a multi-dimensional search and its performance is sensitive to target position errors,
we also propose a technique that decouples the target motion parameters, yielding a two-step process that
sequentially estimates the acceleration and velocity vectors with a reduced dimensionality of the parameter search
space. We compare the performance of the sequential method against the ML estimation with the consideration
of imperfect knowledge of the initial target positions. The Cramér-Rao bound (CRB) of the underlying parameter
estimation problem is derived for a general multiple-target scenario in an MPR system. Simulation results are
provided to compare the performance of the sparse signal reconstruction-based methods against the traditional
time-frequency-based methods as well as the CRB.
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1 Introduction
Multi-static passive radar (MPR) has recently attracted
significant research interests primarily due to its low
cost and covertness compared to a conventional radar
system. Also, since passive radar systems use signals
of opportunity as transmitters, they do not exacer-
bate the problem of spectral congestion [1]. MPR sys-
tems are typically characterized by low signal power,
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narrow signal bandwidth, bistatic mode of operation,
and availability of multiple spatially separated trans-
mitters, rendering them significantly different from
conventional radar systems. From a signal process-
ing perspective, operation in low signal-to-noise ratio
(SNR) conditions exploiting narrowband signals creates
additional challenges for target detection, localization,
and tracking. On the other hand, availability of sev-
eral spatially separated illuminators can be exploited
to achieve a higher effective SNR and multi-static
diversity [2].
Motion parameter estimation of ground moving tar-

gets has been studied extensively in the context of
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conventional radar systems (e.g., single-antenna radar
[3], phased-array radar [4], and multiple-input multiple-
output (MIMO) radar [5-7]). Several advanced signal
processing techniques, including time-frequency analysis,
motion compensation, and range migration compensa-
tion (e.g., [8-10]), have been developed for the detec-
tion and parameter estimation of moving targets based
on their Doppler signatures. However, limited work has
been done in estimating target motion parameters in
MPR systems (e.g., [11,12]). In this paper, we inves-
tigate the problem of motion parameter estimation of
ground moving targets in a multi-static passive airborne
radar.
Existing motion parameter estimation techniques (e.g.,

[13-15]) are based on time-frequency analysis of Doppler
signatures of received signals, which are commonly mod-
eled as general-order polynomials [16]. For a moder-
ately long coherent processing interval (CPI), it suffices
to model the target motion by a second-order polyno-
mial or a linear frequency-modulated signal. As such,
time-frequency analysis methods are used to estimate
the chirp parameters followed by a mapping to the
actual target motion parameters. When multiple targets
are present, the Doppler signature of the radar return
is modeled as a linear sum of multiple chirp signals
[17].
In low SNR situations, as encountered in typical MPR

systems, reliable estimation of chirp parameters for each
bistatic link may become difficult. As such, it is desirable
to enhance the overall signal quality either by extending
the CPI or by exploiting the availability of multiple bistatic
links. The state of the art for estimating motion parame-
ters of closely spaced multiple ground moving targets in
typical MPR systems is incomplete, because of the rather
non-trivial two issues:

1. Since the Doppler signature corresponding to
each bistatic link cannot be reliably estimated, and
it is rather difficult to directly combine them in
the time-frequency domain for overall signal
enhancement, traditional methods based on
time-frequency analysis cannot effectively benefit
from the availability of multiple transmitters.

2. Although a longer CPI can be used to enhance
the SNR corresponding to each bistatic link, the
target range migration must be compensated for
before processing the signal over the azimuthal
time. A longer CPI, however, requires the
consideration of higher-order motion parameters
(e.g., acceleration and jerk) which are more difficult
to estimate and compensate. This further limits
the applicability of time-frequency analysis-based
methods, particulary for highly accelerating (or
decelerating) targets.

Amotion parameter estimationmethod based on sparse
signal reconstruction has recently been developed [2],
which coherently combines data from all available illumi-
nators of opportunity and, thereby, achieves overall sig-
nal enhancement and multi-static diversity. This method
involves a sequential estimation process, where the tar-
get acceleration is estimated by coherently fusing all the
signal observations mapped into the ambiguity func-
tion of the respective Doppler signature and detecting
the combined peak via a direct search. The estimated
value of target acceleration is then used in the estima-
tion of the target velocity by exploiting sparse signal
reconstruction. However, the applicability of this method
is limited to a single-target scenario. Multiple closely
spaced targets may be frequently encountered in MPR
systems due to the small signal bandwidth and the cor-
responding poor range resolution. A method based on
exhaustive search becomes computationally inefficient for
such a multiple-target scenario because its computational
complexity increases exponentially with the number
of targets.
In this paper, with the a priori knowledge that Doppler

signatures corresponding to multiple illuminators of
opportunity share the same set of motion parameters,
i.e., velocity and acceleration of targets, as a common
sparse support, we develop a new motion parameter
estimation technique exploiting the group sparsity-based
signal reconstruction. This enables us to effectively fuse
data corresponding to all available illuminators to accu-
mulate sufficient signal energy without further extend-
ing the CPI. Also, contributions from more illuminators,
if available, can be utilized for a better performance.
In order to reduce the computational load associated
with the motion parameter estimation of multiple closely
located targets, we also propose a sequential process
which estimates target acceleration and velocity vec-
tors in tandem. We consider the effect of an imper-
fect knowledge of target positions, which causes phase
differences among Doppler signatures corresponding to
different bistatic links. As a result, the performance of
methods based on coherent fusion of these Doppler sig-
natures may significantly degrade depending on the phase
interactions. On the contrary, the sequential method
based on group sparsity is robust to such phase inter-
actions, as it only assumes that a common sparsity sup-
port is shared among all available bistatic links. The
Cramér-Rao bound (CRB) for the underlying parame-
ter estimation problem is derived for a general target
distribution scenario in an MPR system, and simulation
results are provided to compare the performance of the
proposed methods against the theoretical bound. The
performance of the sparse signal reconstruction-based
methods is also compared against traditional methods
based on time-frequency analysis for motion parame-
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ter estimation of two closely located ground moving
targets.
The rest of the paper is organized as follows. Section 2

formulates the signal model for the Doppler signature
in a multi-target scenario considering a multi-static pas-
sive radar network configuration. Section 3 presents the
motion parameter estimation algorithms, including a brief
review of the time-frequency analysis-based method and
the description of the proposed techniques that are based
on maximum likelihood (ML) and sequential estimations,
both exploiting the group sparsity of targetmotion param-
eters. The effect of imperfect knowledge of the initial
target positions on the motion parameter estimation is
also examined in Section 3. Section 4 derives the CRB for
the underlying parameter estimation problem. Section 5
presents simulation results that compare the estimation
accuracy of the ML and sequential estimation methods
against the CRB as well as the traditional time-frequency
analysis-based methods. Finally, conclusions are drawn in
Section 6.
The following notations are used in this paper. A lower

(upper) case bold letter denotes a vector (matrix). In par-
ticular, IN denotes the N × N identity matrix. (.)∗, (.)T ,
and (.)H , respectively, denote complex conjugation, trans-
pose, andHermitian operations. ‖·‖1 and ‖·‖, respectively,
denote the l1 and l2 norm of a vector, whereas �(.) and
�(.), respectively, stand for the real part of a complex
number, and CN (a, b) denotes standard complex normal
distribution with mean a and variance b. In addition,
diag(.) and tr(.), respectively, denote the diagonal and
trace operations.

2 Signal model
2.1 Geographical relationship
We consider a problem of estimating motion parameters
of multiple, closely located, ground moving targets in a
typical MPR system. We assume that the MPR system
operates in a multiple-frequency network, i.e., N broad-
cast stations, located at b(n), n = 1, . . . ,N , transmit
waveforms in non-overlapping frequency bands which are
respectively centered at f (n), n = 1, . . . ,N . These sta-
tions are assumed stationary and their locations precisely
known a priori.
An airborne receiver, initially located at r0, is assumed to

be moving along its track direction with a uniform veloc-
ity vr , whereas there are K closely located ground moving
targets. The kth target is assumed to be initially located at
p(k)
0 , moving with an initial velocity of v(k) and an acceler-

ation of a(k). Because only ground targets are considered,
the z-axis components of p(k)

0 , v(k), and a(k) are assumed
to be zero.
The direct range between the nth illuminator and

the receiver, corresponding to the reference channel, is
defined as

r(n)(t) = ‖r(t) − b(n)‖, (1)

where r(t) = r0 + vrt represents the trajectory of the
receiver at time t. Likewise, the bistatic range between
the nth transmitter, the kth target, and the receiver is
expressed as

ρ(n,k)(t) = ‖p(k)(t) − b(n)‖ + ‖p(k)(t) − r(t)‖, (2)

where p(k)(t) = p(k)
0 + v(k)t + 1

2a
(k)t2 represents the

trajectory of the kth target at time t.

2.2 Reference and surveillance signals
The direct path signal received from the nth transmitter
can be expressed as

s(n)
r (t) = u(n)

(
t−r(n)(t)/c

)
exp

(
−j2π f (n)r(n)(t)/c

)
+η(n)

r (t),

(3)

where the subscript ‘r’ represents the reference chan-
nel, u(n)(t) is the baseband representation of the signal
transmitted from the nth illuminator, c is the veloc-
ity of wave propagation, and ηr(t) represents the addi-
tive noise. Since passive radars use broadcast signals,
it can be assumed that the transmitted signal is per-
fectly reconstructed at the receiver after demodulation
and forward error correction [18]. Therefore, the direct
path signal, after reconstruction and error correction,
becomes

s(n)
r (t) = u(n)(t − r(n)(t)/c) exp

(
−j2π f (n)r(n)(t)/c

)
,

(4)

which is used as the reference signal.
The surveillance signal reflected from the kth target

corresponding to the signal transmitted by the nth illumi-
nator is

s(n,k)s (t) = σ (n,k)u(n)
(
t − ρ(n,k)(t)/c

)
× exp

(
−j2π f (n)ρ(n,k)(t)/c

)
+ η(n)

s (t),
(5)

where the subscript ‘s’ denotes the surveillance channel,
σ (n,k) is the target reflection coefficient corresponding to
the kth target, and η

(n)
s (t) is the additive noise.

2.3 Matched filtering and rangemigration correction
At the receiver, the surveillance signal is correlated with
the reference signal, yielding a sequence of the matched
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filter output. The phase term of the output of the
matched filter is determined by the difference between the
bistatic transmitter-target-receiver range and the direct
transmitter-receiver range. Denote �t as the azimuthal
sampling interval used in the matched filtering, and tm =
m�t be the azimuthal sampling instants, m = 0, . . . ,
M − 1. Then, the range difference at the mth azimuthal
sampling instant, tm, can be expressed as

R(n,k)(tm) = ρ(n,k)(tm) − r(n)(tm)

=
∥∥∥p(k)

0 + v(k)tm + a(k)t2m/2 − b(n)
∥∥∥

+
∥∥∥p(k)

0 + v(k)tm + a(k)t2m/2 − r0 − vrtm
∥∥∥

−
∥∥∥r0 + vrtm − b(n)

∥∥∥ .
(6)

From (6), it can be inferred that motion of ground mov-
ing targets and motion of the radar platform are the two
sources of range migration. In view of a typical MPR
system, due to the narrow signal bandwidth and, con-
sequently, the low bistatic range resolution, target range
migration is not a critical issue for a short or moder-
ate CPI. However, when an extended CPI is required,
e.g., in very weak signal conditions, target range migra-
tion must be properly compensated for. The commonly
used range migration compensation methods, such as
the Keystone transform [19], can be used to compensate
for the linear range migration. However, when accelera-
tion and higher order motion parameters are prominent
features of the target motion, target range migration
compensation emerges as a challenging problem. In
the underlying problem, we consider a moderately long
CPI, which obviates the need for target range migration
compensation.
On the other hand, since motion parameters of the

receiver platform are precisely known, we can compensate
for the range migration due to its movement [15] about
a ground reference position in close vicinity of the actual
position of targets, referred to as scene origins. For the kth
target, considering a scene origin at q(k), the bistatic range
between the nth transmitter, the scene origin, and the
receiver can be calculated at the mth azimuthal sampling
instant as

ζ (n)(tm) = ‖q(k) − b(n)‖ + ‖q(k) − r(tm)‖. (7)

Therefore, after compensating for the range migration
due to the movement of the receiver platform, the range
difference at azimuthal time tm can be expressed as

R̃(n,k)(tm) = ρ(n,k)(tm) − ζ (n,k)(tm)

=
∥∥∥p(k)(tm) − b(n)

∥∥∥+
∥∥∥p(k)(tm) − r(tm)

∥∥∥
−
∥∥∥q(k) − b(n)

∥∥∥−
∥∥∥q(k) − r(tm)

∥∥∥
=
∥∥∥p(k)

0 + v(k)tm + a(k)t2m/2 − b(n)
∥∥∥

+
∥∥∥p(k)

0 + v(k)tm + a(k)t2m/2 − r0 − vrtm
∥∥∥

−
∥∥∥q(k) − b(n)

∥∥∥−
∥∥∥q(k) − r0 − vrtm

∥∥∥ .
(8)

2.4 Observed Doppler signature
The signal transmitted by each of the N illuminators is
reflected by the K moving targets, and hence, the sig-
nal arriving at the receiver is the superposition of radar
returns from the K targets. Thus, the output of the
receiver matched filter at azimuthal time tm correspond-
ing to the nth illuminator, after range migration com-
pensation due to the motion of the receiver platform at
the scene origin, can be expressed as a linear sum of K
different Doppler signatures,

s(n)(tm) =
K∑

k=1
ξ (n,k) exp

(
j2π f (n)R̃(n,k)(tm)/c

)
+ η(n)(tm),

(9)

where ξ (n,k) = ξ
(n,k)
R + jξ (n,k)

I is a complex num-
ber representing the magnitude of the matched fil-
ter output corresponding to the return from the kth
target, and η(n)(tm) is the additive Gaussian white
noise output. The complex magnitude ξ (n,k) can be
assumed time-invariant because the target radar cross-
section (RCS) for a given bistatic pair does not fluc-
tuate significantly over the given observation period.
Note that the unknown initial phase component due to
the complex target reflectivity σ (n,k) is absorbed in the
unknown complex magnitude ξ (n,k). The phase term of
the matched filter output, as discussed in the preceding
section, is determined by the range difference, depicted
in (8).
Considering a moderately long CPI, the Doppler signa-

ture from each target can be modeled as a second-order
phase polynomial signal, or referred to as a linear chirp.
That is, the phase term of s(n,k)(tm), denoted as φ(n,k)(tm),
follows a quadratic relationship:

φ(n,k)(tm) = φ
(n,k)
0 + 2π f (n,k)

0 tm + πβ(n,k)t2m, (10)

where φ
(n,k)
0 is the initial phase, f (n,k)

0 is the initial Doppler
frequency, and β(n,k) is the chirp rate.
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3 Motion parameter estimation
In this section, we analyze the motion parameter esti-
mation of multiple ground moving targets in the given
multi-static passive network configuration using the time-
frequency analysis and group sparsity-based signal recon-
struction method.

3.1 Motion parameter estimation using time-frequency
analysis

As described in Section 2, the Doppler signature corre-
sponding to a ground moving target can be modeled as a
linear chirp for amoderate CPI. The chirp parameters, i.e.,
the initial frequency and chirp rate, can be estimated using
time-frequency analysis techniques such as the Radon-
Wigner transform, the fractional Fourier transform
(FrFT), and the chirp-Fourier transform. These meth-
ods have been widely used in various radar applications
(e.g., [20-24]). Amotion parameter estimationmethod, for
single as well as multiple closely located ground moving
targets, is proposed in [15]. The method proposed in [15]
assumes a priori knowledge of Doppler signature parame-
ters corresponding to all bistatic links, obtained using the
time-frequency analysis, to estimate motion parameters
using[

f (n,k)
0

β(n,k)

]
= A(n,k)

(
q(k)

) [ v(k)

a(k)

]
, (11)

where f (n,k)
0 and β(n,k), respectively, are the initial Doppler

frequency and the chirp rate observed in the signature
corresponding to the nth transmitter and target motion
parameters v(k) and a(k) of the kth target. The matrix
A(n,k)(q(k)), which maps the chirp parameters to the
respective motion parameter, is defined as

A(n,k)
(
q(k)

)

= 1
λ(n)

⎡
⎢⎢⎣
(
q(k)−b(n)

)T
‖q(k)−b(n)‖ +

(
q(k)−r0

)T
‖q(k)−r0‖ 0

− 2vTr
‖q(k)−r0‖

(
q(k)−b(n)

)T
‖q(k)−b(n)‖ +

(
q(k)−r0

)T
‖q(k)−r0‖

⎤
⎥⎥⎦ ,

(12)

where λ(n) is the wavelength of the signal corresponding
to the the nth transmitter. For N spatially separated trans-
mitters, we obtain 2N distinct equations. Therefore, the
four unknown motion parameters of each target can be
unambiguously estimated when N ≥ 2.
However, under weak signal conditions, it is difficult to

obtain reliable chirp parameter estimations using time-
frequency analysis of the Doppler signatures. In the pres-
ence of additive white Gaussian noise, the chirp parameter
estimation process exhibits a threshold effect in the sense
that, when SNR is below a certain threshold, there is a
rapid performance degradation [24]. As discussed earlier,

despite the availability of several transmitters, the Doppler
signatures corresponding to different bistatic links are dis-
tinct in general and thus cannot be directly combined
in the time-frequency domain to improve the estimation
reliability and accuracy of the chirp parameters in each
bistatic pair.
In the following, we consider exploiting the group

sparsity-based signal reconstruction for motion parame-
ter estimation. This helps achieve overall signal enhance-
ment by combining information from all possible bistatic
links and, thereby, obtaining a reliable motion parameter
estimation even in weak signal conditions.

3.2 Motion parameter estimation using sparse signal
reconstruction

In (8), we see that the motion of a target is determined
by four unknown motion parameters, i.e., the x- and y-
axis components of its acceleration and velocity. With the
a priori information that Doppler signatures correspond-
ing to different bistatic links share the same set of motion
parameters, the problem can bemodeled as a group sparse
signal reconstruction problem.
In the underlying problem, the measurement matrix

needs to represent a discretized four-dimensional (4-D)
space of the unknown motion parameters, such that each
point in the discretized space represents a hypothetical
combination of target motion parameters (vx, vy, ax, ay). It
is noted that the true motion parameters can assume any
value in the continuous space and an attempt to repre-
sent themotion parameters in a discretized 4-D spacemay
result in an ‘off-grid’ problem. However, by adequately
sampling the parameter space, a good performance can
be achieved as long as the mutual coherence among the
columns of the measurement matrix is low enough to per-
mit the sparse signal reconstruction. The performance of
the sparsity-based signal reconstruction method can be
improved by increasing the resolution of the measure-
ment matrix. However, this increases a risk of increasing
the mutual coherence among the columns of the dic-
tionary matrix to an extent where sparse reconstruction
becomes impractical or infeasible. Considering these two
issues, it is important to define the measurement matrix
as fine as possible provided that the sparse reconstruction
is feasible. Mathematically, it is possible to obtain a joint
estimation of multiple-target motion parameters through
an ML search.

3.2.1 Maximum likelihood estimation
The N × 1 received signal vector at the mth azimuthal
sampling instant, tm, can be formed as

s(tm) =
[
s(1)(tm), s(2)(tm), · · · , s(N)(tm)

]T= γ (tm)+η(tm),

(13)
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where s(n)(tm) is the output of the receiver matched filter
defined in (9),

γ (tm) =
K∑

k=1
�(k)(tm)ξ (k), (14)

where �(k)(tm) = diag
{[
exp

(
j2π f (1)R̃(1,k)(tm)/c

)
, · · · ,

exp
(
j2π f (N)R̃(N ,k)(tm)/c

)]T}, ξ (k) = [
ξ (1,k), · · · , ξ (N ,k)]T ,

and η(tm) represents the N × 1 additive Gaussian noise
vector. As such, the received signal vector can be modeled
as a complex multivariate normally distributed random
variable, such that

s(tm) ∼ CN
(
γ (tm), σ 2IN

)
. (15)

In the underlying problem, the unknown parameter
set can be defined as ϑ = (ξ , a, v), where ξ =[
(ξ (1))T , · · · , (ξ (K))T

]T
, a = [

(a(1))T , · · · , (a(K))T
]T , and

v = [
(v(1))T , · · · , (v(K))T

]T . The respective unknown
vectors corresponding to the kth target are defined as

ξ (k) = [
ξ (1,k), · · · , ξ (N ,k)]T , a(k) =

[
a(k)
x , a(k)

y
]T

, and

v(k) =
[
v(k)
x , v(k)

y
]T

.
Then, the negative log-likelihood function of the

unknown parameters is given as

L(ϑ) =
M−1∑
m=0

‖s(tm) − γ (tm)‖2 . (16)

The target parameters can be estimated by minimiz-
ing (16) over the unknown parameters. Therefore, the ML
estimator can be defined as

ϑ̂ = arg min
ϑ

L(ϑ). (17)

However, from a practical standpoint, the ML estima-
tion based on (17) requires a computationally demanding
4-D parameter search.
In the following, we propose a two-step sequential

estimation process to reduce the dimensionality of the
parameter search space. First, we obtain estimates of tar-
get acceleration by applying group sparsity-based signal
recovery in the ambiguity domain. Then, the estimated
values of target acceleration are used for estimating veloc-
ities of the respective targets.

3.2.2 Estimation of acceleration ofmultiple targets
It is established in [2] that, for a radar return whose
Doppler signature is characterized as a chirp, the chirp
rate depends largely on the target acceleration, whereas
the initial velocity of the target has an insignificant
effect on the chirp rate, specially when the target-receiver

distance is large. It can be inferred from (12) that, for
a large target-receiver separation, the matrix A(n,k)(q(k))

becomes nearly block diagonal, almost decoupling the
effect of velocity and acceleration of a target on its
Doppler signature. It is also known that, when a chirp
signal is considered in the ambiguity domain, its sig-
nature is not affected by its initial frequency. That is,
the ambiguity function of a target’s Doppler signature
is a straight line passing through the origin, irrespec-
tive of the initial Doppler frequency, where the slope
of the straight line is determined by the chirp rate.
With multiple targets, the ambiguity function auto-terms
of the radar return, defined in (9), constitutes multi-
ple lines which all pass through the origin but with
different slopes, depending on the respective target accel-
erations. By applying group sparsity-based signal recon-
struction methods in the ambiguity domain, therefore,
it is possible to simultaneously utilize the signal energy
in all available bistatic links for estimating the acceler-
ation of multiple targets, using the process detailed as
follows.
The ambiguity function of the signal s(n)(tm) corre-

sponding to the Doppler frequency θ and time delay τ is
defined in the discrete-time representation as

χ(n)(θ , τ) =
M−1∑
m=0

s(n)(tm +τ)
[
s(n)(tm−τ)

]∗
exp(−j2πθ tm).

(18)

The discretized two-dimensional (2-D) ambiguity func-
tion corresponding to the nth broadcast station forms a
matrix χ (n) ∈ CNθ×Nτ , where Nθ and Nτ , respectively,
represent the number of Doppler bins and the number of
delay bins considered in the analysis.
In order to estimate the target acceleration by applying

group sparsity-based signal reconstruction in the ambi-
guity domain, we define an NθNτ × 1 observation vec-
tor x̃(n) = vec[χ (n)] by vectorizing the discretized 2-D
ambiguity function corresponding to the nth transmit-
ter, where n = 1, · · · ,N . The entire acceleration space
is represented by a 2-D discrete space comprising Nax
and Nay points along the x-axis and y-axis, respectively.
Let an NaxNay × 1 vector u(n) be the unknown sparse
vector which vectorizes the discretized 2-D acceleration
space such that the pth element of u(n) is associated with
the pth hypothetical target acceleration vector a[p] =
[ax,nax , ay,any , 0]T , where ax,nax and ay,nay are respectively
the naxth discretized value in the Nax x-direction accel-
eration points and the nayth discretized value in the Nay
y-direction acceleration points, and p = (nay − 1)Nax +
nax ∈ [1,NaxNay]. As such, the pth column of the dic-
tionary matrix, �(n), that relates u(n) and x̃(n), is the
vectorized 2-D ambiguity function when a hypothetic tar-
get acceleration is present at the pth entry of u(n) with
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a unit signal strength. To explicitly express the pth col-
umn of the dictionary matrix, we notice that, in this case,
the bistatic range at the mth azimuthal sampling instant,
after performing range migration compensation, can be
obtained from (8) as

R̃(n,k)
[p] (tm) =

∥∥∥p(k)
0 + a[p]t2m/2 − b(n)

∥∥∥
+
∥∥∥p(k)

0 + a[p]t2m/2 − r0 − vrtm
∥∥∥

− ‖q(k) − b(n)‖ −
∥∥∥q(k) − r0 − vrtm

∥∥∥ .
(19)

Since the target velocity does not have a significant
impact on the ambiguity function of the chirp Doppler
signature, the velocity vector for all the targets is ignored
in (19). As such, using (9), the output of the receiver
matched filter at the mth azimuthal sample can be
expressed as

s(n)
[p] (tm) =

K∑
k=1

exp
(
j2π f (n)R̃(n,k)

[p] (tm)/c
)
. (20)

The corresponding ambiguity function in the discrete-
time representation is defined as

χ
(n)
[p] (θ , τ) =

M−1∑
m=0

s(n)
[p] (tm+τ)

[
s(n)
[p] (tm−τ)

]∗
exp(−j2πθ tm).

(21)

Vectorizingχ
(n)
[p] , whose (θ , τ)th element is χ

(n)
[p] (θ , τ), we

obtain the pth column of the dictionary matrix �(n) as an
NθNτ × 1 column vector defined as ψ

(n)
[p] = vec

[
χ

(n)
[p]

]
.

Therefore, the unknown sparse vector representing the
acceleration space, u(n), can be obtained as the group
sparse solution of the following linear formula:

x̃(n) = �(n)u(n), n = 1, . . . ,N . (22)

In this group sparse problem, the sparse vectors u(n)

share a common sparse support because the target accel-
erations are common to all N bistatic links, whereas the
non-zero elements of u(n), in general, differ for each n
because of, among others, the imperfect estimation of ini-
tial target position and propagation attenuations. There
are a number of algorithms available to solve the group
sparse problems such as group basis pursuit [25], group
LASSO [26], and block orthogonal matching pursuit
[27]. Multi-task Bayesian compressive sensing algorithm
[28,29] provides an adaptive learning framework and gen-
erally outperforms the conventional compressive sensing

algorithms. In this paper, we use the complex multi-
task Bayesian compressive sensing (CMT-BCS) algorithm
[29], which is based on the Bayesian framework that
exploits the statistical relationship between multiple mea-
surements or sensing tasks and exploit the group sparsity
between real and imaginary parts of the sparse entries.
Also, since the CMT-BCS algorithm is known to be less
sensitive to the dictionary coherence, it is a good choice
for the underlying problem where it is desirable to have a
high resolution measurement matrix. Since we deal with
the complex data, we adopt a commonly used technique
[29,30] to decompose the complex observation into its
real and imaginary parts, and rewrite the nth observation
vector as

ỹ(n) =
[
�(x̃(n))T ,�(x̃(n))T

]T
(23)

and the corresponding dictionary matrix as

�̃
(n) =

[�(�(n)) −�(�(n))

�(�(n)) �(�(n))

]
. (24)

The CMT-BCS algorithm exploits the group sparsity
between the real and imaginary parts of the sparse
entries, �(u(n)) and �(u(n)), and the solution of u(n) =
�(u(n))+ j�(u(n)) converges to a K-sparse solution, whose
indices correspond to estimates of acceleration of the
K ground moving targets, â(k) =

[
â(k)
x , â(k)

y , 0
]T

, where
k = 1, · · · ,K . The estimated accelerations are used in the
following to estimate the respective target velocities.

3.2.3 Estimation of velocity of multiple targets
For estimating velocity vectors of K targets, we again
exploit the group sparsity-based signal recovery method.
Define an M-element complex observation vector y′(n),
corresponding to the nth broadcast station, which stacks
the M azimuthal samples of the matched filter output, as
defined in (9). As such, we define N observation vectors
corresponding to each bistatic link. The 2-D space of the
unknown velocity can be modeled as an Nvx × Nvy search
space such that each point in the discretized space repre-
sents a hypothetical target velocity vector, where Nvx and
Nvy denote the number of discrete points used to repre-
sent the entire target velocity space along the x-axis and
y-axis, respectively. As such, for a given estimate of tar-
get acceleration â(k), the p′th hypothetical velocity vector
is expressed as v[p′] = [vx,nvx , vy,nvy , 0]T , where vx,nvx and
vy,nvy are respectively the nvxth discretized value in theNvx
x-direction acceleration points and the nvyth discretized
value in the Nvy y-direction acceleration points, and p′ =
(nvy − 1)Nvx + nvx ∈ [1,NvxNvy]. In this case, the bistatic
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range at the mth azimuthal sampling instant, after range
compensation, can be expressed as,

R̃(n,k)
[p′] (tm) =

∥∥∥p(k)
0 + v[p′]tm + â(k)t2m/2 − b(n)

∥∥∥
+
∥∥∥p(k)

0 + v[p′]tm + â(k)t2m/2 − r0 − vrtm
∥∥∥

− ‖q(k) − b(n)‖ −
∥∥∥q(k) − r0 − vrtm

∥∥∥ .
(25)

Therefore, given the estimated acceleration â(k), the out-
put of the receiver matched filter corresponding to the
kth target, for the p′th hypothetical target velocity, can be
modeled as

s(n,k)[p′] (tm) = exp
(
j2π f (n)R̃(n,k)

[p′] (tm)/c
)
. (26)

Denote ψ ′(n,k)
[p′] �

[
s(n,k)[p′] (t1), · · · , s(n,k)[p′] (tM)

]T
as the col-

lection of s(n,k)[p′] (tm) over the M azimuth samples, and

let � ′(n,k) =
[
ψ ′(n,k)

[1] , · · · ,ψ ′(n,k)
[NvxNvy]

]
be the dictionary

matrix corresponding to the kth target. As such, the obser-
vation signal vector,

y(n) =
[
s(n)(t1), · · · , s(n)(tM)

]T
, (27)

with s(n)(tm) being given in (9), can be expressed in terms
of the dictionary matrix � ′(n,k) and the unknown sparse
velocity vector u′(n,k) as

y(n) =
K∑

k=1
� ′(n,k)u′(n,k) = � ′(n)u′(n), (28)

where � ′(n) =
[
� ′(n,1), · · · ,� ′(n,K)

]
and u′(n) =[

(u′(n,1))T , · · · , (u′(n,K)
)T
]T

. Note that each vector u′(n,k)

is 1-sparse with the non-zero entry index corresponding
to the velocity of the kth target, yielding a K-sparse vector
of u′(n).
As discussed in the previous section, the above problem

can be cast as a group sparse problem. Again, we decom-
pose the complex observation into its real and imaginary
parts before applying the CMT-BCS algorithm to obtain
estimates of velocity of the K ground moving targets,

v̂(k) =
[
v̂(k)
x , v̂(k)

y , 0
]T

, with each velocity estimate being
associated with the kth acceleration estimate â(k), for
k = 1, · · · ,K .
In the analysis so far, a perfect knowledge of the initial

positions of the ground moving targets is assumed. How-
ever, in practice, such perfect localization of the ground
moving targets may not be possible, particularly in the
weak signal conditions. Note that a very small position

error in the order of a fraction of a wavelength can alter
the phase accuracy. In the following, therefore, we con-
sider the estimation of motion parameters of multiple
ground moving targets considering an imperfect knowl-
edge of the initial positions of the targets.

3.3 Motion parameter estimation considering an
imperfect knowledge of the initial positions of the
targets

Define p(k)
e as the error in the estimation of initial posi-

tion of the kth target. Following (8), and considering the
position error, the range difference is expressed as

Ř(n,k)(tm) =
∥∥∥p(k)

0 + p(k)
e + v(k)tm + a(k)t2m/2 − b(n)

∥∥∥
+
∥∥∥p(k)

0 + p(k)
e + v(k)tm + a(k)t2m/2 − r0 − vrtm

∥∥∥
−
∥∥∥q(k) − b(n)

∥∥∥−
∥∥∥q(k) − r0 − vrtm

∥∥∥ ,
(29)

and following (9), the corresponding Doppler signature is
expressed as

š(n)(tm) =
K∑

k=1
ξ (n,k) exp

(
j2π f (n)Ř(n,k)(tm)/c

)
. (30)

Let y = [
(y(1))T , · · · , (y(N))T

]T denote a long vector
of the azimuthal signal samples across all illuminators,
where y(n) is defined in (27). Similarly, define y̌(n) =[
š(n)(t1), · · · , š(n)(tM)

]
and let y̌ = [

y̌(1)T , · · · , y̌(N)T ]T as
the signal vector corresponding to the estimated positions
of the targets. As such, the cross-correlation between the
vectors s and š is calculated as

yH y̌ =
N∑

n=1

(
y(n)

)H
y̌(n)

=
N∑

n=1

M∑
m=1

(
s(n)(tm)

)∗
š(n)(tm)

=
N∑

n=1

M∑
m=1

K∑
k=1

|ξ (n,k)|2

× exp
(
j2π f (n)

(
R(n,k)(tm) − Ř(n,k)(tm)

)
/c
)
.

(31)

When p(k)
e = 0, (31) yields

∑N
n=1

∑M
m=1

∑K
k=1

∣∣ξ (n,k)∣∣2,
which is a direct summation of signal energy across all
available bistatic pairs. This results in an overall sig-
nal enhancement. However, when the position error is
non-zero and unknown, the cross-correlation for each
bistatic pair yields a complex value with an unknown
phase. As a result, their combined contribution may
result in a reduced or even nullified overall signal energy
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depending upon the phase interactions among the bistatic
pairs. This causes a performance degradation of the 4-D
ML search. On the other hand, the two-step sequen-
tial method based on group sparsity is robust against
such phase discrepancies because the performance of the
group sparsity-based method does not directly depend
on the coherent combination of the multiple Doppler
signatures.

4 Performance analysis
In this section, we derive the CRB for the proposed
parameter estimation problem for a general target distri-
bution scenario in an MPR system.
The elements of the Fisher information matrix (FIM)

of any complex circularly Gaussian process x(tm) ∼
N (μ(tm),R) are given by [31]

[F]i,j = tr
(
R−1 ∂R

∂ϑi
R−1 ∂R

∂ϑj

)

+ 2 �
(M−1∑
m=0

∂μH(tm)

∂ϑi
R−1 ∂μ(tm)

∂ϑj

)
,

(32)

where ϑ = [ϑ1, · · · ,ϑQ]T represents the Q × 1 vector of
unknown variables, and i, j ∈ (1, · · · ,Q).
In the given problem, the unknown parameter vector is

defined as ϑ = (ξ , a, v), where ξ =
[
ξ (1)T , · · · , ξ (K)T

]T
,

a =
[
a(1)T , · · · , a(K)T

]T
, and v =

[
v(1)T , · · · , v(K)T

]T
,

where the respective unknown vectors corresponding to
the kth target are defined as ξ (k) = [

ξ (1,k), · · · , ξ (N ,k)]T ,
a(k) =

[
a(k)
x , a(k)

y
]T

, and v(k) =
[
v(k)
x , v(k)

y
]T

. As such, the
structure of the FIM becomes

F =
⎡
⎣ Fξξ Fξa Fξv
Faξ Faa Fav
Fvξ Fva Fvv

⎤
⎦ . (33)

Applying (32) to the observation data model (15), we
obtain the elements of F ∈ R(N+4)K×(N+4)K as

[F]i,j = 2
σ 2 �

[M−1∑
m=0

∂γH(tm)

∂ϑi

∂γ (tm)

∂ϑj

]
, (34)

where ϑi,ϑj ∈ ϑ . Following (34),

Fξξ = 2
σ 2 �

[M−1∑
m=0

∂γH(tm)

∂ξ

∂γ (tm)

∂ξ

]
, (35)

where γ (tm) = ∑K
k=1 �(k)(tm)ξ (k), and therefore,

∂γ (tm)

∂ξ
=
[
�(1)(tm), · · · ,�(K)(tm)

]
, (36)

and

∂γH(tm)

∂ξ
=
[
�(1)(tm), · · · ,�(K)(tm)

]H
. (37)

Substituting in (35), we obtain

Fξξ = 2
σ 2 �

[M−1∑
m=0

[
�(1)(tm), · · · ,�(K)(tm)

]H

×
[
�(1)(tm), · · · ,�(K)(tm)

] ]
.

(38)

Similarly,

Fξa = 2
σ 2 �

[M−1∑
m=0

∂γH(tm)

∂ξ

∂γ (tm)

∂a

]
, (39)

where

∂γ (tm)

∂a
=
[

∂�(1)(tm)ξ (1)

∂a(1)
x

,
∂�(1)(tm)ξ (1)

∂a(1)
y

, · · · ,

∂�(K)(tm)ξ (K)

∂a(K)
x

,
∂�(K)(tm)ξ (K)

∂a(K)
y

]
.

(40)

Since

�(k)(tm) = diag
{[

exp
(
j2π f (1)R̃(1,k)(tm)/c

)
, · · · ,

exp
(
j2π f (N)R̃(N ,k)(tm)/c

)]T}
,

(41)

the partial derivatives become

∂�(k)(tm)ξ (k)

∂a(k)
x

= diag
{[(

j2π f (1)/c
)
exp

(
j2π f (1)R̃(1,k)(tm)/c

)∂R̃(1,k)(tm)

∂a(k)
x

,

· · · ,
(
j2π f (N)/c

)
exp

(
j2π f (N)R̃(N ,k)(tm)/c

)∂R̃(N ,k)(tm)

∂a(k)
x

]}
ξ (k)

= �(k)(tm)
ϒ(k)
ax (tm)ξ (k),

(42)

where 
 = diag
{[(

j2π f (1)/c
)
, · · · , ( j2π f (N)/c

)]}
and

ϒ
(k)
ax (tm) = diag

{[
∂R̃(1,k)(tm)

∂a(k)
x

, · · · , ∂R̃(N ,k)(tm)

∂a(k)
x

]}
. Similarly,

∂�(k)(tm)ξ (k)

∂a(k)
y

= �(k)(tm)
ϒ(k)
ay (tm)ξ (k), (43)
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where ϒ
(k)
ay (tm) = diag

{[
∂R̃(1,k)(tm)

∂a(k)
y

, · · · , ∂R̃(N ,k)(tm)

∂a(k)
y

]}
.

Thus, Fξa can be calculated as

Fξa = 2
σ 2 �

[M−1∑
m=0

[
�(1)(tm), · · · ,�(K)(tm)

]H

.
[
�(1)(tm)
ϒ(1)

ax (tm)ξ (1),�(1)(tm)
ϒ(1)
ay (tm)ξ (1), · · · ,

�(K)(tm)
ϒ(K)
ax (tm)ξ (K),�(K)(tm)
ϒ(K)

ay (tm)ξ (K)
]]

.

(44)

Similarly,

Fξv = 2
σ 2 �

[M−1∑
m=0

[
�(1)(tm), · · · ,�(K)(tm)

]H

.
[
�(1)(tm)
ϒ(1)

vx (tm)ξ (1),�(1)(tm)
ϒ(1)
vy (tm)ξ (1), · · · ,

�(K)(tm)
ϒ(K)
vx (tm)ξ (K),�(K)(tm)
ϒ(K)

vy (tm)ξ (K)
]]

,

(45)

where ϒ
(k)
vx (tm) = diag

{[
∂R̃(1,k)(tm)

∂v(k)x
, · · · , ∂R̃(N ,k)(tm)

∂v(k)x

]}
and

ϒ
(k)
vy (tm) = diag

{[
∂R̃(1,k)(tm)

∂v(k)y
, · · · , ∂R̃(N ,k)(tm)

∂v(k)y

]}
. Likewise,

we obtain

Faa= 2
σ 2 �

[M−1∑
m=0

[
�(1)(tm)
ϒ(1)

ax (tm)ξ(1),�(1)(tm)
ϒ(1)
ay (tm)ξ (1),

· · · ,�(K)(tm)
ϒ(K)
ax (tm)ξ (K),�(K)(tm)
ϒ(K)

ay (tm)ξ (K)
]H

.
[
�(1)(tm)
ϒ(1)

ax (tm)ξ (1),�(1)(tm)
ϒ(1)
ay (tm)ξ (1), · · · ,

�(K)(tm)
ϒ(K)
ax (tm)ξ (K),�(K)(tm)
ϒ(K)

ay (tm)ξ (K)
]]

,

(46)

Fav= 2
σ 2 �

[M−1∑
m=0

[
�(1)(tm)
ϒ(1)

ax (tm)ξ (1),�(1)(tm)
ϒ(1)
ay (tm)ξ(1),

· · · ,�(K)(tm)
ϒ(K)
ax (tm)ξ (K),�(K)(tm)
ϒ(K)

ay (tm)ξ (K)
]H

.
[
�(1)(tm)
ϒ(1)

vx (tm)ξ (1),�(1)(tm)
ϒ(1)
vy (tm)ξ (1), · · · ,

�(K)(tm)
ϒ(K)
vx (tm)ξ (K),�(K)(tm)
ϒ(K)

vy (tm)ξ (K)
]]

,

(47)

and

Fvv= 2
σ 2 �

[M−1∑
m=0

[
�(1)(tm)
ϒ(1)

vx (tm)ξ (1),�(1)(tm)
ϒ(1)
vy (tm)ξ(1),

· · · ,�(K)(tm)
ϒ(K)
vx (tm)ξ (K),�(K)(tm)
ϒ(K)

vy (tm)ξ (K)
]H

.
[
�(1)(tm)
ϒ(1)

vx (tm)ξ (1),�(1)(tm)
ϒ(1)
vy (tm)ξ (1), · · · ,

�(K)(tm)
ϒ(K)
vx (tm)ξ (K),�(K)(tm)
ϒ(K)

vy (tm)ξ (K)
]]

.

(48)

The partial derivatives of the range difference R̃(n,k)(tm)

with respect to the x- and y-components of acceleration of
the kth target are calculated as

∂R̃(n,k)(tm)

∂a(k)
x

= t2m
2

⎛
⎝ p(k)

0x + v(k)
x tm + a(k)

x t2m/2 − bx∥∥∥p(k)
0 + v(k)tm + a(k)t2m/2 − b(n)

∥∥∥
+ p(k)

0x +v(k)
x tm+a(k)

x t2m/2 − r0x −vrx tm∥∥∥p(k)
0 + v(k)tm+a(k)t2m/2 − r0−vrtm

∥∥∥
⎞
⎠ ,

(49)

and

∂R̃(n,k)(tm)

∂a(k)
y

= t2m
2

⎛
⎝ p(k)

0y + v(k)
y tm + a(k)

y t2m/2 − by∥∥∥p(k)
0 + v(k)tm + a(k)t2m/2 − b(n)

∥∥∥
+ p(k)

0y +v(k)
y tm+a(k)

y t2m/2−r0y −vry tm∥∥∥p(k)
0 +v(k)tm+a(k)t2m/2−r0−vrtm

∥∥∥
⎞
⎠ .

(50)

Likewise, the partial derivatives of R̃(n,k)(tm) with
respect to the x- and y-components of velocity of the kth
target are calculated as

∂R̃(n,k)(tm)

∂v(k)
x

= tm

⎛
⎝ p(k)

0x + v(k)
x tm + a(k)

x t2m/2 − bx∥∥∥p(k)
0 + v(k)tm + a(k)t2m/2 − b(n)

∥∥∥
+ p(k)

0x + v(k)x tm + a(k)
x t2m/2 − r0x − vrx tm∥∥∥p(k)

0 +v(k)tm + a(k)t2m/2−r0 − vrtm
∥∥∥
⎞
⎠ ,

(51)

and

∂R̃(n,k)(tm)

∂v(k)
y

= tm

⎛
⎝ p(k)

0y + v(k)
y tm + a(k)

y t2m/2 − by∥∥∥p(k)
0 + v(k)tm + a(k)t2m/2 − b(n)

∥∥∥
+ p(k)

0y + v(k)
y tm + a(k)

y t2m/2−r0y −vry tm∥∥∥p(k)
0 + v(k)tm + a(k)t2m/2−r0−vrtm

∥∥∥
⎞
⎠ .

(52)
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By definition, the CRB on estimation performance of
the unknown variables is determined by the respective
diagonal elements of the inverse of the FIM.

5 Simulation results
In the simulations, we consider a geolocation scenario
as illustrated in Figure 1, where seven digital audio
broadcast (DAB) stations [32] are respectively located at
[10,−10, 0.1]T km, [−10, 12, 0.1]T km, [10,−18, 0.1]T km,
[0,−20, 0.1]T km, [−10,−10, 0.1]T km, [−5, 15, 0.1]T km,
and [−5, 5, 0.1]T km. The respective carrier frequencies of
these seven illuminators are 225, 227, 229, 231, 233, 235,
and 237 MHz.
The initial position of the airborne receiver is [0, 0, 5]T

km, and it moves with a constant velocity of [150, 0, 0]T
m/s. The simulation results illustrate the performance of
the proposed method over a 20-dB range of the input
SNR, which is defined per sample in the fast time. It is
important to note that, since the receiver data is sam-
pled at 2.048 MHz and the matched filter output yields a
200-Hz azimuthal sampling frequency, a processing gain
of 40.1 dB is achieved at the output of the matched fil-
ter. The overall CPI is assumed to be 2 s, which generates
400 azimuthal samples per illuminator. The amplitude
parameter ξ (n,k) in (9) is assumed to be unity for all n
and k.
We consider two ground moving targets which are

closely located, respectively, at [0, 14, 0]T km and
[0.05, 14, 0]T km. The first target is assumed to be moving
with an initial speed of [−7,−7, 0]T m/s and an acceler-
ation of [−3,−3, 0]T m/s2, whereas the second target is
assumed to be moving with an initial speed of [7, 7, 0]T
m/s and an acceleration of [3, 3, 0]T m/s2.
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Figure 1 Geometry of the multi-static, multi-target passive
system. The relative positions of transmitters, receiver, and two
closely spaced ground moving targets are illustrated.

The spectrogram and the ambiguity function of Doppler
signatures of two targets corresponding to the first illu-
minator are presented in Figure 2 at two different SNR
conditions. For high SNR applications, as illustrated in
Figure 2a,b, the spectrogram constitutes two distinct lines
corresponding to the respective initial frequency and
chirp rate of the Doppler signatures of the two targets.
The ambiguity function, on the other hand, constitutes
two distinct straight lines passing through the origin, with
different slopes depending on the respective chirp rates.
As such, the chirp parameters can be reliably estimated
for each bistatic link using time-frequency analysis-based
methods, and subsequently, the respective motion param-
eters can be estimated using (11) by using the standard
least squares (LS) methods. However, when the input SNR
is low, as evident in Figure 2c,d, it is difficult to reliably
obtain chirp parameters corresponding to each bistatic
link. The chirp parameter estimation process in the pres-
ence of additive white Gaussian noise suffers a rapid
performance degradation below a certain SNR threshold.
This necessitates a mechanism to combine signal energy
from all available bistatic links which, however, is diffi-
cult to implement directly in the time-frequency domain.
By exploiting sparsity-based signal reconstruction, theML
and the two-step sequential methods, respectively, pro-
vide a means to coherently and non-coherently combine
Doppler signatures from all available links. They result
in an overall signal enhancement, and consequently, the
threshold is reached at a lower SNR as compared to the
traditional time-frequency analysis-based methods.
The performance of the sparse signal reconstruction-

based methods is compared against the CRB formulated
in (34) for the underlying problem. For the given sim-
ulation scenario, we obtain the root-mean-square error
(RMSE) of the estimated acceleration and velocity through
100 independent trials, and the results are, respectively,
presented in Figure 3a,b.
Results for one of the targets are depicted in Figure 3a,b,

and similar qualitative results are obtained for the param-
eters of the second target as well. The error perfor-
mance of the sequential estimator is also compared
against those obtained from a 4-D ML estimation and
traditional time-frequency analysis-based technique (e.g.,
using chirp-Fourier transform). The results shown in
Figure 3a,b illustrate that the RMSE of ML estimates of
the motion parameters are approximately 3 dB higher
than the respective CRB. Similar results are presented
in [33,34]. Simulation results show that the sequential
method outperforms the parameter estimation technique
based on the chirp-Fourier transform since the thresh-
old effect for this method is delayed when compared to
the chirp transform-based method. Also, as illustrated
in Figure 4, the availability of more transmitters can be
exploited to further lower the SNR threshold using the
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Figure 2 Spectrogram and ambiguity function of Doppler signature for two targets at high and low SNR. (a) Spectrogram (SNR= −45 dB).
(b) Ambiguity function (SNR= −45 dB). (c) Spectrogram (SNR= −53 dB). (d) Ambiguity function (SNR= −53 dB).

proposed method. As discussed in Section 3, representa-
tion of target motion parameters in a discretized param-
eter space may yield an off-grid problem. However, in the
simulated example, we have defined the grid resolution
fine enough to match the CRB, such that the performance
is robust even if the true parameter is off-grid. Specif-
ically, grid resolutions used in this simulated example
are 0.05 m/s2 for acceleration and 0.01 m/s for velocity
estimation, respectively.
As discussed in Section 4, errors in the assumed or

estimated initial positions of the targets result in phase
differences among the Doppler signatures corresponding
to different bistatic links. In such a situation, depending
upon the phase interactions, the individual Doppler sig-
natures may destructively add to each other, yielding a sig-
nificant reduction in overall signal energy accumulation

through a coherent fusion process. As such, the ML
search-based motion parameter estimation suffers a per-
formance degradation in case of an imperfect knowledge
about the initial positions of the targets. On the other
hand, the sequential method does not rely on coherent
combining of the Doppler signatures for overall signal
enhancement and, hence, is robust against such phase
misalignment. In order to illustrate such situation, we
consider a position error of [1, 0, 0]T m, which is approx-
imately equal to the wavelength of operation, in the esti-
mation of the initial positions of both targets. It is evident
in Figure 5 that the ML search-based motion parameter
error suffers a significant performance loss, whereas the
two-step sequential method is robust against such local-
ization error, which is an observation of high practical
significance.
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Figure 3 Error performance of motion parameter estimation. (a) Acceleration. (b) Velocity.
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Figure 4 Comparison of RMSE of parameter estimation using different numbers of transmitters. (a) Acceleration. (b) Velocity.

It is important to note that there are two sources of
error that are inherently associated with the target accel-
eration estimation using the proposed method. Since the
ambiguity function, defined in (18), is bilinear, the effect
of noise is enhanced, resulting in a performance degra-
dation as compared to its linear transform counterpart.
Furthermore, since matrix mapping the chirp parameters
to the respective motion parameters, defined in (12), is
not exactly block diagonal, the target velocity does have a
small effect on the chirp rate. This introduces an estima-
tion error in the acceleration because target velocity is not
considered in (19). The significance of the error is propor-
tional to the ratio of velocity of the receiver platform to the
target-receiver separation. That is, the effect of this off-
diagonal block becomes insignificant for distant targets.
In the simulated example, the off-diagonal term is small,
yielding negligible acceleration estimation error. Specif-
ically, in the simulated example, the off-diagonal term
is approximately [0.015, 0, 0]T 1/s and the corresponding
acceleration estimation error is approximately 0.004 m/s2.
Velocity estimation, on the other hand, involves a linear
process. Therefore, it does not suffer from performance
degradation due to bilinear effects as in acceleration
estimation. However, the error which occurred in the
estimated target acceleration propagates to the velocity

estimation, and the significance of such error propagation
depends on the duration of the CPI. Also, when the target
motion parameters are closely located in the parameter
space, the performance deteriorates specially in low SNR
conditions.

6 Conclusions
We have developed novel methods for the estimation
of motion parameters of multiple closely located ground
moving targets in a multi-static passive radar plat-
form. By exploiting the fact that the Doppler signatures
of the targets corresponding to different bistatic links
share the same target motion parameters as a com-
mon sparse support in the discretized parameter search
space, the underlying problem is reformulated as a group
sparse signal reconstruction problem. The sparse signal
reconstruction-based methods allow for the fusion of data
from all bistatic links, which is not possible in tradi-
tional time-frequency analysis-based methods. The two-
step sequential method emphasizes on decoupling the
effects of target acceleration and velocity on the Doppler
signature and obtains a sequential estimation of the target
motion parameters to avoid the need for a computation-
ally demanding multi-dimensional exhaustive search. It
is shown that the sequential method also outperforms
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Figure 5 Comparison of RMSE of parameter estimation considering an imperfect knowledge of initial target positions. (a) Acceleration.
(b) Velocity.
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the maximum likelihood search-based parameter esti-
mation in cases where the initial positions of the tar-
gets is not precisely known. The performance of the
proposed estimators is validated by simulations, and it
is shown that these approaches outperform the time-
frequency analysis-based methods and closely approaches
the Cramér-Rao Bound.
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