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Abstract

Synthetic aperture imaging is a high-resolution imaging technique employed in radar and sonar applications, which
construct a large aperture by constantly transmitting pulses while moving along a scene of interest. In order to avoid
azimuth image ambiguities, spatial sampling requirements have to be fulfilled along the aperture trajectory. The latter,
however, limits the maximum speed and, therefore, the coverage rate of the imaging system. This paper addresses
the emerging field of compressive sensing for stripmap synthetic aperture imaging using transceiver as well as
single-transmitter and multi-receiver systems so as to overcome the spatial Nyquist criterion. As a consequence,
future imaging systems will be able to significantly reduce their mission time due to an increase in coverage rate. We
demonstrate the capability of our proposed compressive sensing approach to at least double the maximum sensor
speed based on synthetic data and real data examples. Simultaneously, azimuth image ambiguities are successfully
suppressed. The real acoustical measurements are obtained by a small-scale ultrasonic synthetic aperture laboratory
system.

Keywords: Compressive sensing; Synthetic aperture radar; Synthetic aperture sonar; Stripmap mode; Aperture
undersampling

1 Introduction
Synthetic aperture imaging [1,2] is a technique to produce
high-resolution reflectivity maps of a scene of interest,
e.g., of the earth surface for reconnaissance missions [3]
or for glacier monitoring [4,5] using synthetic aperture
radar (SAR). While the resolution is almost identical to
optical satellite images [6], SAR imaging is advantageous
due to its weather-independent and daytime-independent
deployment.
For imaging large areas in underwater applications, the

use of optical sensors is inadequate given the attenuation
of electromagnetic waves in water. Instead, synthetic aper-
ture sonar (SAS) [7-9] systems are deployed to achieve
highly improved coverage rates compared to normal side-
scan sonars [8]. In the context of SAS, mine hunting
applications are of broad concern [10,11]. The main syn-
thetic aperture modes encompass spotlight and stripmap
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operation. While spotlight operation is typically favored
over stripmap due to its improved resolution capabilities
in SAR, the stripmap mode is commonly used in SAS [8].
The principle of synthetic aperture techniques is to syn-

thesize a large aperture by constantly transmitting pulses
(pings) using a single transceiver in SAR or a single-
transmitter and multi-receiver configuration in SAS [8].
The physical aperture is mounted to an imaging platform,
which travels along a pre-determined rectilinear trajec-
tory passed to the area of interest, the so-called along-
track dimension. Given the limited beamwidth of the
physical aperture, the synthetic aperture length dynam-
ically adjusts itself proportional to the focusing range.
Thus, a constant along-track resolution is ideally main-
tained for the entire scenery leading to high-resolution
images [1,2,12].
However, for post-mission image reconstruction, the

coherent processing of numerous consecutive echo sig-
nals is required, which have to be stored in memory
during data collection. Hence, current synthetic aperture
systems produce a remarkable amount of data during
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only a few hours of operation, which leads to issues with
respect to data storage, data transportation, and data pro-
cessing [13]. Additionally, the advance per ping, i.e., the
traveling distance of the imaging platform between two
consecutive transmission times, is dictated by the spa-
tial sampling theorem [1,2]. Violation of this requirement
leads to the occurrence of azimuth image ambiguities also
called grating lobes or ghost targets in the reconstructed
image. The latter maymask important image content such
as objects or their shadows, which are lost beyond recall.
Moreover, the advance per ping influences the coverage
rate of the imaging system and hence determines the mis-
sion time. Consequently, alternative processing methods
are of utmost interest so as to avoid the massive amount
of data to be collected and simultaneously to suppress
azimuth image ambiguities while reducing the mission
time.
The emerging field of compressive sensing (CS) intro-

duces a novel sampling framework [14,15], which is able
to lower the sampling rate significantly below the Nyquist
rate if the captured signal has a sparse representation in
some domain. For example, the image domain itself can
be sparse considering a few man-made objects lying on
the seafloor. Moreover, an incoherence criterion between
the measurement and sparsity domain has to be fulfilled.
Roughly speaking, the criterion states that the measure-
ment and sparsity domain have to be highly uncorrelated
so that CS can work. Feasible applications cover diverse
areas. Among others, the CS framework has been success-
fully applied in the context of digital imaging [16], medical
scanners [17], as well as in various radar and radar imag-
ing applications [18-24], which will be briefly discussed
subsequently to point out their difference to our proposed
approach.
In [18], the need for a matched-filter operation is

avoided using CS for focusing the echo signals in range
direction and simultaneously reducing the sampling rate.
While the use of a specially designed waveform, the Alltop
sequence, is suggested in [19] to design a high-resolution
radar using CS, the author in [23] chooses a stepped-
frequency signal model. Then, CS is applied to reduce
the recording time due to the sequential transmission
of numerous mono-chromatic signals in the application
of radar pulse compression. Similarly, a CS stepped-
frequency approach is suggested in [24] in the context of
spotlight SAR to decrease the recording time and data
storage requirements. Contrarily, the authors in [20-22]
use the common linear frequency modulated (LFM) pulse
sequence for CS-based SAR imaging using the spotlight
mode. Promising results have been achieved using both
synthetic data and real radar measurements. In [20,21],
the narrowband as well as the far-field assumption is
applied, and thus, range migration [1,12], which is of
major concern in stripmap sonar imaging systems, is not

taken into account. Especially, the assumption in [21] of
two separate 1-D processing steps is not feasible in near-
field scenarios as typically given for SAS systems. The
authors of [22] motivate synthetic aperture undersam-
pling in their CS framework to reduce data storage and
to obtain wider swath width, again for a spotlight opera-
tion mode assuming the tomographic formulation [2,25].
Interestingly, a randomized transmit scheme is used to
lower azimuth ambiguities.
To the best of our knowledge, a general description on

how to apply CS for stripmap synthetic aperture imag-
ing is not addressed in the literature yet. In this paper, we
use the linear system model of the received echo signals
as provided in [26] and link it to the CS framework. We
demonstrate based on synthetic data as well as on real data
measurements that by regularly undersampling the syn-
thetic aperture, CS is capable of successfully suppressing
the occurrence of azimuth image ambiguities. This allows
that the area coverage rate as a key parameter is improved
by increasing the speed of the imaging platform while
maintaining the pulse repetition interval. We extend the
proposed reconstruction scheme to be used with a single-
transmitter and multi-receiver synthetic aperture system
as commonly applied in SAS to relax sampling constraints
in order to achieve useful coverage rates.
The remainder of the paper is organized as follows:

Section 2 provides a brief overview of the signal model
of stripmap synthetic aperture systems. Additionally, it
addresses the vector-matrix notation of the introduced
model, the spatial sampling requirements for the synthetic
aperture, as well as the single-transmitter and multi-
receiver extension. Section 3 outlines the conventional
imaging technique and our proposed CS imaging tech-
nique. Moreover, we introduce undersampling schemes.
Section 4 provides synthetic data results, and Section 5
shows real data results using our ultrasonic laboratory
synthetic aperture system. Finally, we discuss the results
in Section 6.

2 Synthetic aperture stripmap datamodel
The principle to form a synthetic array is through trans-
mitting pulses at index times p and receiving the echo sig-
nals at each sensor element position ap = [

0, p�A, hog
]T ,

where hog is the height overground and �A denotes the
advance per ping of the imaging platform. A typical geo-
metrical setup of a synthetic aperture imaging system
operating in stripmap mode is depicted in Figure 1, where
the direction of wave propagation and the traveling direc-
tion of the imaging platform are called range, x, and
along-track, y, respectively.
Here, the target scene f (x, y) consists of a set of D sta-

tionary point targets each with a target reflectivity σd and
located at positions qd = [xd, yd, 0]T , with d = 1, . . . ,D.
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Figure 1 A typical geometrical setup of a synthetic aperture
imaging system. Geometry of a synthetic aperture system consisting
of a transceiver at location ap at ping index time p that records the
echo signals scattering back of the target scene f (x, y) .

To simplify matters, the reflectivity σd is assumed to be
independent of frequency and angle of incidence of the
impinging wave. Moreover, any spreading losses are incor-
porated into σd . Then, the ideal target reflectivity function
[1] of the scene of interest is given by

f (x, y) =
D∑

d=1
σd δ (x − xd, y − yd) , (1)

where δ(x, y) is the two-dimensional delta function of
range direction x and along-track direction y. Given the
distance between target d located at qd and the imaging
platform at position ap as

rd,p = ∥∥qd − ap
∥∥
2 , (2)

where ‖ · ‖2 denotes the Euclidean norm, the discretized
echo signals of a mono-static synthetic aperture system
under the stop-and-hop assumption [12] can be expressed
as the superposition of individual target responses as
follows:

ep(n) =
D∑

d=1
σd · s (n − ηd,p

)
b(θd,p) + vp(n) (3)

p = 0, . . . ,Mp − 1, n = 0, . . . ,Mn − 1.

In (3), the round trip delay ηd,p between the sensor at its
current position ap and target d is given by

ηd,p = 2rd,p
cTs

(4)

and the function b(θd,p) describes an indicator function
resembling an ideal beam pattern of the transceiver. It

determines whether the target at location qd is seen by the
sensor at position ap and can be expressed as

b
(
θd,p

) =
{
1 |θd,p| ≤ θ0/2
0 elsewhere. (5)

Here, θ0 is the beamwidth of the physical sensor and θd,p
denotes the aspect angle between the dth target and the
sensor location ap. Moreover, c denotes the speed of prop-
agation of the wave in the respective medium, e.g., speed
of light or sound in water or air, Ts is the sampling rate,
and s(n) characterizes the transmitted signal pulse form in
discrete time. Typical radar and sonar systems use a LFM
pulse for s(n) due to its properties w.r.t. range resolution
and Doppler shift insensitivity during pulse compression
[12].
In order to get a more realistic model, we introduce

the term vp(n) in (3) which models additive white sen-
sor noise. Figure 2 illustrates a noise-free example, i.e.,
vp(n) ≡ 0, of the phase response of synthetic echo mea-
surements along the synthetic aperture (Figure 2a) result-
ing from a single point scatterer as depicted in Figure 2b.
As can be seen from Figure 2a, the received echo data can
be presented in matrix form as

E = ep(n)
∣∣p=0,...,Mp−1 and n=0,...,Mn−1 (6)

where p is the discrete along-track ping index (slow time)
of a total number of Mp pings, i.e., number of rows, and
Mn is the number of range bins (fast time), i.e., number of
columns.

2.1 Data model in matrix-vector notation
This section outlines how to rewrite the echo data model
of (3) and its matrix representation of (6) into a system of
linear equations [26] given by

e︸︷︷︸
Mp Mn×1

= S︸︷︷︸
Mp Mn×D

σ︸︷︷︸
D×1

+ v︸︷︷︸
Mp Mn×1

, (7)

such that e = vec(ET ), where vec(·) is the operator to vec-
torize a matrix column after column. In (7), the vector v
describes additive sensor noise and vector σ contains the
reflectivity of allD targets, i.e., σ =[ σ1, . . . , σD]T . The tar-
get reflectivity vector σ is multiplied with the pulse system
matrix

S = [
S0, S1, . . . , Sp, . . . , SMp−1

]T, (8)

which is a stacked matrix consisting of individual pulse
matrices, Sp with p = 0, . . . ,Mp − 1. An individual pulse
matrix describes the echo signals of all D targets received
at position ap during the pth ping. It can be expressed as

Sp = [
s1,p, s2,p, . . . , sd,p, . . . , sD,p

]
, (9)
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(a) (b)

Figure 2 Phase of the received echo signals and a point target in the scene of interest. Phase of the received echo signals (a) that are recorded
along the synthetic aperture resulting from a point target in the scene of interest as shown in (b). (a) Phase response. (b) Single target geometry.

where sd,p is the delayed version of the transmitted pulse,
which has been reflected by the dth target. It is given by

sd,p =
[
01×Mη(d,p) , s, 01×M̃η(d,p)

]T
, (10)

where 01×M denotes a row vector of zeros with size M.
Here, s = [s(0), . . . , s(Ms − 1)] denotes the transmitted
waveform vector with a pulse length of Ms samples. Its
position index within the vector sd,p depends on the num-
ber of samples of the round trip delay. The latter can be
expressed as

Mη(d,p) =
⌊
2

∥∥qd − ap
∥∥
2

c Ts

⌋
, (11)

where �·� rounds towards the next smaller integer value.
Since a total number ofMn fast-time samples is recorded,
the vector sd,p must be zero-padded with M̃η(d,p) = Mn −(
Mη(d,p) + Ms

)
trailing zeros. Please note that the number

of fast-time samples Mn is related to the maximum range
Rmax of the imaging system.

2.2 Sampling requirements
Spatially sampling a synthetic aperture is achieved by
moving the imaging sensor by a distance �A between
two consecutive pings as depicted in Figure 1. As a con-
sequence, there is a relation between the speed v, the
advance per ping of the sensor �A, and the time interval
between two pings TPRI, which is given by �A = v TPRI
[1,12].

In order to avoid azimuth image ambiguities, which
either lead to a contrast reduction in the reconstructed
image or are mistakenly interpreted as targets, the syn-
thetic aperture has to be correctly sampled. This is
achieved by moving the sensor with a maximum distance
of �A ≤ �A

max, where �A
max represents the maximum

advance per ping, before transmitting the next pulse. To
find an expression for �A

max, let us assume an ideal point
scatterer at position [ xd, yd]T as depicted in Figure 2b.
Then, the relationships between the wavenumber (i.e.,
spatial frequencies) in range direction, kx, and along-track
direction, ky, and the wavenumber of wave propagation
direction, kr , assuming far-field conditions are given by

kx = 2kr cos
(
θd,p

)
and ky = 2kr sin

(
θd,p

)
, (12)

where θd,p represents the aspect angle between the sensor
and target. Clearly, due to sampling in the y-direction, we
have to consider the relation of ky to find a requirement on
the spatial sampling interval. Given the relation between
wavenumber and wavelength as kr = (2π)/λ, the spatial
sampling interval �A

max according to the Nyquist theorem
is given by

�A
max ≤ π

ky,max
= λmax

4 sin(θd,max)
, (13)

where λmax denotes the maximum wavelength of the
transmitted signal. For a stripmap imaging system,
the maximum aspect angle θd,max equals half of the
beamwidth angle θ0 of the physical aperture [1]. In the
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case of a planar aperture, the half beamwidth angle θ0/2 is
given by

θ0/2 = arcsin
(

λmax
Dy

)
≡ θd,max, (14)

where Dy is the physical aperture diameter in the y-
direction [1,27]. Substituting (14) into (13) leads to the
maximum advance per ping, and thus, the spatial sam-
pling constraint can be expressed as

�A
max ≤ Dy

4
. (15)

Thus, the maximum advance per ping depends on the
size of the physical aperture. Violating the condition in
(15) yields azimuth image ambiguities, which affect the
image quality and may be misinterpreted as real targets.
Note that simply increasing the physical aperture Dy to
enlarge the maximum advance per ping �A

max contradicts
with the along-track synthetic aperture resolution given
by δy = Dy/2 [1].

2.3 Multi-receiver sampling and data model
Due to the slow sound speed in water (as compared to
speed of light), in sonar applications, the transceiver sen-
sor is replaced by a single-transmitter and multi-receiver
system to relax spatial sampling constraints and achieve
useful coverage rates [8]. Typically, themulti-receiver con-
figuration consists of a uniform linear array (ULA) of Nrx
elements. Then, the maximum achievable advance per
ping without causing azimuth image ambiguities is given
by [8]

�ULA
max ≤ Lphy/2 ≤ 2Nrx�

A
max (16)

where Lphy describes the length of the physical array.
Each receiver, u = 1, . . . ,Nrx, records its own echo data
along the synthetic aperture, which is denoted by the sin-
gle receiver echo matrix Eu. This matrix is similar to
the transceiver scenario of (6) except that the round trip
delay in (4) changes. It is now related to the distance
between the transmitter and point scatterer and back to
the receiver element and is expressed as

rd,p(u) =
∥∥∥qd − atxp

∥∥∥
2
+

∥∥∥qd − arxp (u)

∥∥∥
2
, (17)

where atxp and arxp (u) denote the Cartesian coordinates of
the transmitter and the uth receiver location, respectively.

3 Synthetic aperture imaging
The objective of synthetic aperture imaging is to focus the
received echo signals in range direction and along-track
direction to obtain an estimate of the reflectivity of the
target area. Typically, image reconstruction techniques
can be classified into time-domain and frequency-domain
approaches. In this paper, we concentrate on a classical

time-domain approach known as time-domain correla-
tion [1,8,26]. This technique correlates the echo data with
the 2-D signature of the synthetic aperture for each grid
point in the target scene. In the following, we provide a
description of the time-domain correlation technique in
vector-matrix notation and demonstrate that the inver-
sion problem can be solved via CS.

3.1 Conventional focusing technique
In order to apply the time-domain correlation scheme
using vector-matrix manipulations, a focusing matrixG is
required. It relates the target area with the received echo
signals and is identical to the pulse matrix S in (8) except
that it covers the entire grid gkl = [

xk , yl
]T of the dis-

cretized target scene, for k = 1, . . . ,Nx and l = 1, . . . ,Ny,
rather than only target coordinates qd, with d = 1, . . . ,D.
Thus, the focusing matrix G ∈ C

MnMp×NyNx is a stacked
matrix of ping-based focusing matrices Gp ∈ C

Mn×NyNx

with p = 0, . . . ,Mp − 1 that are similar to (9) and given by

Gp = [
sp,1,1, . . . , sp,1,Ny , sp,k,l, . . . , sp,Nx,Ny

]
. (18)

The ping-based focusing matrix Gp describes the map-
ping between all grid points gkl and the sensor position ap.
The position index of the received pulse sp,k,l within each
column depends on the number of samples of the round
trip delay in (11) substituting the target coordinate qd by
the grid point location gkl. After discretizing the target
area f (x, y) into matrix form as

F =

⎡
⎢⎢⎢⎣

σx1,y1 σx2,y1 . . . σxNx ,y1
σx1,y2 σx2,y2 . . . σxNx ,y2
...

... . . .
...

σx1,yNy σx2,yNy . . . σxNx ,yNy

⎤
⎥⎥⎥⎦ , (19)

where each element of the matrix represents the reflectiv-
ity of the corresponding grid point gkl, the data model for
the reconstruction can be found. Similarly to (7), it can be
denoted in the vector-matrix notation as

e = G f + v, (20)

where f = vec(F). Next, we can formulate the time-
domain correlation technique using vector-matrix opera-
tions [26] as

f̂ = GHe, (21)

to estimate the reflectivity of the target scene f̂ , where
(·)H denotes the Hermitian. Here, f̂ denotes the stacked
target scene, which has to be reshaped to obtain a pre-
sentable reconstructed image, i.e., F̂ = vec−1

(
f̂
)
. Here,

vec−1(·) denotes the reshape operation to obtain a matrix
given a stacked vector. While this time-domain approach
is not very efficient in terms of computational complex-
ity, it does not use approximations to solve the inverse
reconstruction problem; simultaneously, it facilitates the
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use of arbitrary path deviations. The latter is extremely
important for motion compensation techniques such as
micronavigation in synthetic aperture sonar [1,8].
Given a single-transmitter and multi-receiver synthetic

aperture system, we can rewrite the focusingmatrixG. For
each single receiver element, u = 1, . . . ,Nrx, the sample
round trip delay of the transceiver model in (11) is sub-
stituted by its equivalent delay of a transmitter-receiver
pair. In this case, we replace the focusing matrix G by its
single receiver counterpart Gu in (21), which leads to the
reconstruction of the single receiver image f̂ u of the uth
receiver. Coherently combining all single receiver images
as

f̂ =
Nrx∑
u=1

f̂ u (22)

leads to the synthetic aperture image f̂ . Note that
the occurring azimuth image ambiguities in the single
receiver images are canceled out during coherent sum-
mation. In the following section, we show how CS recon-
struction can be performed.

3.2 Focusing using compressive sensing
This section introduces the basics of CS theory in the con-
text of synthetic aperture imaging and outlines how CS
can be used for image reconstruction. CS allows to sense
a signal in a low-dimensional form, however, for this pur-
pose, the captured signal is required to be sparse in a cer-
tain domain [14,15]. Consider the signal f = [σ1, . . . , σN ]T
withN = NxNy that can be sparsely represented bymeans
of the transform matrix � , which describes an N × N
unitary basis such that

f = �Hχ , (23)

where χ = [χ1, . . . ,χN ]T denotes the K-sparse coefficient
vector. The K-sparse property states that only K coef-
ficients are unequal zero with K � N [28]. For � =
I, where I is the identity matrix, the sparse coefficient
vector χ equals the signal f . Thus, the signal f itself is
assumed sparse. Subsequently, we assume that the sparse
basis transform equals the identity matrix. In other words,
we consider the target scene itself to be sparse, e.g., a few
point-like objects lying on the seafloor. Instead of mea-
suring the echo signal vector e of (20), which is of size
M = MpMn, CS aims at reducing the measurements to
M̃ < M. Since the reconstruction of f is of interest,
an under-determined system of linear equation has to be
solved. The latter is feasible and yields a unique solution
given the sparsity of f . We undersample the received echo
signals e by multiplying a selection matrix � as

ecs = �e = �
(
Gf + v

) = �Gf + ṽ, (24)

where ecs denotes the spatially and/or temporally under-
sampled vector of raw echo signals of size M̃. Note
that the selection matrix � is a fat matrix of dimen-
sion M̃ × M. It resembles an identity matrix with deleted
rows for spatially undersampled along-track positions (see
Section 3.3). Due to the presence of measurement noise,
we formulate the reconstruction of the target scene as a
basis pursuit denoising (BPDN) [29] optimization prob-
lem as follows

f̂
cs = argmin

f

{ ‖ ecs − �Gf ‖22 + 
cs ‖ f ‖1
}
, (25)

which can be solved using, e.g., the SpaRSA algorithm
[30] that is directly capable to deal with complex data.
Here, 
cs represents the regularization parameter of the
optimization problem. Again, the result of the reconstruc-
tion is a stacked vector f̂

cs
, which has to be reshaped to

obtain a presentable image of the target scene F̂cs. As
for conventional imaging, the focusing matrix G can by
substituted by its single receiver counterpart Gu in (25)
to obtain the aliased single receiver image f̂

cs
u . Then, a

coherent summation of the individual CS images f̂
cs
u , with

u = 1, . . . ,Nrx, leads to the synthetic aperture image f̂
cs
of

a single-transmitter and multi-receiver system, similar to
(22). Alternatively, the overall focusing matrix G could be
constructed by stacking the individual receiver focusing
matrices Gu and solving the optimization problem of (25)
using the complete data model. On the one hand, this may
lead to better imaging results due to amore sparse content
of the reconstructed scene. However, on the other hand,
this approach increases the computational complexity due
to a larger size of the stacked focusing matrix G. Thus,
we trade-off computational complexity against imaging
performance.

3.3 Area coverage rate and undersampling schemes
The main focus of this paper is to demonstrate that CS
has the potential to increase the advance per ping �A

by enlarging the platform speed v while maintaining the
pulse repetition time TPRI. Consequently, this will lead
to an improved area coverage rate, while maintaining the
image quality due to ambiguity suppression. The area
coverage rate of a synthetic aperture system is given by

Acr = v Rmax = vc TPRI
2

= �A c
2

, (26)

where Rmax = 0.5TPRI/c describes the relation between
the maximum range and the pulse repetition interval in
order to avoid range ambiguities [12]. Hence, an increase
in the advance per ping �A is either related to an increase
in the pulse repetition time TPRI or in the platform speed
v. However, a larger TPRI affects the maximum range,
which is at the same time limited by the signal-to-noise
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ratio (SNR). Thus, given a maximum range Rmax of the
imaging system, the area coverage rate Acr is solely deter-
mined by the speed v.
In the following, we introduce two basic undersampling

schemes, namely a regular along-track sampling scheme
as well as a regular along-track and random range sam-
pling scheme similar to [31]. Note that CS typically shows
the best performance for random downsampling matri-
ces [32,33]. On the contrary, a purely random sampling
in along-track direction without skipping the entire spa-
tial sampling positions would not lead to an improvement
in coverage rates but only to a reduced amount of data.
The two schemes are illustrated in Figure 3. Both sub-
plots show a matrix of slow-time and fast-time samples
with gray and white boxes, where the latter means that

the corresponding samples have been dropped. In the
case of regularly undersampling the synthetic aperture in
Figure 3a, every second slow-time position ap is dropped,
which is denoted by �A = 2�A

max. This means that the
actual sampling interval is twice as large as required by
the sampling theorem, and therefore, the platform speed
can be increased by the same factor. In other words, the
selection matrix � resembles an identity matrix of size
M, where every second row is deleted. Thus, the actual
dimension of the selection matrix � is given by M̃ × M
with M̃ = 0.5M.
Figure 3b shows additionally how the range direction

is randomly undersampled by dropping fast-time samples
with a pre-defined ratio �n, e.g., �n = 0.25 in Figure 3b.
This scheme is an extension to the undersampling scheme

(a)

(b)

Figure 3 Undersampling schemes. Schemes for spatially undersampling the synthetic aperture in along-track direction (a) and additionally
selecting echo samples randomly in range direction (b). (a) Regular in along-track direction. (b) Regular in along-track, random in range direction.
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of the along-track direction that additionally leads to
storage capacity savings. However, compared to the first
scheme, it requires some changes in the hardware of
the data acquisition of the imaging system and a dif-
ferent notation for reducing the measurements than by
basic matrix multiplication. Instead, we can consider
an element-wise reduction operation in (24) depending
on the binary value of the undersampling scheme as
depicted in Figure 3b. Subsequently, we apply the intro-
duced schemes for CS reconstruction on synthetic data
examples.

4 Synthetic data examples
This section exemplarily demonstrates the capability of
CS to suppress azimuth image ambiguities during the
reconstruction of synthetic aperture imagery and, thus,
facilitating an increase in the speed of the imaging plat-
form. The reconstructed scenery is based on synthetic
data of three homogeneous point scatterers. The sys-
tem parameters to generate the synthetic echo signals
for the following examples are listed in Table 1. Note
that the system parameters are chosen identical to the
ones, which will be used in Section 5 to record the real
ultrasound measurements. Therefore, the sampling rate
highly oversamples the lowpass echo signals due to dig-
ital demodulation. However, the echo signals are down-
sampled to the Nyquist rate for the outlined processing
steps.
The corresponding reconstruction results are depicted

in Figures 4 and 5 for the conventional time-domain
method and the proposed CS method, respectively, with a
dynamic range of 30 dB. In each case, the subplots (a)-(c)
illustrate the reconstructed images for an increased spatial
undersampling of the synthetic aperture as outlined in the
undersampling scheme of Figure 3. For the CS reconstruc-
tion in Figure 5b,c, an additional undersampling drop rate
of �n = 0.7 and �n = 0.8 is chosen, respectively.
The occurrence of symmetric azimuth image ambigui-

ties is obvious for Figure 4b,c due to the regular under-
sampling. On the contrary, the CS method is capable
to suppress the azimuth ambiguities in all three case.

Table 1 Synthetic aperture system parameters

Description Variable Value

Sampling frequency fs 100 kHz

Carrier frequency fc 40 kHz

Bandwidth f0 4 kHz

Pulse length Tp 4 ms

Beamwidth θ 20°

Advance per ping �Amax 6 mm

Sound speed c 340 m/s

Moreover, there is no notable difference in the qual-
ity of the reconstruction of the individual point scatter-
ers although the range undersampling ratio � has been
increased. The regularization parameter, which is a trade-
off measure between data fidelity and sparsity, has been
empirically chosen and set to 
cs = 0.3 ‖ (�G)H ecs ‖∞,
where ‖ · ‖∞ denotes the maximum norm. This is sim-
ilar to the heuristic used in [34]. Note that choosing
the regularization parameter is a common problem for
sparse reconstruction, e.g., in direction-of-arrival estima-
tion [35], and still under current research for imaging
techniques.
Subsequently, we show the extension of the proposed

CS imaging technique applied to a synthetic aperture sys-
tem consisting of a ULA with Nrx = 4 receiving elements.
The spatial sampling rate �ULA is set to the Nyquist limit
�ULA

max as stated in (16). The corresponding reconstruc-
tion result for correctly sampling the synthetic aperture is
depicted in Figure 6a. It shows the three point targets as in
Figure 4a. In contrast to Figure 6a, azimuth image ambi-
guities are noticeable in Figure 6b,c. The spatial sampling
rate has been set to �ULA = 2�ULA

max and �ULA = 3�ULA
max

for Figure 6b,c, respectively. Next, the proposed CS imag-
ing technique is applied to each receiver element u to
obtain a single receiver image f̂

cs
u . The coherent combina-

tion of these individual reconstruction results then leads
to the images as shown in Figure 7a,b,c. While Figure 7b
with �ULA = 2�ULA

max shows an identical reconstruction
result compared to Figure 7a, increasing the undersam-
pling by factor three causes a small spreading of the
point spread function of the target at along-track position
y = −0.2 m as depicted in Figure 7c. However, azimuth
image ambiguities are also successfully suppressed for the
multi-receiver configuration.

4.1 Simulation
In order to obtain a meaningful assessment of maximum
undersampling ratios, for which the proposed CS imag-
ing method still produces nearly identical reconstruction
results as for correctly sampling the synthetic aperture,
we have conducted NMC = 200 Monte Carlo simula-
tions for different sets of undersampling ratios. Each set
consists of a factor κ with �A = κ�A

max and a fac-
tor ζ with �n = 1 − 1/ζ , where �n is the nominal
drop rate of fast time samples Mn. An average of actual
drop rates �̂(κ , ζ ) is depicted in Figure 8a, where val-
ues with �̂(κ , ζ ) < 0.9 have been clipped. The actual
drop rates have been determined by thresholding the
magnitude of the raw echo data, converting it to binary
values and counting the non-zero values before and after
undersampling.
For evaluating the image degradation due to the occur-

rence of azimuth image ambiguities as a consequence of
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(a) (b) (c)

Figure 4 Reconstruction results using the conventional time-domain method. Reconstruction results using the conventional time-domain
synthetic aperture imaging technique and a regular along-track undersampling scheme with increasing values of the maximum advance per ping
in (a-c). (a) �A = �A

max. (b) �
A = 2�A

max. (c) �
A = 3�A

max.

undersampling, the structural similarity (SSIM) [36] mea-
sure is applied. It compares an image under test, i.e., the
CS reconstructed image F̂cs

κ ,ζ for undersampled echo data,
with a high-quality full-reference image, where the latter
is given by the CS image F̂cs

κ1,ζ1 obtained by Nyquist sam-
pling with κ1 = 1 and ζ1 = 1. The SSIM measure �(κ , ζ )

is defined for different undersampling factors of κ and ζ

as

� (κ , ζ ) = Lu
(
F̂cs

κ ,ζ , F̂
cs
κ1,ζ1

)
Co

(
F̂cs

κ ,ζ , F̂
cs
κ1,ζ1

)
St

(
F̂cs

κ ,ζ , F̂
cs
κ1,ζ1

)
,

(27)

where the functions Lu(·), Co(·), and St(·) describe the
luminance, contrast, and structure measures between two

image matrices, respectively. We refer to [36] for more
detailed information. For the SSIM measure, a value � =
1 means that both images are identical and � = 0 that
there is no similarity. However, by assessing a sparse tar-
get scene, the homogeneous background influences the
SSIM. This effect is reduced by downsizing the area under
test to x ∈[ 0.4, 1.2] m in range and y ∈[−0.6, 0.6] m in
along-track direction, where the latter boundary is deter-
mined by the occurrence of grating lobes in Figure 4c.
The average simulation outcome of SSIM values �(κ , ζ )

for varying undersampling factors, κ and ζ , is illustrated
in Figure 8b, where values smaller than �(κ , ζ ) < 0.6
are clipped. Moreover, CS reconstructed images with a
SSIM value of �(κ , ζ ) < 0.7 are affected by under-
sampling the raw echo data. Consequently, relating the

(a) (b) (c)

Figure 5 Reconstruction results using the proposed CSmethod. Reconstruction results using the proposed CS approach for synthetic aperture
imaging and a regular along-track and random range undersampling scheme with increasing values of the maximum advance per ping in (a-c). (a)
�A = �A

max, �n = 0. (b) �A = 2�A
max, �n = 0.7. (c) �A = 3�A

max, �n = 0.8.
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(a) (b) (c)

Figure 6 Reconstructed images of the conventional imaging technique for a single-transmitter andmulti-receiver system. Reconstructed
images of the conventional imaging technique for a single-transmitter and multi-receiver system and a regular along-track undersampling scheme
with increasing values (a-c) of the maximum advance per ping. (a) �ULA = �ULA

max. (b) �
ULA = 2�ULA

max. (c) �
ULA = 3�ULA

max.

amount of discarded data in Figure 8a with the SSIM as a
performance measure for successful CS reconstruction in
Figure 8b, the simulation has shown a data reduction of up
to 95%.

5 Ultrasonic synthetic aperture system
This section briefly describes the ultrasonic laboratory
system used to record the real acoustical data before
discussing the CS reconstruction results. The laboratory
system is based on a single-transmitter and multi-receiver
configuration, which is operated as a stripmap synthetic
aperture system using ultrasound. It is similar to the
system in [37].
However, due to the non-calibrated array, the system

is only employed as a bi-static transmitter/receiver sys-

tem. Photographs of the laboratory setup are shown
in Figure 9. The transmitter is the most right ele-
ment of the imaging platform in Figure 9a, which
sends LFM pulses with the specified signal parameters
of Table 1. To the left side of the transmitter, three
equally spaced receivers are mounted on the moving
platform.
Note that the mono-static model as outlined in the pre-

vious sections has to be replaced by a transmitter-receiver
pair by using (17) instead of (2) with Nrx = 1. The
platform is moved along a metal rail by a motor with
an approximate constant speed v as shown in Figure 9b.
The received signals are recorded using a National Instru-
ments (NI) data acquisition card and are processed by
a PC using MATLAB. The same system parameters as

(a) (b) (c)

Figure 7 Reconstructed images of the proposed CS imagingmethod for a single-transmitter andmulti-receiver system. Reconstructed
images of the proposed CS imaging method for a single-transmitter and multi-receiver system and a regular along-track scheme with increasing
values (a-c) of the maximum advance per ping. (a) �ULA = �ULA

max. (b) �
ULA = 2�ULA

max. (c) �
ULA = 3�ULA

max.
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(a) (b)

Figure 8 Actual drop rates of the simulation results and average simulation outcome of SSIM values. Actual drop rates �̂(κ , ζ ) of the
simulation results for CS image reconstruction are shown for different undersampling factors κ and ζ in (a) together with the structural similarity
map �(κ , ζ ) used as performance measure in (b). (a) Actual drop rates �̂(κ , ζ ). (b) Structural similarity map �(κ , ζ ).

in Table 1 are used for the laboratory system. Further-
more, a speed of v = 0.05 m/s and a pulse repeti-
tion time of TPRI = 0.12 s are set to meet the spatial
sampling requirements as discussed in Section 2.2. The
high oversampling rate is used due to discrete-time
demodulation of the received echo signals. However, the
discrete-time signals are then downsampled to meet the
temporal Nyquist rate of the transmitted pulse. The imag-
ing scene (Figure 9c) consists of three ping-pong balls
similarly placed as the point targets of the synthetic data
examples.

5.1 CS image reconstruction results
Subsequently, we apply both imaging methods to the
experimental acoustical data. In case of aperture under-
sampling, the platform speed is increased to v = 0.1 m/s
as well as v = 0.15 m/s, which is equivalent to an
undersampling factor of 2 and 3. The regular along-track
undersampling scheme is used as depicted in Figure 3a
and the CS regularization parameter is set as for the syn-
thetic data examples. The corresponding reconstruction
results are depicted in Figures 10 and 11 for the conven-
tional and CS-based imaging method, respectively. The

(a) (b)

(c)

Figure 9 Photographs of the laboratory setup. Ultrasonic synthetic aperture laboratory system (a, b) used to record spatially undersampled
acoustical data of the target scene (c) in order to verify the proposed CS reconstruction method. (a) Ultrasonic transmitter (right) and three
receivers mounted on the imaging platform. (b)Motor, rail, and imaging platform. (c) Real target scenario.
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(a) (b) (c)

Figure 10 Reconstruction results of ultrasonic laboratory data using the conventional imagingmethod. Reconstruction results using real
acoustical measurements and the conventional imaging technique as well as the regular along-track scheme with increasing values (a-c) of the
platform speed. (a) �A = �A

max, v = 0.05 m/s. (b) �A = 2�A
max, v = 0.1 m/s. (c) �A = 3�A

max, v = 0.15 m/s.

dynamic range of all images is 30 dB. In Figure 10a, a
clean image reconstruction of the three ping-pong balls
can be seen. Note that the along-track resolution is bet-
ter than the range resolution due to the relatively small
bandwidth of the ultrasound sensors. Increasing the plat-
form speed, however, yields again azimuth ambiguities
for the conventional imaging method that are of vary-
ing strength on both sides of the true target location.
This is related to a non-straight alignment of the ultra-
sound sensors used in the laboratory system. Moreover,
the non-calibrated sensors currently hinder the use of
the entire array as a single-transmitter and multi-receiver
system.
Considering the reconstruction results using the pro-

posed CS method, it becomes apparent that the azimuth
image ambiguities can be successfully suppressed for the

real data measurements and that the images show almost
an identical quality (compare Figure 11a with Figure 11b).
Hence, the platform speed can be doubled without any
loss in image quality. For a higher speed (v = 0.15 m/s),
the CS reconstruction result starts to suffer from ambi-
guities. Also note that we have chosen a target scenario
with closely spaced targets to keep the target strength
variability small. Otherwise, the weaker targets might be
suppressed by enforcing the sparsity of the scene. More-
over, the undersampling ratio is significantly smaller than
for the synthetic data results but still twice as large as for
proper Nyquist sampling.

6 Conclusions
In this paper, we have proposed a CS imaging technique
for synthetic aperture systems operating in stripmap

(a) (b) (c)

Figure 11 Reconstruction results of ultrasonic laboratory data using the proposed CSmethod. Reconstruction results using real acoustical
measurements and the proposed CS imaging technique as well as the regular along-track scheme with increasing values (a-c) of the platform
speed. (a) �A = �A

max, v = 0.05 m/s. (b) �A = 2�A
max, v = 0.1 m/s. (c) �A = 3�A

max, v = 0.15 m/s.
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mode either using a transceiver or a single-transmitter
and multi-receiver system to synthesize the aperture. The
technique is based on the conventional time-domain cor-
relation method. We have demonstrated its capability to
suppress azimuth image ambiguities for synthetic data as
well as for real acoustical measurements. Especially for
synthetic data, a large data reduction has been achieved
given the perfect match between the data model and the
CS reconstruction model. On the contrary, significantly
less undersampling has been feasible for the laboratory
system most likely due to model mismatches between
our target scene and the assumption of point targets.
Nevertheless, we have been able to double the speed
of the imaging platform while maintaining the image
quality.
Currently, we are still facing open challenges that have

to be solved before CS can be employed in a real non-
laboratory system. In particular, this involves handling of
target scenes consisting of heterogeneous target reflectiv-
ities as well as extended targets rather than point targets.
While heterogenous target scenes may be addressed by an
improved echo data modeling, the challenge of extended
targets may be handled by choosing a different sparsity
transform. Additionally, the echo data model should be
adapted to mitigate the stop-and-hop assumption. More-
over, an automatic procedure for selecting the regulariza-
tion parameter is necessary, and finally, a jittered pulsing
scheme could be applied to randomize the undersam-
pling in order to weaken the amplitude of azimuth image
ambiguities.
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