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Abstract

Based on the assumption that only a few point sources exist in the spatial spectrum, the direction-of-arrival (DOA)
estimation problem can be formulated as a problem of sparse representation of signal with respect to a dictionary.
By choosing a proper dictionary, the array measurements can be well approximated by a linear combination of a
few entries of the dictionary, in which the non-zero elements of the sparse coefficient vector correspond to the
targets’ arrival direction. Conventionally, the desired sparsity of signal is guaranteed by imposing a constraint of
Laplace prior on the distribution of signal. However, its performance is not satisfied under the condition of
insufficient data or noisy environment since a lot of false targets will appear. Considering that the Meridian
distribution has the characteristic of high energy concentration, we propose to adopt the Meridian prior as the
prior distribution of the coefficient vector. Further, we present a new minimization problem with the Meridian prior
assumption (MMP) for DOA estimation. Because the Meridian prior imposes a more stringent constraint on the
energy localization than the Laplace prior, the proposed MMP method can achieve a better DOA estimation, which
is embodied in higher resolution and less false targets. The experiments of both simulation and ground truth data

process exhibit the superior performance of our proposed algorithm.
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1. Introduction

In many fields, including radar, sonar, and medical signal
processing, one of the most highly explored research prob-
lems is how to determine the precise direction-of-arrival
(DOA) of multiple incident signals from noisy measure-
ments of a sensor array. Among the various methods for
solving the DOA problem, such as multiple signal classifi-
cation [1], estimation of signal parameters via rotational
invariance techniques [2], and beamforming (BF) [3], the
BF method is a popular one. However, it is unable to
separate the closely spaced sources, when the angular inter-
val is smaller than the Rayleigh resolution limit. This reso-
lution limitation can be overcome by some high-resolution
DOA estimation algorithms [4-6], in which a representative
class is the subspace-based method. Unfortunately, the
requirement of sampling snapshot affects the DOA estima-
tion performance, especially in the noisy environment.

The sparse representation, which has evolved rapidly in
the past several years, provides a novel methodology for
the DOA problem. A sparse signal is also known as a lo-
calized energy signal [7], in which zero-value entries will be
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everywhere except on a minimal support of the signal
space. The concept of spatial sparsity for DOA estimation
was first introduced in [8], where the DOA estimation
problem is formulated as a dictionary selection problem
after the spatial area of interest is divided into an equal-
spaced angle grid. Assume that only a few point sources exist
in the spatial spectrum. By choosing a proper dictionary, the
array measurements can be well approximated by a linear
combination of a few entries of the dictionary, in which the
representation coefficient vector of the array measurements
will be sparse. Then, the classical DOA problem can be for-
mulated as a sparse representation problem, in which the
sparsity constraint on the coefficient vector is manifested as
a minimization of /;-norm in the objective function.
However, the popular constraint of minimizing /;-norm
does not fully exploit the sparsity of the coefficient vector,
especially under the condition that the number of point
sources increases or/and the number of array measurements
decreases. In [7,9], Rao and Gorodnitsky indicated that min-
imizing the /y_,.;-norm of the object vector which is sparse
can obtain a more precise result than minimizing its /;-
norm, because the /y_,.;-norm of a vector can characterize
the feature of sparsity better. Under the same assumption, a
recent work of Hyder [10] shows that a higher angular
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resolution can be achieved when an enhanced constraint is
imposed on the minimal support of the energy signal, even
though the amount of samples considerably reduces.

Inspired by the previous work, in this paper, we impose
a Meridian prior [11] as the sparsity constraint for the
spatial spectrum and then develop a new minimization
problem with the Meridian prior assumption (MMP) to
achieve high-resolution DOA estimation for the point
source scene. Since the Meridian prior distribution can
impose a more stringent constraint on the sparsity prop-
erty compared with the classical /;-norm model, a more
accurate spectrum for DOA estimation can be obtained
even when only one snapshot is available. Experimental
results show that the proposed algorithm is with good ro-
bustness even when the array data are insufficient.

The remainder of this paper is organized as follows. In
Section 2, the transform from a DOA estimation problem
to a sparse representation problem is briefly presented. In
Section 3, Meridian distribution is analyzed, and a new
optimization function with Meridian prior assumption is
proposed. The detailed algorithm for high-resolution DOA
estimation is discussed in Section 4. Numerical simulations
presented in Section 5 confirm the superior performance
of the proposed algorithm. Finally, some conclusions are
drawn in Section 6.

2. Sparse representation-based DOA formulation
2.1. Problem formulation

Consider a uniform linear phase array (ULPA) that is com-
posed of L isotropous sensors. Assume that P narrowband
sources from the far field impinge on the ULPA from P dis-
tinct directions 6 = [6;, 0,,..., Op] with plane waves. The first
element in the array is taken as the phase reference. Then,
the response of the antenna array to the ith impinging
plane waves, also known as steering vector, can be denoted
by a(6;) = (e7oi(0) gor0) eFetil0)) in which w,
and 7, represent the angular frequency and echo delay,
respectively. After the substitution of @, =271f and 7,(6,) =
(p - 1)dcos(6;)/c, where d is the inter-sensor spacing which
is set to be d=1/2, A =c/f is the wavelength, and c is the
speed of the propagation, we can reform the vector to be a
(6;) = (1,e7meos (6 eFmeos (6)L-1)) | Therefore, the
output of the array can be expressed as follows:

y=As+n, (1)

where seC"*! is the signal amplitude, yeC**! is the obser-
vation vector, n represents the additive complex noise, and
the array manifold matrix A(0) is formed with the array re-
sponses for the P plane waves, A(6) = [a(0)),..., a(6p)]. The
goal of the DOA estimation discussed in this paper is to
precisely locate the sources 6, (p =1, 2,..., P), when the ob-
servation data y and the steering vector A(6) are given.
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2.2. DOA estimation as a sparse representation problem
Since the problem of DOA estimation can be cast as a prob-
lem of sparse representation [8,10,12], we discuss the repre-
sentation of observation y with an over-complete dictionary
in this subsection. Conventionally, the spatial area of interest
is partitioned into an equal-spaced angle grid. Based on this
grid partition of an angle, we enumerate a finite set of pos-
sible source locations ® = {J,,..., do} and further form an
over-complete angle dictionary Q={a(9;)...., a(¥g)} in
which the form a(9) is similar to that of the steering vectors.
How fine the gird is partitioned determines the number of
possible locations Q, ie., the number of dictionary entries.
So, in order to get a high resolution, the angle grid should
be partitioned as fine as possible, and the number of pos-
sible locations Q should satisfy Q > > P. From the above pro-
cedures of generating the angle dictionary, we can conclude
that, the angle dictionary Q does not depend on the actual
location of sources, so it can be constructed in advance.

We use a vector xeC?*! to represent the target angles,
and each entry of x corresponds to one possible position
in ©. Since P < < Q, vector x has a sparse structure, where
the kth component x; is non-zero only if there is a target
angle in this direction, i.e., 9 = 6, for some [, and in this
case x; = s;. Then, the DOA problem can be stated as find-
ing a sparse vector x with P non-zero entries, which is an
inverse problem of the following observation equations:

y=Qx+n (2)

Since the key assumptions in (2) are the sources which
can be viewed as point sources and their amount is
small, this inverse problem can be settled by solving the
following problem [13,14]:

min |y - Ox]3-+A ] 3)

where [lxlly := # {j: x; = 0} is the /[y-norm of vector x, which
counts the number of non-zero terms in x. As is known to
all, [y-norm characterizes the sparsity of a signal exactly,
but it is hard to solve the problem with form of (3).
Candes [13] and Donoho [14] show that the optimization
problem in (3) can be relaxed to a convex problem, also known
the problem of basis pursuit denoising (BPDN) [15], i.e.,

min ] - Qx| 32 x|, (@)

where |x]|, = 2, |x| denotes the 4-norm of vector x.
The parameter A controls the trade-off between residual

energy |y — Qx5 and the sparsity level of vector x. Since
the optimization problem in (4) is convex and it can be
recast as a linear programming, many algorithms (e.g., least
absolute shrinkage and selection operator [16] and gradient
projection for sparse reconstruction [17]) have been pro-
posed to solve this type of optimization problem.
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3. Robust DOA estimation with Meridian prior
Even though solving the problem of sparse representation
in (4) can obtain an improved resolution of the DOA result,
the term of /;-norm constraint does not fully exploit the
sparsity of signal [18], when the array data are not only in-
sufficient, but also heavily corrupted by the background
noise. The incapability of the /;-norm constraint in this
situation usually has two consequences to the reconstructed
DOA spectrum: one is missing some true targets when the
targets are very close, and the other is generating some
wrong targets due to the noise [19].

To overcome this disadvantage, much work has been de-
voted to finding a replacement of the /;-norm constraint
and developing a better approximation of the ideal sparsity
constraint (the /y-norm constraint). Specially, from the view
of a Bayesian posterior estimate, Babacan [20] indicated
that the minimization problem in (4) can be seen as a max-
imum a posteriori (MAP) criterion for estimating vector x,
and the prior knowledge of x is a Laplace distribution. Fur-
ther, Rao [7] and Hyder [10] showed that if the probability
density function (pdf) fix) of a distribution, as a prior of the
vector x, falls sharply with the increase of the absolute value
of variable |x;|, the distribution can enhance the sparsity
of the reconstructed vector «x, and the higher the kurtosis
of pdf is, the sparser the reconstructed signal becomes.

On the basis of the previous work, firstly, we can easily
derive the MAP estimation of x:

Xmap = argxmin In f(xly) = arg;nin[lnf(y|x) + In f(x)]

= argmin{In f,(-0%) + In /(x) (5)

In order to guarantee the sparsity constraint of the sig-
nal x, we propose adopting Meridian distribution [11],
which can offer a stronger constraint on the sparsity of
the objective vector, as the prior distribution of the signal:

) 2
Xi -2
)
where b denotes the signal variance, and the parameter
y= I(2)/2b(I'(1))*. Assume that the noise # is Gaussian
independent and identically distributed (iid.) with zero
mean and a variance of 2. Thus, we can obtain a new
minimization problem with the Meridian prior assumption,
abbreviated as MMP,

Xi

fMeridian(xi) = }/<1 + b

Q
fMeridian(x) - yQil:_II <1 *

(6)

J(x) = Inf, (y-Qx) + Inf(x) = In {yoiﬁl (1 L [F

(MMP) ) Qiln(lJr X
- -1 b

)_ ly-Qa]l3
&

Xi

b

Q
Zmap = argmin J(x) = argmin |:Z ln(l +
* * i=1

. )2} +In

) +ﬁ||y—ax||§} R
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To show the superiority of the reconstruction model
with Meridian prior in (6) over that with Laplace prior,
the pdfs of both prior distributions with the same vari-
ance are shown in Figure 1.

Based on distribution of the signal entries in Figure 1, we
can find that compared with the Laplace distribution, the
rapid attenuation of the pdf function of the Meridian distri-
bution will guarantee more signal entries which would be
zero or close to zero. That is to say, the relatively small ratio
of signal entries will have the most energy. Thus, for Laplace
distribution as a prior of signal, the high dispersiveness of
energy will result in some undesired false targets. However,
for the Meridian distribution as a prior, the energy localized
in a small number of entries will make the resulting signal
sparser and then the reconstruction error smaller.

4. MMP algorithm for DOA estimation

4.1. Algorithm formulation

Because the objective function in (7) is non-convex, following
the procedure of the focal underdetermined system solver
(FOCUSS) [7,9] or iteratively reweighted least squares ap-
proach [21], we differentiate the cost function J(x) as follows:

J(x) 20 | & x; . R

= _ax{; ln(1+ 5) -BOM (y-Qz), (8.a)

3 [ & 1/ w\ o] 1/ &\ &

% {Zl<1+‘ZM =z(1+z> % 7(” z) Tl
(8.b)

Define parameter W 2 diag[(1 + [%{)|4;|], then we can
simplify (8.b) as follows:

% [XQ; ln<1+ )] :%W‘lfc. (9)

To find the extremum of the objective function J(x), we
J1%) — 0 and get the follow-

ox

b

solve the differential equation

ing solution of signal x:
&= WO Ay, (10)

where A = (M + QWQ)™!, and A = 1/8b is a regularization
parameter. Since there is cross-dependence between x and
W, an instinctive thought is to compute these two variables
iteratively. The update equations for each iteration are
presented here:

ly-Qx|3
exp< =

1

[ E—
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(i >HA
- (k-
=diag| |1+ xzk ) ) fcgk_l)‘}
bz . (1)

Ak 72yQ <k <k

A1) — p< >1+ (QUD) kD (Q(kfl))H]

-1

where k and k-1 in superscript denote the current and previ-
ous iteration, respectively. From (11), we can find that be-
sides the variables x and W, the regularization parameter
A% is updated adaptively during the kth iteration, with the
update rule using the modified L-curve method in [9]. As
the noise level g,, will be changed during iterations, we mod-
ify the update rule into a function A = 2262 /b, where the
noise variance 6> can be computed by 52 = |y-Qzx||3/L.

The iterative process will be terminated when the stop-
ping criterion is satisfied:

v)|se,

ONE

where ¢ represents a prescribed tolerance. When the iter-
ation terminates, the recovered x is accepted as the final
high-resolution spatial spectrum. Now we can summarize
the process of the above algorithm as in Algorithm 1.

(12)
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4.2. Analysis of computational complexity

Due to the similarity of the procedure between the pro-
posed MMP DOA algorithm and the FOCUSS algorithm,
the analysis of computational complexity for the MMP
DOA algorithm can refer to that of the FOCUSS algo-
rithm. The most time-consuming computation of the
whole algorithm in Algorithm 1 is the calculation of the
matrix inversion A. With the gradient method, the com-
plexity of this operation is O(QL?). By using the conjugate
gradient method to accelerate the process, we can reduce
the complexity from O(QL?) to O(QL).

5. Simulation and discussion

In this section, we exhibit the superior performance of the
proposed algorithm from the Monte Carlo statistical
analysis as well as the application in the DOA process.

5.1. Statistical analyses

In the subsection, we will show the difference in the
effectiveness of modeling the sparse signal between
the proposed Meridian prior and the Laplace prior.
For this purpose, we simulate the reconstruction of
signal with different sparse levels. Then, for the same
sparsity especially at the higher sparse level, a smaller
error of reconstruction means a better model for a
sparse signal.

Algorithm 1 MMP DOA algorithm

Task: Estimate DOA 9 of the target by solving the following optimization problem

MMP

XMAP = argmmJ X =argmin
X

Zln[l+‘

1 ]+ﬁ||y o .

Data and parameters: Input array data y, equal-spaced angle grid ©={9,....9,} , pre-

constructed dictionary €, the tolerance &, K iterations.

Initialization: Set £ =0 and X, is the BF result.

Main iteration: Set k=1 and do

B Weights: Compute wik) =diag [1+

B Update: Compute % =t (

B Residual: Compute AJ" =’J (fc("))—J (fc("”)) ;

1)
(k1)

Jet

-1) ) A(k—l)y :

>

B Return: Setk=Fk+ 1, if A/% >& return to “Weights”.

Finalize: The angles of the vector ® whose index corresponds to the index of the non-

zero value of estimated % *

indicate the estimated DOA of targets.
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0.4 )

Figure 1 Distribution of the Laplace and Meridian priors with the same variance. (a) pdf of Laplace distribution. (b) pdf of Meridian distribution.
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Without loss of generality, the over-complete dictio-
nary for sparse representation is set to be the matrix
of Fourier transform. The over-complete dictionary
which is often called as the measurement matrix, is
with dimension N x M, where N =256 and M =100.
The testing signal of length N, denoted by v, is sparse
with respect to the Fourier transform, with the num-
ber of non-zero entries K ranging from 5 to 40. The
K sparse coefficients satisfy Gaussian distribution N(0,1).
Figure 2 depicts the statistical mean squared error (MSE)
results under different noise levels using 100 Monte Carlo
experiments.

From Figure 2, we can find that the MSE results of the
MMP algorithm are much smaller than those of the algo-
rithm based on the Laplace prior, for both high noise level
(signal-to-noise ratio (SNR) =40 dB) or low noise level

(SNR=10 dB). Especially, in Figure 2a, even at the
smallest sparse level (K'=5), the MSE of the algorithm
based on the Laplace prior is already at the order of 1077,
which is about ten times bigger than that of the MMP
algorithm at the highest sparse level (K =40), not to men-
tion if it is compared with that of the MMP algorithm at
the same sparse level (K'=5). The same trend is also
presented in Figure 2b. Thus, we can give the conclusion
that the Meridian prior is a better model than the Laplace
model for sparse signal.

5.2. Application in DOA estimation

In this subsection, the proposed MMP algorithm is ap-
plied for both linear and planar arrays. We first consider
a uniform linear array (ULA) of 15 sensors equally
spaced by a half wavelength and the carrier frequency of
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Figure 2 Statistic errors with different support sizes K and SNRs. (a) Statistic comparison under high SNR and (b) statistic comparison under low SNR.
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Figure 3 Results of one-dimensional DOA estimation. (a) SNR =40 dB. (b) SNR=5 dB.

the transmitted signal being 300 MHz. From the far
field, two coherent target echoes contaminated with
Gaussian noise impinge on the array. The horizontal dis-
tances of the two targets from the center of the sensors
are both 100 km. Two targets are placed at angles 8° and
10.2°, respectively. Only one snapshot is considered to
illustrate the performance of the proposed method in
DOA estimation. In order to test the robustness of noise,
the simulations are implemented under different noise
levels. Figure 3 shows the reconstructed spectrum of the
proposed MMP algorithm compared with that of digital
BF (DBF) and BPDN.

As indicated in Figure 3a, even though the noise energy
is small (SNR = 40 dB), the DBF method cannot distinguish
the two targets, whereas BPDN and the proposed MMP
are both capable to do that. In Figure 3b, in the heavily
noisy environment (SNR =5 dB), the two targets cannot be
identified by the BPDN method since many false peaks

appear in the reconstructed spatial spectrum, while they
still can be separated by the MMP algorithm.

Next, we extend the DOA estimation from ULA to a
uniform rectangular array (URA). For simplicity, we con-
sider a URA consisting of 16 x 16 identical isotropous sen-
sors. The intervals of sensor array in the horizontal and
vertical direction are both 151, where A is the center
wavelength, and the carrier frequency is 300 MHz. We as-
sume narrowband coherent signals reflected by two pairs
of close targets which impinge on the URA from different
directions that are indicated by the azimuth and elevation
of the target signal, which are (-5.1°, -7.81°), (-5.8°, -9°),
(4.98°, 9°), and (5°, 7.91°), respectively. SNR is fixed as
5 dB, and one snapshot is available.

Figure 4 shows the intensity map of the DBE, BPDN, and
MMP, which is a function of azimuth and elevation. As
shown in Figure 4a, DBF fails to separate two pairs of
highly close targets, and each of the two close targets are

-
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o
Elevation (*)

Azimuth(®)

(a)

Figure 4 Results of two-dimensional DOA estimation. (a) DBF, (b) BPDN, and (c) MMP.
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Azimuth(®)

(c)




Zhao et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:91

http://asp.eurasipjournals.com/content/2013/1/91

Page 7 of 8

—e— MMP
—— BPDN
.......... GPS Record

9000

8000

)

~
o
o
o

6000

Altitude (m

5000

4000

3000 L r r r r r
35 40 45 50 55 60 65

Distance(km)

(a)

plane taking off.

Figure 5 Estimation results of ground truth data of VHF radar. (a) Altitude estimation of a landing plane, and (b) altitude estimation of a

6000 T T T T T T

5500
5000
4500
£ 4000
S 3500
=2
= 3000
2500
2000 * MMP .
~  BPDN
1500 e GPS Record |7
1000 : : : :
2 50 60 70 80 90

Distance(km)

(b)

merged into one. The range of each pair of blurred targets
resulting from the BPDN algorithm is smaller than that of
the DBF approach, whereas each pair of close targets still
cannot be distinguished. In Figure 4c, four targets are
explicitly identified via the proposed MMP algorithm.

Based on the above analysis, we believe that the pro-
posed MMP algorithm achieves better performance than
the conventional matching-based spectrum algorithm and
popular sparse-based algorithms even when the available
data are severely insufficient. Especially, when the SNR is
low, ie., the contaminated echoes include more noise
energy, since the sparsity of the signal can be enhanced by
Meridian prior, the target energy within the spatial
spectrum via the MMP algorithm can be greater than that
of other algorithms.

5.3. Process of the ground truth data from VHF radar

In this subsection, we use the ground truth data of the very
high frequency (VHF) radar located on a flat ground to
verify the effectiveness of the proposed MMP algorithm.
Since the VHF radar is configured with a wide beam, the
received echo is the mixture of the direct echoes and the
specular components resulting from multipath effects. The
multipath components are coherent with the direct echoes,
which increases the difficulty in estimating the DOA of
targets.

A planar array including double-parallel linear arrays
is placed on the VHF radar. Each sub-array consists of
eight sensors with 1.78 1 spacing in the vertical direction,
and each sensor in this planar array is horizontally
polarized. The distance between the double-parallel linear
arrays is 1.12 m. With the distance between the array and

the moving target, we can obtain the altitude of the target
via the triangle geometry relationship. Figure 5a presents
the altitude estimation results of data received when the
plane is landing, where the radar is set beside a lake.
Figure 5b shows the altitude estimation results when the
plane is taking off, where the radar is set in an airport.

Due to the different settings of the recording environ-
ment, the noise components as well as the diffuse compo-
nents are much less in the first received data. So both the
BPDN and the MMP algorithm can achieve satisfactory
estimations, as shown in Figure 5a. However, in Figure 5b,
due to the effect of the noise and random diffuse compo-
nents, the sparsity property of the spatial spectrum is
destroyed; in other words, the current spatial spectrum is
no longer sparse, but with many false peaks. Since the
classical Laplace prior-based BPDN algorithm can only
work under the sparse assumption, it cannot work well
under this circumstance. On the other hand, because the
Meridian distribution has the characteristic of high energy
concentration, it can suppress the small elements (such as
noise and diffuse components) during the process and
finally generates a sparse spectrum. So, our proposed MMP
algorithm can achieve better performance.

6. Conclusions

In this paper, considering that the Meridian distribution
has the characteristic of high energy concentration, we
proposed to adopt the Meridian prior as the prior distri-
bution of the coefficient vector when a problem of sparse
representation is to be solved. Further, we developed a
new Meridian prior-based algorithm, i.e., the MMP DOA
algorithm, to achieve high-resolution DOA estimation.
Since the Meridian prior imposes a more stringent
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constraint on the sparsity of signal, the proposed MMP
algorithm is superior to the conventional method that
minimizes the /;-norm of signal, equivalent to imposing a
Laplace prior on a signal. Both the results of simulations
and the results of ground truth data process prove a
good performance of the proposed MMP algorithm in
high-resolution DOA estimation.
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