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Abstract

A novel scheme to achieve three-dimensional (3D) target location in bistatic radar systems is evaluated. The
proposed scheme develops the additional information of the bistatic radar, that is the transmit angles, to estimate
the 3D coordinates of the targets by using multiple-input multiple-output techniques with a uniform circular array
on transmit and a uniform linear array on receive. The transmit azimuth, transmit elevation angles and receive cone
angle of the targets are first extracted from the receive data and the 3D coordinates are then calculated on the
basis of these angles. The geometric dilution of precision which is based on the root Cramer-Rao bound of the
angles, is derived to evaluate the performance bound of the proposed scheme. Further, an ESPRIT based algorithm
is developed to estimate the 3D coordinates of the targets. The advantages of this scheme are that the hardware of
the receive array is reduced and the 3D coordinates of the targets can be estimated in the absence of the range
information in bistatic radar. Simulations and analysis show that the proposed scheme has potential to achieve
good performance with low-frequency radar.
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1. Introduction
Multiple-input multiple-output (MIMO) radar is a rela-
tively new term in the radar field, inspired by the MIMO
technique in communications. MIMO radar has multiple
transmit channels and multiple receive channels, and
the transmit channels can be separated by waveforms, or
time, or frequencies, or polarizations at each receiver.
So the number of channels of a MIMO radar is increa-
sed substantially compared to its single-input multiple-
output counterparts. Most of the advantages of the
MIMO radar come from increasing the number of
channels. Two main classes of MIMO radar have been
proposed: with widely separated antennas [1] and with
co-located antennas [2]. The first class utilizes the differ-
ent scattering properties of a target from sufficiently
spaced antennas to improve the performance of the sys-
tems. The second class allows the improvement of the
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radar performances by coherent processing the multiple
channels.
A scheme of bistatic MIMO radar has recently been

proposed for target localization [3]. Bistatic MIMO radar
has the potential advantages both of bistatic radar, such
as reduced space loss, covert operation, and reduced
susceptibility to jamming [4], and of MIMO radar, such
as high spatial resolution and additional spatial degrees
of freedom [2]. Also, bistatic MIMO radar has the par-
ticular advantage of being able to obtain the target
angles with respect to the transmit array (direction of
departure) by processing the received data [3]. Several
publications have studied direction of departure and di-
rection of arrival estimation for bistatic MIMO radar
[5-9]. Multiple target localization without range infor-
mation can be achieved by using the estimated angles.
However, only two-dimensional (2D) Cartesian coor-
dinates can be obtained from the estimated 2D angles.
In [10], both the transmit and the receive array are
configured as uniform circular arrays UCAs. A trilinear
decomposition-based algorithm is developed to estimate
the four-dimensional angles of the targets in bistatic
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MIMO radar. In fact, 3D angles are sufficient to locate
the targets. It is well known that the localization per-
formance of the bistatic radar is related to the location
of the targets. However, to the best of the authors’
knowledge, there is no published work on evaluating the
localization performance of bistatic MIMO radar in a
Cartesian coordinate system.
In this article, a bistatic MIMO radar system with

transmit UCA and receive uniform linear array (ULA) is
constructed. The 3D coordinates of the targets are then
obtained by estimating the transmit azimuth angle,
transmit elevation angle and receive cone angle from re-
ceive data. The geometric dilution of precision (GDOP)
of the system is developed based on the Cramer-Rao
bound (CRB) of the angles estimation. The ESPRIT algo-
rithm with phase mode excitation is derived to estimate
the 3D angles. The range of the target is not required in
target 3D coordinates estimation and the time synchro-
nization constraint of the bistatic radar is relaxed.
The reminder of the article is organized as follows.

The bistatic MIMO radar system model is introduced in
Section 2. In Section 3, the GDOP bound is developed
to evaluate the performance potential of the proposed
scheme. An ESPRIT-like algorithm is developed to esti-
mate the 3D coordinates of the targets in Section 4. The
proposed scheme is tested via simulations and analysis,
which appear in Section 5. Finally, Section 6 concludes
the article.

2. Bistatic MIMO radar system model
Figure 1 shows the geometry of the bistatic MIMO
radar. The transmit array is a UCA with N elements and
the receive array is a ULA with K elements. The element
spacing of the linear array is equal to a half-wavelength.
We take the location of the transmitter center O as the
origin of the coordinate system. The x-y plane is on the
Figure 1 Geometry of the bistatic MIMO radar.
ground plane and the z-axis points vertically upwards.
For simplicity and without loss of generality, we put the
receive ULA along the y-axis. A is the reference point of
the receiver and the length of the baseline OA is Lb. The
elements of the transmitter are uniformly distributed
over the circumference of a circle of radius r in the x-y
plane. The spacings of both transmit and receive array
elements are a half-wavelength. α ∈ [0, π], θ∈ 0; π2

� �
and φ

∈ − π
2 ;

π
2

� �
are the receive cone angle transmit elevation

angle and transmit azimuth angle respectively.
Here, we assume that the transmitted waveforms

sn tð Þf gNn ¼ 1 are orthogonal to each other, that is

∫sm tð Þs�k t−τð Þdτ ¼ δmk ð1Þ

where (g)* denotes the conjugate operator.
Assume that P targets with the same range are distrib-

uted over different angles. The received signal at the l th
pulse period can be expressed as follows:

xl tð Þ ¼
XP
i¼1

ρia αið ÞbT θi;φið Þs tð Þej2πf Dil� �þ wl; ð2Þ

where ρi is the signal-reflected coefficient of the i th
target. (αi, θi, φi) denotes the corresponding angle of the
i th target and fDi denotes the Doppler frequency of the
i-th target. wl is Gaussian white noise with covariance σ2.

s tð Þ ¼ s1 tð Þ; s2 tð Þ…sN tð Þ½ �T ; ð3Þ

a αð Þ ¼ 1; ejπ cosα;…ej K−1ð Þπ cosα
h iT

; ð4Þ

b φ; θð Þ ¼ ½ej2πr sinθ cos φ−γ0ð Þ=λ; ej2πr sinθ cos φ−γ1ð Þ=λ;…

ej2πr sinθ cos φ−γN−1ð Þ=λ�T ;
ð5Þ
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where γn = 2πn/N, n = 0,…,N − 1. The channel separation
of the MIMO radar can be achieved by a bank of matched
filters in the receiver [3]. The result at the l th pulse period
is as follows:

X lð Þ ¼
XP
i¼1

ρia αið ÞbT θi; φið Þej2πf Dil þWl ð6Þ

Stacking the matrix X(l) as a vector, Equation (6) can
be written in the form of the KN × 1 vector:

xl ¼ Ahþ nl ð7Þ
where A = [a(α1)⊗ b(φ1, θ1), a(α2)⊗ b(φ2, θ2),…, a(αP)⊗
b(φP, θP)] and ⨂ denotes the Kronecker product. hl ¼
ρ1e

j2πf D1l; ρ2e
j2πf D2l; ::::ρPe

j2πf DPl
� �T

.
For L pulses, the signal model can be expressed as

Y ¼ AHþW ð8Þ
where Y = [x1,…, xL] with the size of KN × L. H = [h1,
h2,…, hL] and W = [n1,…, nL]. It has been proven that
the matrix W has the same statistical properties as the
receive noise wl in the case of orthogonal transmit wave-
forms [11].

3. Performance bound of the estimation
3.1. CRB of the 3D angles
The CRB provides a lower bound of the mean square
error of the angle estimation by any unbiased estimator.
Following the approach in [12], the CRB for 3D angles
of multiple targets is calculated here to obtain the bound
of angle estimation of the proposed scheme. The Fisher
information matrix (FIM) for the angles can be calcu-
lated as follows:

F ξð Þ ¼
F1;1 F1;2 F1;3
F2;1 F2;2 F2;3
F3;1 F3;2 F3;3

2
4

3
5 ð9Þ

where ξ = [α, φ, θ]. α ¼ α1 α2 ⋯ αΡ½ � , φ ¼
φ1 φ2 ⋯ φΡ½ � and θ ¼ θ1 θ2 ⋯ θΡ½ � . The de-
rivation of the submatrices of the FIM can be found in
Appendix 1. The CRB of the 3D angles of the targets
can be obtained by inverting the FIM

C ξð Þ ¼ diag F−1 ξð Þ� � ð10Þ

where diag(g) denotes a vector constructed by the diag-
onal elements of matrix.

3.2. GDOP
As the localization performance of bistatic radar de-
pends on the location of the target, we will analyze the
estimate error of the 3D coordinates of the targets in dif-
ferent location. The uncertainties of the measured angles
will propagate to the coordinate values according to the
error propagation equation [13] as follows:

Δe ¼ T−1Δv ð11Þ
where Δe = [Δx, Δy, Δz]T is the error of the coordinates.
Δv = [Δα, Δθ, Δφ]T is the error of the estimated angles.
T is the error propagation matrix which is derived in
Appendix 2. The performance bound of the 3D coordi-
nates estimation can be obtained from (11) by using the
root Cramer-Rao bound (RCRB) as the error of the esti-
mated angles, that is

Δ�e ¼ T−1
ffiffiffiffi
C

p
ð12Þ

where Δ�e ¼ Δ�x;Δ�y;Δ�z½ �T . The GDOP metric for 3D co-
ordinates is defined as follows:

GDOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ�x2 þ Δ�y2 þ Δ�z2

q
ð13Þ

In fact, Equation (13) described the bound of the root
mean square error (RMSE) of the 3D coordinate estima-
tion of the target at difference location.

3.3. Analysis of the performance bound
The GDOPs of the proposed scheme are plotted in
Figure 2. The GDOPs in the plane of z = 35 km are plot-
ted according to (12) and (13). T and R in the Figure
indicate the locations of transmitter and receiver re-
spectively. T is located at the origin of the coordinates
system and R is located at [0, 100 km, 0]. The Figure
shows the performance bound of the proposed scheme.
It can be observed that the performance of 3D coordi-
nates estimation varies with the range between the target
and the transmitter. It can be seen in Figure 2 that the
estimation error can reach several meters when the
range of the target is within 50 km and tens of meters
when the range of the target is within 150 km. When the
signal-to-noise ratio increases the performance is even
better. This performance is to be expected in the case
of the radar with large signal bandwidth. However, this
performance is good in the case of low-frequency radar,
for example when the wavelength of the transmit signal
is 15 m or more, as there is not enough signal band-
width to provide accurate range estimation. Fortunately,
the performance of the 3D coordinate estimation can be
achieved without the range information by the proposed
scheme. So, the proposed scheme is suitable for low-
frequency radar.
Figure 3 shows the relationship between the 3D coor-

dinate estimation performance and the number of the
receive elements, where the element spacing is selected
to be a half wavelength. It can be observed that the esti-
mation performance is improved efficiently by increasing
the number of receive elements. In the case of the given
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Figure 2 GDOP of the proposed scheme (K = 20,N 20, Lb = 100 km = r = λ, z = 35 km). (a) SNR = 15 dB. (b) SNR = 25 dB.
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element spacing, more elements mean greater aperture.
If the spacing is a half-wavelength and the wavelength is
15 m, the aperture would be 150 m for 20 elements,
which implies several technological issues to translate into
a real system design. Recently proposed bio-inspired
couple compact array can reduce the elements spacing
considerably and keep high direction of arrival estimation
performance [14]. It is a promising technique to resolve
this problem.
4. Target 3D coordinates estimation method
In this section, we develop an ESPRIT-like algorithm to
estimate the 3D angles of the targets.
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4.1. Estimation of the receive cone angles
To estimate the receive cone angle, we first construct se-
lection matrices J1 and J2.

J1 ¼ IN⊗ IK−1; 0 K−1ð Þ�1

� � ð14Þ

J2 ¼ IN⊗ 0 K−1ð Þ�1; IK−1
� � ð15Þ

where IK−1 and IN are identify matrices with size K – 1
and N, respectively. 0 K−1ð Þ�1 denotes a zero vector with
size K – 1.
The rotated factor which contain the receive cone

angle can be obtained by using selection matrices as fol-
lows:

Y1 ¼ J1Y ¼ J1AHþ J1W ð16Þ

Y2 ¼ J2Y ¼ J2AHþ J2W ¼ J1ADHþ J2W ð17Þ

where the rotated factor is D ¼ diag ejπ cosα1 ;½ ejπ cosα2…

ejπ cosαP �.
The autocorrelation and crosscorrelation matrices of

Y1 and Y2 are as follows:

R11 ¼ E Y1Y1
H

� � ¼ J1ARsAH J1
H þ RW1 ð18Þ

R21 ¼ E Y2Y1
H

� � ¼ J1ADRsA
H J1

H ð19Þ

where Rs = E[HHH] and RW1 = σ2INK − 1. As proved in
[11], the noise covariance σ here is the same as that at
the MIMO radar receiver. It can be obtained when there
is no input signal in the receiver. So the effect of noise
can be cancelled as follows:

R11s ¼ R11−σ2INK−1 ¼ J1ARsAH J1
H ð20Þ

Define Ar = J1A and construct the matrix R ¼ R21R
#
11s ,

where R#
11s is the Penrose-Moore inverse of R11s. Just as

in the method proposed in [15], we can write

RAr ¼ ArD ð21Þ
Estimates of the receive cone angles are achieved via

eigendecomposition of R as

R¼UΛUH ð22Þ
where Λ = diag[λ1, λ2,⋯, λP] is constructed by the ma-
ximum P eigenvalue of R. The number of targets P
should be estimated in advance. The issue of the target
number detection for bistatic MIMO radar can be found
in [16]. From (21) and (22), the receive angle of the pth
target is

αp ¼ arccos
angle λið Þ

π

� �
ð23Þ

4.2. Estimation of the transmit angles
From (21) and (22), we can obtain that span{Ar} = span
{U}. So the transmit angle information can be extracted
from U = [u1,⋯, uP]. The vector ~a should be first cons-
tructed to separate the transmit angle information of the
p th target from the matrix up as follows:

~a αp
� � ¼ kron 1;…; 1

N
	 
� �T

; ar αp
� � ð24Þ

~yp ¼ up⊙~a αp
� � ð25Þ

where ⊙ denotes hadamard product and ar (αp) is a vec-
tor constructed by the first K – 1 elements of a(αp). Di-
vide ~yp into K – 1 vectors with the size of N × 1 and

average the vectors as follow:

�yp ¼
1

K−1

XK−1

k¼1

~yk ; ~y K−1ð Þþk⋯; ~y N−1ð Þ K−1ð Þþk

h iT
ð26Þ

Then UCA-ESPRIT algorithm can be used to esti-
mate the transmit azimuth angle and elevation angle.
The phase mode excitation method is exploited to sim-
plify the array manifold of the circular array. The beam-
former matrix FHr is constructed to transform the UCA
manifold vector to the beamspace manifold [17].

FHr ¼ GHCvVH ð27Þ
where Cv = diag(j−M,… j− 1, j0, j− 1,.... j−M). M≈ 2πr

λ is the
highest order mode that can be excited by the aperture
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at a reasonable strength. G ¼ 1ffiffiffiffiffiffiffiffiffiffi
2Mþ1

p w a−Mð Þ;…;½ w a0ð Þ;
…;w aMð Þ� , where am ¼ 2πm

2Mþ1 ;m ∈ −M;M½ � and amð Þ ¼
e−jMam ;…; e−jam ; ej0am ; ejam ;…; ejMam½ �T . V ¼ 1ffiffiffi

N
p v−M;…½ v0;

…vM�, where vm = [1, ej2πm/N,…, ej2πm(N − 1)/N]H.
The selected data after transformation is as follows:

yp ¼ FH
r �yp ð28Þ

The sample covariance matrix can be calculated as fol-
lows:

Rp ¼ 1
L
ypy

H
p ; p ¼ 1; 2;…; P ð29Þ

EVD of the matrix Re(Rp) is performed to obtain the
real-value signal subspace sp which is the eigenvectors of
the largest eigenvalue of the matrix Re(Rp). Re(●) de-
notes the real part of the elements of the matrix. P times
EVD should be performed separately to estimate P
eigenvector.
Transform the real-value signal subspace as follows:

s0 ¼ C0Wsp ð30Þ

where C0 ¼ diag −1ð ÞN ;…; −1ð Þ1; 1; 1;…; 1
zfflfflfflfflffl}|fflfflfflfflffl{M þ 1

8<
:

9=
; . Define

s −1ð Þ
0 and s 0ð Þ

0 as the first and the last 2M – 1 elements of
the vector s0 respectively. The following equation can be
founded [17]

Eû ¼ Γs 0ð Þ
0 ð31Þ

where E ¼ s0 −1ð Þ DÎs −1ð Þ
0

�
h i

and Γ ¼ λ
πr diag − M−1ð Þ;f

…; 0;…; M−1ð Þg. D = diag{(−1)M− 2,…, (−1)1, (−1)0, (−1)1,
…, (−1)M} and Î is the reverse permutation matrix with
ones on the anti-diagonal and zeros elsewhere. The least

square solution of (30) is ûLS ¼ ûp û�
p

h iT
.

The transmit azimuth angles and elevation angles can
be obtained from ûp; p ¼ 1; 2;…P, as ûp ¼ sinθpejφp [17].
So, the azimuth angles φp and elevation angles θp can

be calculated from the following formulas.

φp ¼ arg ûp
� � ð32Þ

θp ¼ arc sin ûp

�� �� ð33Þ

The receive angles and transmit angles can be paired
automatically as they are connected by the correspon-
ding eigenvalues and eigenvectors, respectively.
4.3. 3D coordinates of the targets
In this section, the 3D coordinates are calculated by the
angles estimated in Sections 4.1 and 4.2. The relation-
ship between [α, φ, θ] and 3D coordinates of the target
[x, y, z] can be found by the geometry of bistatic MIMO
radar in Figure 1 as follows:

x ¼ Lb sinθ cosφ

c tanα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− sin2θ sin2φ

p
þ sinθ sinφ

ð34Þ

y ¼ Lb sinθ sinφ

c tanα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− sin2θ sin2φ

p
þ sinθ sinφ

ð35Þ

z ¼ L cosθ

c tanα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− sin2θ sin2φ

p
þ sinθ sinφ

ð36Þ

It can be observed that the 3D coordinates of the tar-
gets are determined by the 3D angles estimated above
and the baseline of the bistatic radar.

5. Simulation and analysis
In this section, we demonstrate via simulations the
performances of the proposed scheme. As shown in
Figure 1, a transmit UCA with radius r = λ is employed
for the simulations and the number of the transmit ele-
ments is selected as N = 20. The receive array is a ULA
with 20 elements spaced at a half-wavelength. The base-
line between transmitter and receiver is 100 km. In these
simulations, we assume a low-frequency radar system.
The transmit signals are narrowband and centered at
20 MHz (λ = 15m). We first estimate the transmit azi-
muth angle, transmit elevation angle, and receive cone
angle by the proposed method and then calculate the 3D
coordinates of the targets according to the angles. The
localization performance is evaluated by the RMSE of
the estimated values. Five hundreds Monte Carlo trials
are performed.

5.1. Simulation 1: the influence of the SNR
The influence of SNR for the coordinate estimation is
studied in the case of two targets. The targets are lo-
cated at (73.5 km, 34.094 km, 35 km) and (65.5 km,
7.8932 km, 35 km) respectively. The range cell of the
targets is at 193 km. The normalized Doppler frequen-
cies of two targets are selected as 0.1 and 0.9 respect-
ively. The performance of both the angles and the
coordinate estimation are shown in Figure 4. The perfor-
mances of the estimated angles of two targets are plotted
in Figure 4 a,b, respectively. It is shown that the per-
formance of the proposed ESPRIT algorithm can be im-
proved by the increase of the SNR. Figure 4c shows the
3D coordinates estimate performance of the two targets.
It is shown that the locate accuracy approach wavelength
of the transmit signal by using proposed ESPRIT-based
algorithm and the proposed scheme has the potential to
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achieve meter-level locate accuracy which is far less than
the wavelength of the transmit signal. It can be observed
that the estimation performances of the two targets are
different from each other as the localization perform-
ance of the bistatic radar is related to location of the
targets.

5.2. Simulation 2: the identifiability of the adjacent
targets
The identifiability of two adjacent targets is investigated
by the simulation. Targets 1 and 2 are at the same range
cell in the plane z = 35 km. Target 1 is located at
(73.5 km, 34.094 km, 35 km). Target 2 changes its loca-
tion along the isorange ellipse of bistatic radar as shown
in Figure 5. The Δx in Figure 6 denotes the difference of
the x-coordinate between targets 1 and 2. The norma-
lized Doppler frequencies of the two targets are selected
as 0.1 and 0.9, respectively. It is shown in Figure 6(a)(b)
that the estimation performance of target 1 is improved
when target 2 is far away from it by using the proposed
algorithm. However, the influence of the target 2 can be
ignored when Δx > 0.4 km. It can also be observed that
the estimation performance of target 1 declines consid-
erably when Δx is within 0.05 km. The results imply the
identifiability of the two adjacent targets by using the
proposed algorithm. While the RMSE of the proposed
algorithm tends to increase in proximity of the x-axis
origin, the RCRB maintains flat behavior. The reason is
that the proposed algorithm can only distinguish the
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Figure 5 The location relationship between target 1 and
target 2.
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two targets by their angles. However, there still are other
different characteristic of the two targets, such as reflec-
tion coefficient and Doppler frequency. The behavior of
the RCRB implies that the targets can be distinguished
by these characteristic in theory. Furthermore, Equation
(38) in Appendix 1 discloses the behaviour of the RCRB
in mathematical terms. It can be observed that the

Fisher submatrix is a Hadamard product of _AH
α R

−1
W

_Aα

and RT
s , where _AH

α R
−1
W

_Aα contains the angle information

and RT
s contains the reflection coefficient and Doppler

frequency of the targets. Full rank of RT
s can guarantee
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the full rank of the Fisher Matrix, even though the
matrix _AH

α R
−1
W

_Aα tends to rank defect in the case of two
adjacent targets.

5.3. Simulation 3: influence of target range
The relationship between the estimation performances
and target range is investigated in this subsection. As-
sume the x and z coordinates of the target are fixed at
x = 50 km and z = 35 km respectively. The target location
is changed along the y-axis from 50 km to 300 km. The
signal-to-noise ratio is 25 dB. Figure 7(a) and (b) plots
the performances of the angle and corresponding 3D co-
ordinate estimation respectively. The dashed lines are
the results of the proposed algorithms and the solid lines
are the RCRB. It is shown that from both the proposed
algorithm and the RCRB that the angle estimation per-
formances vary little with the target range. However, the
performance of the 3D coordinate estimation degrades
with increasing target range. This simulation result is
consistent with the analysis of the GDOP in Section 3.3.
It seems that the proposed scheme is suitable to locate
the target at relatively short range.

6. Conclusions
The transmit UCA and receive ULA configuration
scheme for bistatic MIMO radar have been proposed to
achieve target 3D localization. The performance bound
of this scheme is evaluated and an ESPRIT-like al-
gorithm was developed to achieve the 3D coordinate
estimation of multiple targets. The advantage of the pro-
posed scheme is that the 3D coordinates of multiple tar-
gets can be estimated without the range information and
has the capability for identification of multiple targets in
the same range cell. Moreover, it is suitable for low-
frequency radars to estimate the location of relatively
short range targets. How to reduce the receive element
spacing as well as keeping high angle estimation per-
formance is the focus of our future work.

Appendix
A 1: Derivation of the FIM
In this section, the submatrices of FIM in (9) are derived.
The (i, j) th elements of the submatrix F1,1 are [12]

F1;1 αi; αj
� � ¼ 2Re tr

∂A α;φ; θð ÞH
∂αi

� �Η

R−1
W

∂A α;φ; θð ÞH
∂αj

� �( )( )

¼ 2Re tr _AαeieΤi H
� �Η

R−1
W

_AαejeΤj H

 �n on o

¼ 2Re eTi _AH
α R

−1
W

_Aαej
� �

eTj HHHei

 �n o

¼ 2L
σ2

Re _AH
α
_Aα

� �
i;j R

T
s

� �
i;j

n o
ð37Þ
where _Aα ¼ b φ1; θ1ð Þ½ ⊗
∂a α1ð Þ
∂α1

b φ2; θ2ð Þ⊗∂a α2ð Þ
∂α2

⋯b

φP; θPð Þ⊗∂a αPð Þ
∂αP

� . Rn = σ2IK and RW = IN⊗Rn. ⊗ de-

notes the kronecker product. Re{g} denotes the real part
of the data and tr{g} denotes the trace of the matrix. ei
denotes a column vector with 1 at the ith element and
zeros at the others. So we can obtain

F1;1 ¼ 2LRe _AH
α R

−1
W

_Aα

� �
⊙ RT

s

� �� � ð38Þ
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In a similar way to the derivation above, we can obtain
the other submatrices of the FIM as follows:

F1;2 ¼ 2L
σ2

Re _AH
α
_Aφ

� �
⊙ RT

s

� �� � ð39Þ

F1;3 ¼ 2L
σ2

Re _AH
α
_Aθ

� �
⊙ RT

s

� �� � ð40Þ

F2;1 ¼ 2L
σ2

Re _AH
φ
_Aα


 �
⊙ RT

s

� �n o
ð41Þ

F2;2 ¼ 2L
σ2

Re _AH
φ
_Aφ


 �
⊙ RT

s

� �n o
ð42Þ

F2;3 ¼ 2L
σ2

Re _AH
φ
_Aθ


 �
⊙ RT

s

� �n o
ð43Þ

F3;1 ¼ 2L
σ2

Re _AH
θ
_Aα

� �
⊙ RT

s

� �� � ð44Þ

F3;2 ¼ 2L
σ2

Re _AH
θ
_Aφ

� �
⊙ RT

s

� �� � ð45Þ

F3;3 ¼ 2L
σ2

Re _AH
θ
_Aθ

� �
⊙ RT

s

� �� � ð46Þ

where _Aθ ¼ ∂b φ1; θ1ð Þ
∂θ1

	
⊗a α1ð Þ ∂b φ2; θ2ð Þ

∂θ2
⊗a α2ð Þ⋯

∂b φP; θPð Þ
∂θP

⊗a αPð Þ� and _Aφ ¼ ∂b φ1; θ1ð Þ
∂φ1

	
⊗a α1ð Þ

∂b φ2; θ2ð Þ
∂φ2

⊗a α2ð Þ⋯∂b φP; θPð Þ
∂φP

⊗a αPð Þ�.

Appendix 2. derivation of the error propagation
matrix
The relationships between the 3D coordinates and the
3D angles are as follows:

α ¼ arccos
Lb−yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ Lb−yð Þ2 þ z2
q

0
B@

1
CA ð47Þ

φ ¼ arctan
y
x


 �
ð48Þ

θ ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
z

" #
ð49Þ

The estimate error in [α0, θ0, ϕ0]
T can be obtained

by expanding the angles [α, θ, ϕ]T about the point
[x0, y0, z0]

T in a Taylor series. The first term in Taylor
expansion gives [13].
Δv ¼ TΔe ð50Þ
where

T ¼

∂α
∂x

∂α
∂y

∂α
∂z

∂φ
∂x

∂φ
∂y

∂φ
∂z

∂θ
∂x

∂θ
∂y

∂θ
∂z

2
6666664

3
7777775 ð51Þ

The elements of the error propagation matrix C are as
follows:

∂α
∂x

¼ x Lb−yð Þ
x2 þ Lb−yð Þ2 þ z2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p ð52Þ

∂α
∂y

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p

x2 þ Lb−yð Þ2 þ z2
ð53Þ

∂α
∂z

¼ Lb−yð Þz
x2 þ Lb−yð Þ2 þ z2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p ð54Þ

∂φ
∂x

¼ −y
x2 þ y2

ð55Þ

∂φ
∂y

¼ x
x2 þ y2

ð56Þ

∂φ
∂z

¼ 0 ð57Þ

∂θ
∂x

¼ xz

x2 þ y2 þ z2½ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ð58Þ

∂θ
∂y

¼ yz

x2 þ y2 þ z2½ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ð59Þ

∂θ
∂z

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
x2 þ y2 þ z2

ð60Þ
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