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Abstract

A network of radars sharing the same frequency band, and using properly coded waveforms to improve features
attractive from the radar point of view is considered in this article. Non-cooperative games aimed at code design for
maximization of the signal-to-interference plus noise ratio (SINR) of each active radar are presented. Code update
strategies are proposed, and, resorting to the theory of potential games, the existence of Nash equilibria is analytically
proven. In particular, we propose non-cooperative code update procedures for the cases in which a matched filter, a
minimum integrated sidelobe level filter, and a minimum peak to sidelobe level filter are used at the receiver. The case
in which the received data contain a non-negligible Doppler shift is also analyzed. Experimental results confirm that
the proposed procedures reach an equilibrium in few iterations, as well as that the SINR values at the equilibrium are
largely superior to those in the case in which classical waveforms are used and no optimization of the radar code is
performed.

Keywords: Game theory; Code design; Radar network; Interference mitigation; Nash equilibrium; Minimum peak-to
sidelobe level (PSL) filter; Minimum integrated-to-sidelobe level (ISL) filter

1 Introduction
In the last decade, the importance of radar has grown
progressively with the increasing dimension of the sys-
tem: from a single colocated antenna to large sensor
networks [1,2]. The concept of heterogeneous radars
working together has thoroughly been studied, opening
the door to the ideas of multiple-input multiple-output
radar [3,4], over-the-horizon radar networks [5], and dis-
tributed aperture radar [6,7]. These three scenarios are
the examples of cooperative radar networks, in the sense
that every single sensor contributes to the overall detec-
tion process. Unfortunately, in many practical situations,
it is not possible to design the network a priori. As such,
the sensors are just simply added to the already exist-
ing network (plug and fight), and each sensor exhibits its
own detection scheme. This is the case of non-cooperative
radar networks [8,9]; in this scenario, it is extremely
important that each additional sensor interferes as lit-
tle as possible with the pre-existing elements, and, to
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this end, suitable techniques must be adopted. The usual
approaches rely upon the employment of spatial and/or
frequency diversity: the former resorts to forming multi-
ple orthogonal beams, while the latter uses separated car-
rier frequencies to reduce interference [10,11]. Another
possibility is to exploit waveform diversity [12-14]; here,
the basic concept is to suitably modulate the waveform
of the new sensor so as to optimize the detection capa-
bilities of the specific sensor, but, at the same time,
controlling the interference introduced into the network.
Notice that this is different from the approach employed
in cooperative sensor network, where one must design
waveforms so as to optimize the joint performance of the
system [15-17].
With regard to the optimization of radar waveforms

in a non-cooperative scenario, we cite here the studies
[18-21]. In [18], the design is based upon the maximiza-
tion of the global signal-to-interference plus noise ratio
(SINR), and classic constraints such as phase-only or
finite energy are considered; in [19], instead, the prob-
lem of parameter estimation (e.g., direction of arrival) for
a non-cooperative radar is analyzed. In this article, we
propose a different strategy, based upon a game-theoretic
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approach [22]; we thus deal with the active radars as if
they were players of a properly modeled game, whose set
of possible strategies is made up of a certain amount of
pre-fixed transmit radar codes. We design utility func-
tions, based on the framework of potential games [23],
trying to improve the SINR of the active radars through
a non-cooperative game. Thus, we present several non-
cooperative games for radar-code optimization in a non-
cooperative environment, considering different types of
receive filters [24] and accounting for the case of non-
negligible Doppler shifts too.
The remainder of this article is organized as fol-

lows. In Section 2, we give some background mate-
rial on game theory and on potential games, which
will be needed in the remaining part of the article.
In Section 3, we present the considered radar net-
work signal model and dwell on the proposed non-
cooperative games for radar code updating. Section 4
is devoted to the analysis of the performance of the
proposed games, while, finally, Section 5 contains the
conclusions.

2 Brief preliminaries on game theory
Formally speaking, a game G in its normal form can be
described as the triplet G = [K, {Sk} , {uk}], wherein
K = {1, 2, . . . ,K} is the set of players participating in
the game, uk is the kth player’s utility function (depend-
ing on the players’ chosen strategies), and Sk is the set
of possible actions (strategies) that player k can take. We
will be considering one-shot games wherein players, in
a round-robin fashion, update their strategies based on
the strategies chosen by the other players, and aiming
at their own utility function maximization. If, following
such a strategy, an equilibrium is reached (or, in other
words, if such an iterative procedure converges to a sta-
ble set of chosen strategies), then such an equilibrium is
called Nash equilibrium (NE), whose formal definition is
here given. Let

(s1, s2, . . . , sK ) ∈ S1 × S2 × . . .SK

denote a certain strategy K-tuple for the active players.
Letting, as customary in the game theory literature, s−k
denote the (K − 1)-dimensional vector whose entries are
the strategies of all the players except the kth, the point
(s1, s2, . . . , sK ) = (sk , s−k) is an NE if, for any player k,
we have

uk(sk , s−k) ≥ uk(s∗k , s−k) ,

∀s∗k �= sk . Otherwise stated, at an NE, no user can unilat-
erally improve its own utility by taking a different strategy.
A quick reading of this definition might lead to think that
at NE users’ utilities achieve their maximum values. Actu-
ally, this is not the case, since the existence of an NE
point does not imply that no other strategy K-tuple exists
that can lead to an improvement of the utilities of some
players while not decreasing the utilities of the remaining
ones. These latter strategies are usually said to be Pareto-
optimal [22]. Otherwise stated, at an NE, each player,
provided that the other players’ strategies do not change,
is not interested in changing its own strategy. However,
if some sort of cooperation would be available, players
might agree to simultaneously switch to a different strat-
egy K-tuple, so as to improve the utility of some, if not all,
players, while not decreasing the utility of the remaining
ones. The gap existing between the achieved utilities at
the NE and those achieved in correspondence of Pareto-
optimal points is sometime colorfully named “the price of
anarchy”.
The concept of best response dynamic is also worth

being introduced. Given a certain strategy profile (sk , s−k)
for the active players, we say that a player imple-
ments a best response dynamic if he chooses as its
new strategy s̃k = argmaxx uk(x, s−k). Given this
definition, it descends that the set of chosen strate-
gies at an NE is the best response for every active
player.

2.1 Potential games
A potential game [23] is a normal form game wherein any
change in the utility enjoyed by a given player in reac-
tion to a unilateral (i.e., assuming that the other players
do not change their strategies) change of strategy by that
player is reflected by a similar change in a global function,
that is usually referred to as potential function. Formally
speaking, letting S = S1 × S2 × · · · × SK , a normal form
game is an exact potential game if there exists a function
T : S → R, known as the exact potential function, such
that

uk
(
sk , s−k

)− uk
(̃
sk , s−k

) = T(sk , s−k) − T
(̃
sk , s−k

)
,

for any k ∈ K, sk , s̃k ∈ Sk , and for any s−k ∈
S1 × · · ·Sk−1 × Sk+1 × · · ·SK . Given a normal form
game, a potential function subsumes the effects that any
unilateral change of strategy may have on the utility
enjoyed by that individual player. A moment of thought
also reveals that every NE of an exact potential game
must necessarily be a fixed point of the potential func-
tion, as well as that a best response dynamic in a
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potential game will converge to a NE in every game
with continuous utility functions and compact strategy
spaces [23].
Finally, it is also worth underlining that, if the poten-

tial function does represent a global performancemeasure
for the considered system, potential games are an instance
wherein users can serve the greater good while playing a
non-cooperative game and acting selfishly.
In the following, we will be using game theory con-

cepts to model competition among a set of radars
(the players) that tune their own transmitted code in
order to maximize their SINR. Potential games, that have
been used in recent years to obtain resource allocation
schemes in wireless communication applications (see,
e.g., [25] and references therein), will be used here in a
radar scenario to come up with procedures convergent to
an NE.

3 Problem formulation and code updating
procedure

We consider a network of L non-cooperative monos-
tatic radar systems, where each sensor transmits a coded
pulse composed of N sub-pulses. The signal backscat-
tered toward the lth radar is filtered through a subpulse
matched filter and then converted into digital. The vec-
tor rl, l = 1, . . . , L, containing the received sequence
rk,l, k = 1, . . . ,N , assumed temporally aligned with the
returns from the range bin of interest, can be written
as [26,27]

rl = α0,lcl +
N−1∑

k=−N+1,k �=0
αk,lJkcl

+
L∑

h=1,h�=l

N−1∑
k=−N+1

αk,hJkch + nl,

(1)

where cl = [cl(1) . . . cl(N)]T denotes the unit-norm
N-dimensional modulating sequence of the lth radar,
αk,h are complex parameters accounting for the radar
cross section of the kth range bin illuminated by
the hth radar (0 is conventionally chosen as the
range bin of interest), nl is the vector containing
the filtered thermal noise samples at the lth radar

(modeled as a zero-mean complex circular white vector),
the matrix

Jk = JT−k =
{ Jk(j, i) = 1 i − j = k

Jk(j, i) = 0 otherwise
(2)

(k = 0, . . .N − 1, (i, j) ∈ {1, . . . ,N}2) is the N × N shift
matrix, and (·)T is the transpose operator. As to the mod-
ulating sequence cl, we suppose that it belongs to a finite
set �l which containsall the possible sequences of length
N that the lth radar can transmit.
It is interesting to provide an interpretation of the

contributions appearing in the right-hand side of (1).
Indeed, the first term represents the signal component
from the range bin of interest for the lth radar; the
second contribution accounts for the self-induced inter-
ference, while the third addend represents the inter-
ference caused by the other radars of the network
on the lth one.
Now, the vector rl is to suitably be processed in order

to detect the possible presence of a target in the range
cell of interest. We thus consider the following receiving
structure: the vector rl undergoes a linear transformation
(projection over a suitable direction vector), and, then,
its square modulus is compared with a threshold, i.e., we
consider the detection rule

|d†
l (cl)rl|2

H1
>
<
H0

ηl (3)

with (·)† denoting conjugate transpose, | · | the modulus,
dl(cl) an N-dimensional vector, function of the transmit
code cl, to be suitably designed (it could be a standard
matched filter or a mismatched filter [28-30] designed
to optimize some performance metrics such as the inte-
grated sidelobe level (ISL) or the peak-to-sidelobe level
(PSL)—see more details in the sequel of the article),
and ηl the detection threshold in the lth radar. Given
the detection rule (3), we can define an SINR for
the lth radar in the range cell of interest, γl say, as
followsa

γl = G(l, l)|d†
l (cl)cl|2

d†
l (cl)dl(cl) +

L∑
h=1,h�=l

N−1∑
k=−N+1

G(h, l)|d†
l (cl)Jkch|2 + G(l, l)

N−1∑
k=−N+1,k �=0

|d†
l (cl)Jkcl|2

, (4)
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where the matrix G models the beam-pattern of the
receive antenna.
The SINR γl is indeed a measure of the detection

capabilities of the lth radar in the range cell of inter-
est. Note that at the denominator we have the contribu-
tions from the backscattered signals transmitted from the
other (interfering) radars, weighted by the antenna pattern
according to their direction of arrival; it thus follows that
a proper design of the receive pattern helps to increase the
detection capabilities.

3.1 Antenna beam pattern
The design of the receive antenna beam is of primary
importance, especially in the case in whichmultiple radars
operate in the same area. This problem is a classical
one, and has deeply been analyzed in past years, espe-
cially with reference to wireless communications [31],
where adaptive antennas are used in conjunction with
power control and smart multiple access (MA) tech-
niques. Obviously, it also plays a primary role in radar
applications, where all the transmitting systems act as
reciprocal sources of interference. Since we are con-
sidering here a non-cooperative scenario, no MA or
a priori coordination schemes can be applied. Simi-
larly, since the ultimate goal of a radar is to maximize
its detection capability, resorting to power control is
unrealistic.
In the radar scenario, the beam pattern of the anten-

nas is used as a means to improve the received SINR
and to weaken interfering echoes. A simplified model
for the beam pattern G(θ) is the one illustrated in
Figure 1 where θ = 0 is the radar search directionb;
for instance, such a shape can be approximated through
an N-element array [32]. Herein, we thus assume that

the antenna gain may take two possible constant val-
ues, one for θ ∈[−θε ,+θε], and one (much lower than
the former) outside the above interval: the side contri-
butions are thus all equally weighted by the side beams.
The effect of the antenna pattern can be there-
fore simply modeled as a proper L × L gain matrix
G, whose (h, l)th element accounts for the effects
of the hth radar on the lth system; the coefficients
for l �= h are assumed to be a proper constant.
The G(l, l) elements on the principal diagonal repre-
sent the main beam gain, weighting the useful signal for
the lth radar.
Given the outlined system model, our actual goal now

is to design a non-cooperative procedure for adapting the
radar codes in order to maximize the individual detection
performances.

3.2 Matched filter
Given Equation (4), we begin with assuming that dl = cl,
i.e., a conventional matched filter receiver is used, and
consider minimization of the denominator in (4), which is
equivalent to optimizing γl since ||cl|| = 1 (|| · || denotes
the Euclidean norm of a complex vector). We thus obtain
the optimization problem

min
cl∈�l

⎧⎨⎩c†l
⎛⎝I +

L∑
h=1,h�=l

N−1∑
k=−N+1

G(h, l)Jkchc†hJ
T
k

+G(l, l)
N−1∑

k=−N+1,k �=0
Jkclc†l J

T
k

⎞⎠ cl

⎫⎬⎭ ,

(5)

Figure 1 Antenna beam pattern.Main beam: θ ∈ [−θε ,+θε ]. Side beam: θ ∈ [−π ,−θε ] ∪ [+θε ,+π ].
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for l = 1, . . . , L. The solution for cl to prob-
lem (5) exists and can be found through an exhaus-
tive optimization over the finite set �l, with an
acceptable computational complexity because in prac-
tice the quoted set contains a quite small number
of elements.
Unfortunately, when active radars update their own

transmitted waveforms according to such a strategy,
no sufficient condition has analytically been worked
out for the existence of NE, and, moreover, numeri-
cal simulations have confirmed that when radars, in a
round-robin fashion, update their codes according to
the strategy (5), an equilibrium is not always reached.
The considered game has thus no pure strategy equilib-
rium. One possible way to circumvent such a problem
is to properly modify the utility function to be consid-
ered so that the resulting game may have an NE point.
In particular, if we choose to use the tool of potential
games, the trick is to define a new utility function, strictly
related to (4), but whose maximization by the compet-
ing radars leads to an NE. To this end, let us consider the
opposite of the sum of the denominators of γl ’s for the L
active radars, i.e.,

T(c1, . . . , cL) = −
L∑

l=1
c†l

⎛⎝I +
L∑

h=1,h�=l

N−1∑
k=−N+1

G(h, l)Jkchc†hJ
T
k +

G(l, l)
N−1∑

k=−N+1,k �=0
Jkclc†l J

T
k

⎞⎠ cl.

(6)

Upon some straightforward algebraicmanipulations, we
have

T(c1, . . . , cL)=−c†j

⎛⎝I+ L∑
h=1,h�=j

N−1∑
k=−N+1

G(h, j)Jkchc†hJ
T
k

+G(j, j)
N−1∑

k=−N+1,k �=0
Jkcjc†j J

T
k

⎞⎠ cj

−
L∑

h=1,h�=j

N−1∑
k=−N+1

G(j, h)c†j

JTk chc
†
hJkcj − T1(c1, . . . , cj−1, cj+1, . . . , cL) ,

(7)

where the function T1(c1, . . . , cj−1, cj+1, . . . , cL) does not
depend on cj. In Equation (7), we have isolated the terms
depending on the jth radar code cj; it thus readily follows

that if we consider a game wherein the utility for the jth
sensor is expressed as

uj = −c†j

⎛⎝I +
L∑

h=1,h�=j

N−1∑
k=−N+1

G(h, j)Jkchc†hJ
T
k +

G(j, j)
N−1∑

k=−N+1,k �=0
Jkcjc†j J

T
k

⎞⎠ cj

−
L∑

h=1,h�=j

N−1∑
k=−N+1

G(j, h)c†j J
T
k chc

†
hJkcj

, (8)

we obtain an exact potential game with potential func-
tion T(·). Summing up, we propose the radar code update
procedure reported in Algorithm 1.

Algorithm 1 Radar update procedure—matched filter
Input: �j, L;
Output: an NE solution for the potential game with

utility (8);
1: assume that radar codes are arbitrarily chosen;
2: while the convergence is not reached do
3: for j = 1 to L do
4: update the jth radar code according to

cj =argmax
x∈�j

−x†
⎛⎝I +

L∑
h=1,h�=j

N−1∑
k=−N+1

G(h, j)Jkchc†hJ
T
k

+G(j, j)
N−1∑

k=−N+1,k �=0
Jkxx†JTk

⎞⎠ x −
L∑

h=1,h�=j

N−1∑
k=−N+1

× G(j, h)x†JTk chc
†
hJkx

(9)

5: end for
6: end while

As already discussed, since at each iteration the poten-
tial function in (7) gets increased, and since it is
upper bounded, it necessarily follows that the above
iterative algorithm must reach a fixed point (NE).
Notice however that there is in general no guar-
antee that such a fixed point is the global max-
imizer of the potential function, or just a local
extremum [23].

3.3 Minimum ISL filter
The matched filter, considered in the previous section,
is obviously the classical receiving structure used in
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detection problems. However, it does not allow to com-
pletely control the sidelobe energies, a feature that
may be critical in radar applications. Indeed, this lim-
itation may strongly affect the target detection capa-
bilities of the radar system, especially in scenarios
where multiple radars have to co-exist in the same
area, thus becoming themselves the main source of
reciprocal interference.
Therefore, viable alternatives to the matched filter may

be sought. From this point of view, relevant metrics to be
considered are the ones related to the energies in the side-
lobes, which, with reference to the lth radar of (1), can be
modeled as |dl†(cl)Jkcl|2

|dl(cl)cl|2 , k = ±1, . . . ,±N − 1. Specifically,
if one wants to constraint the total energy underlying the
sidelobes, it is possible to consider the ISL

ISL =
∑N−1

k=N+1,k �=0 |dl(cl)†Jkcl|2
|dl(cl)†cl|2 . (10)

Indeed, designing a filter with minimum ISL is tan-
tamount to minimizing the total energy in the range
sidelobes, see, for instance, [26,33]. In particular, with
reference to the lth radar of model (1), the optimal ISL
filter may be found as the solution to the following mini-
mization problem:

min
x∈CN

x†Rlx
|x†cl|2 (11)

where

Rl �
N−1∑

k=N+1,k �=0
Jkclc†l J

†
k ,

and C the complex field. It is easy to verify that a solution
to (11) also solves the following constrained minimization
problem

min
x∈CN

x†Rlx

s.t. 	(x†cl) = b,
(12)

in the sense that υ(11)= υ(12)
b2 (υ(·) stands for the optimal

value of problem (·)), for any b > 0.
It is well known that problem (12) has a closed form

solution x
(cl) = bQlcl, for any constant b > 0, withQl �
R−1
l

c†l R
−1
l cl

(indeed, it is possible to prove that R is strictly pos-
itive definite and thus invertible, provided cl(1) �= 0 and
cl(N) �= 0 [34]); as a consequence, in order to solve (12),
it suffices to focus on (13) with b = 1 and ψ = 0.

In particular, due to the direct connection between the
radar code cl and the optimal ISL filter, as well as the
energy constraint in (12), maximizing the SINR related
to the signal model reported in Equation (1) is equiv-
alent to the minimization of its denominator, i.e., the
quartic form

min
cl∈�l

⎧⎨⎩c†l
⎡⎣Q†

l

⎛⎝I +
L∑

h=1,h�=l

N−1∑
k=−N+1

G(h, l)Jkchc†hJ
T
k

+G(l, l)
N−1∑

k=−N+1,k �=0
Jkclc†l J

T
k

⎞⎠Ql

⎤⎦ cl

⎫⎬⎭ .

(13)

A solution to problem (13) can be again computed
through an exhaustive search over the finite set �l;
however, there is no guarantee that an equilibrium is
reached as all the radars iteratively update their codes
in a sequential fashion. As for the previous section, we
can resort to the potential games framework to obtain
an utility function for the players, such that the result-
ing game admits an NE. We thus consider the following
potential

T(c1, . . . , cL) = −
L∑

l=1
c†l

⎡⎣Q†
l

⎛⎝I +
L∑

h=1,h�=l

N−1∑
k=−N+1

G(h, l)Jkchc†hJ
T
k + G(l, l)

N−1∑
k=−N+1,k �=0

Jkclc†l J
T
k

⎞⎠Ql

⎤⎦ cl,

(14)

which can be rewritten as

T(c1, . . . , cL) = − c†j

⎡⎣Q†
j

⎛⎝I +
L∑

h=1,h�=j

N−1∑
k=−N+1

G(h, j)Jkchc†hJ
T
k + G(j, j)

N−1∑
k=−N+1,k �=0

Jkcjc†j J
T
k

⎞⎠Qj

⎤⎦ cj

−
L∑

h=1,h�=j

N−1∑
k=−N+1

G(j, h)c†j Q
†
j J

T
k chc

†
hJkQjcj

− T1(c1, . . . , cj−1, cj+1, . . . , cL).
(15)
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Therefore, in order to obtain an exact potential game
with potential function T(·), we can consider the follow-
ing expression for the utility of the jth user:

uj = − c†j

⎡⎣Q†
j

⎛⎝I +
L∑

h=1,h�=j

N−1∑
k=−N+1

G(h, j)Jkchc†hJ
T
k

+G(j, j)
N−1∑

k=−N+1,k �=0
Jkcjc†j J

T
k

⎞⎠Qj

⎤⎦ cj

−
L∑

h=1,h�=j

N−1∑
k=−N+1

G(j, h)c†j Q
†
j J

T
k chc

†
hJkQjcj.

(16)

We summarize the steps for the radar code update
procedure in the Algorithm 2.

Algorithm 2 Radar update procedure—minimum ISL
filter
Input: Rj, �j, L;
Output: a NE solution for the potential game with

utility (16);
1: assume that radar codes are arbitrarily chosen;
2: while the convergence is not reached do
3: for j = 1 to L do
4: update the jth radar code according to

cj =argmax
x∈�j

−x†
⎡⎣Q†

j

⎛⎝I +
L∑

h=1,h�=j

N−1∑
k=−N+1

G(h, j)Jkchc†hJ
T
k +

G(j, j)
N−1∑

k=−N+1,k �=0
Jkxx†JTk

⎞⎠Qj

⎤⎦ x

−
L∑

h=1,h�=j

N−1∑
k=−N+1

G(j, h)x†Q†
j J

T
k chc

†
hJkQjx

(17)

5: end for
6: end while

3.4 Minimum PSL filter
Besides the minimum ISL receive filter, another custom-
ary approach in radar applications is to constrain the level
of the sidelobe peaks; the metric to be taken into account

in this case is the PSL that, with reference to the lth radar,
can be expressed as

PSL = max
k=±1,...,±N−1

|dl(cl)†Jkcl|2
|dl(cl)cl|2 . (18)

Note that designing a filter minimizing the PSL is
equivalent to cutting all the sidelobes in the filter
response, and constraining the mainlobe peak to a desired
level.
The computation of the minimum PSL filter is slightly

more involved than the computation of the minimum ISL
filter (which indeed was given in closed form), since it
requires the detection of the range lobes with the highest
peak level, and then their minimization; the problem can
be thus formulated as the following fractional quadratic
optimization problem:

min
x∈CN

max
k=±1,...,±N−1

x†Rl,kx
|x†cl|2 , (19)

where

Rl,k � Jkclc†l J
†
k , k = ±1, . . . ,±N − 1.

Problem (19) can be restated into an equivalent form as

minx∈CN maxk=±1,...,±N−1 x†Rl,kx
s.t. 	(x†cl) = b, (20)

where the equivalence follows from the observation that
υ((19))= υ((20))

b2 , for any b > 0: we can thus directly focus
on (20), for b = 1. Solving problem (20) requires the solu-
tion of a Linear Programming (LP) problem [29,30] or a
Second-Order Cone Programming (SOCP) [27]. Indeed,
we can recast (20) as

mint,x t
s.t. t ≥ x†Rl,kx, k = ±1, . . . ,±N − 1,

	(x†cl) = 1,
(21)

which belongs to the class of the LP [29,30] or SOCP [27]
problems for the case of real or complex transmitted code
sequence and optimization variable, respectively.
Obviously, an optimal solution x
 for problem (21)

is a function of the radar code cl used by the
player; therefore, the finite set �l of the possible radar
sequences and the set, say �l, of the possible optimal
PSL filters are related by a one-to-one correspondence.
Otherwise stated, specifying �l also leads to specify �l,
in the sense that the set of the filters can be computed
directly off-line, and populated by the possible solutions
for the problem (21).
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Based on the above assumptions, the maximization of
the SINR for the pair (cl,dl(cl)) relative to (21), leads to
the following minimization

min
cl∈�l

⎧⎨⎩dl(cl)†
⎛⎝I +

L∑
h=1,h�=l

N−1∑
k=−N+1

G(h, l)Jkchc†hJ
T
k

+G(l, l)
N−1∑

k=−N+1,k �=0
Jkclc†l J

T
k

⎞⎠dl(cl)

⎫⎬⎭ .

(22)

where, for each transmitted sequence cl ∈ �l, it is nec-
essary to consider the corresponding filter dl(cl) ∈ �l.
Again, for the purpose of correctly modeling the game
among the L users, let us define the following potential:

T(c1, . . . , cL) = −
L∑

l=1
dl(cl)†

⎛⎝I +
L∑

h=1,h�=l

N−1∑
k=−N+1

G(h, l)Jkchc†hJ
T
k + G(l, l)

N−1∑
k=−N+1,k �=0

Jkclc†l J
T
k

⎞⎠dl(cl),

(23)

where we assume that the correspondence between fil-
ters and transmitted sequences has already been defined.
Specifically, we may resort to Table 1, that can be looked
upon during the update procedure. After some algebraic
transformations, we obtain

T(c1, . . . , cL) = − dj(cj)†
⎛⎝I +

L∑
h=1,h�=j

N−1∑
k=−N+1

G(h, j)Jkchc†hJ
T
k + G(j, j)

N−1∑
k=−N+1,k �=0

Jkcjc†j J
T
k

⎞⎠dj(cj) −
L∑

h=1,h�=j

N−1∑
k=−N+1

G(j, h)dh(ch)†JTk cjc
†
j Jkdh(ch)

− T1(c1, . . . , cj−1, cj+1, . . . , cL) .
(24)

Given the above potential function, it is possible to define
the utility for the jth user as

uj = − dj(cj)†
⎛⎝I +

L∑
h=1,h�=j

N−1∑
k=−N+1

G(h, j)Jkchc†hJ
T
k

+G(j, j)
N−1∑

k=−N+1,k �=0
Jkcjc†j J

T
k

⎞⎠dj(cj)

−
L∑

h=1,h�=j

N−1∑
k=−N+1

G(j, h)dh(ch)†JTk csc
†
j Jkdh(ch),

(25)

whose iterative maximization by the active radars leads to
a new potential game admitting NE points. Algorithm 3
summarizes the radar code update iterations for the case
at hand.c

Algorithm 3 Radar update procedure—minimum PSL
filter
Input: Rj,k , �j, L;
Output: an NE solution for the potential game with

utility functions (25);
1: solve the problem (21) for all cj ∈ �j, and compute the

set �j;
2: compute Table 1 so that I(i, j) � (cij ,dj(cij)), where cij ∈

�j and dj(cij)) ∈ �j, i = 1, . . . , |�j|, j = 1, . . . , L;
3: assume that radar codes are arbitrarily chosen;
4: while the convergence is not reached do
5: for j = 1 to L do
6: update the jth radar code according to

cj =arg max
(x,y)∈I(·,j)

−y†
⎛⎝I +

L∑
h=1,h�=j

N−1∑
k=−N+1

G(h, j)Jkchc†hJ
T
k

+G(j, j)
N−1∑

k=−N+1,k �=0
Jkxx†JTk

⎞⎠ y

−
L∑

h=1,h�=j

N−1∑
k=−N+1

G(j, h)dh(ch)†JTk xx
†Jkdh(ch).

(26)

7: end for
8: end while

3.5 Non-negligible Doppler shift
So far, we have implicitly assumed that the received sig-
nal is affected by either null or negligible Doppler shift.
However, it is well known that if the targets illuminated
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Table 1 Classes of phase-codes φ

Parameters φl Parameters φl

r = 15 Golomb-Zhang – Palindronic P4

– MPS (Minimum Peak Sidelobe) r = 3 Chu

– Zadoff-Chu r = 13 Golomb-Zhang

r = 5, q = 10 Zadoff r = 17 Chu

r = 27, q = 8 Zadoff r = 3, q = 16 Zadoff

– P3 r = 21, q = 0 Zadoff

r = 3 Golomb-Zhang – –

Classes of phase-codes φ; length N=16; {r,q} design parameters [35].

by the network of radars rapidly change their position
with unknown velocity and directions, then it is neces-
sary to account for the effect (no more negligible) of the
Doppler frequency shifts. To this end, we follow the same
approach as in [27], extending it to the considered non-
cooperative scenario. Specifically, let us assume that ωl =[
ω−N+1,l, . . . ,ωN−1,l

]
is the Doppler shifts vector for the

lth radar, with l = 1, . . . , L. Moreover, let

cl(ωk,l) = [
cl(1)ejωk,l . . . cl(N)ejNωk,l

]T (27)

be the related Doppler shifted code sequence. The data
model (1) can be thus modified as follows:

rl = α0,lcl(ω0,l) +
N−1∑

k=−N+1,k �=0
αk,lJkcl(ωk,l)

+
L∑

h=1,h�=l

N−1∑
k=−N+1

αk,hJkch(ωk,h) + nl,

(28)

wherein ω0,l is the Doppler shift associated to the range
bin of interest. Now, should such a Doppler shift be known
at the receiver, the following detection rule should be
considered:

|d†
l (cl(ω0,l))rl|2

H1
>
<
H0

ηl, (29)

with dl(cl(ω0,l)) the N-dimensional detection vector,
function of the (known) Doppler shifted code cl(ω0,l).
Given Equation (29), the SINR equation (4) may easily be
reformulated as follows:

In practical radar applications, however, the target
Doppler shift is usually unknown, and the available knowl-
edge is limited to the range [ω0,ω1] of variability of
the Doppler frequencies. The customary approach thus
relies on a quantization of the said interval with a preas-
signed resolution (�ω) (a typical value of (�ω) isπ/(10N)

[27]) and, at the reception side, a bank of detection vec-
tors, each one keyed to one of the quantized Doppler
frequencies, is considered, followed by a maximum selec-
tor. Otherwise stated, denoting by ω(1),ω(2), . . . ,ω(P)

the P sample frequencies obtained by sampling with step
(�ω) the interval [ω0,ω1], the detection rule is actually
expressed as

max
i∈{1,2,...,P} |d

†
l (cl(ω(i)))rl|2

H1
>
<
H0

ηl. (31)

Now, in order to come up with a code update procedure,
we should still focus on the minimization of the denomi-
nator of Equation (30); note however that such a denom-
inator depends on the Doppler shifts {ωk,l}, with l =
1, . . . , L and k = −N+1, . . . ,N−1. In order to circumvent
this drawback, a suitable technique is to consider the sta-
tistical expectation of the denominator of (30), averaged
with respect to the set of Doppler shifts. Since in practice
the detection vectors are considered only for a finite num-
ber of Doppler frequencies, in performing the average we
model the detection vector as taking value in the discrete
set {d†

l (cl(ω(1))),d†
l (cl(ω(2))), . . . ,d†

l (cl(ω(P)))}, while
the frequencies inside the curly brackets in the denom-
inator of Equation (30) are assumed to be continuous
and uniform random variates taking value in the set

γl = G(l, l)|d†
l (cl(ω0,l))cl(ω0,l)|2

d†
l (cl(ω0,l))

⎛⎜⎜⎜⎜⎜⎜⎝
I +

L∑
h=1,h�=l

N−1∑
k=−N+1

G(h, l)Jkch(ωk,h)c†h(ωk,h)JTk +

+ G(l, l)
N−1∑

k=−N+1,k �=0
Jkcl(ωk,l)c†l (ωk,l)JTk

⎞⎟⎟⎟⎟⎟⎟⎠dl(cl(ω0,l))

. (30)
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[ω0,ω1]. For the case in which a matched filter is used
at the receiver, the presence of non-negligible Doppler
shifts thus leads to consider, in place of Equation (7),the
following potential function:

T(c1, . . . , cL)=−
L∑

l=1

P∑
i=1

{
c†l (ω(i))

(
I +

L∑
h=1,h�=l

N−1∑
k=−N+1

G(h, l)Jkch(ωk,h)c†h(ωk,h)JTk

+ G(l, l)
N−1∑

k=−N+1,k �=0
Jkcl(ωk,l)c†l (ωk,l)JTk

)
cl(ω(i))

}
,

(32)
wherein the overline (·) denotes statistical expec-
tation with respect to the Doppler shifts; note
that, upon letting F l = cl(ωk,l)c†l (ωk,l), it is eas-
ily shown that the (n,m)th entry of F l, say F l(n,m),
is expressed as

F l(n,m) = cl(n)c†l (m)

ω1 − ω0

∫ ω1

ω0
ej(n−m)ωdω =⎧⎪⎨⎪⎩

|cl(n)|2, n = m,

cl(n)c†l (m)
[
ej(n−m)ω1 − ej(n−m)ω0

]
j(n − m)[ω1 − ω0]

, n �= m.

(33)

Now, given the potential function (32), a non-
cooperative game can be obtained, similar to the case of
negligible Doppler shift, by isolating the terms depending
on a given code, say the jth. The utility function for the jth
radar is thus written as

uj = −
P∑
i=1

⎧⎨⎩c†j (ω(i))

⎛⎝I +
L∑

h=1,h�=j

N−1∑
k=−N+1

G(h, j)JkFhJTk

+G(j, j) +
N−1∑

k=−N+1,k �=0
JkF j(cj)JTk

⎞⎠ cj(ω(i))

⎫⎬⎭

−
L∑

l=1,l �=j

P∑
i=1

⎧⎨⎩c†l (ω(i))

⎛⎝ N−1∑
k=−N+1

G(j, l)JkF j(cj)JTk

⎞⎠cl(ω(i))

⎫⎬⎭ .

(34)

In writing the above equation, we have made explicit the
functional dependence of the matrix F j on the code cj,
which has to properly be accounted for in the utility max-
imization. Summing up, for non-negligible Doppler shifts
and matched filter reception, each radar should update
its code to maximize the utility in (34), and the detection
rule to be considered should be the one reported in
Equation (31).
Similar considerations can be done for the cases in

which a minimum ISL or PSL filters are used. For the
sake of brevity, however, we avoid providing more details

on this, since it would not add conceptual value to this
study.

4 Performance analysis
In this section, we assess the performance of the pro-
posed non-cooperative waveform design techniques; to
this end, we test the outlined algorithms in two dis-
tinct operational scenarios, where the difference is mainly
in the number of involved radars, as well as their
receive antenna pattern characterization. Precisely, we
consider the following two games Gi = {Li,�l, {ul}},
for i = {1, 2} where

• L1 = {1, 2, 3, 4} is the set of 4 players (i.e., the set of
four radars actually transmitting), while
L2 = {1, 2, 3, 4, 5, 6} is the set of six players (i.e., the
set of six radars actually transmitting);

• �l is a set of cardinalityM = 653 which contains the
sequences of length N = 16 available to the l th
player. The same set is considered for each radar, i.e.,
�l is actually independent of the index l (and indeed
we will be denoting it by � in the following). The full
details on the sequences of the set � are reported in
Appendix.

• {ul} represents the utility function for the l th player,
as defined in the discussed Algorithms 1, 2, and 3, for
l = 1, . . . , 4 or l = 1, . . . , 6, respectively for the first
and the second games;

• G is the Li × Li matrix describing the antenna gain
pattern of the Li players, for i = {1, 2}. We consider a
general scenario wherein each radar may have its
own antenna beam pattern, but we normalize,
without loss of generality, to 0 dB the maximum gain
of each antenna. Indeed, we consider the following
pattern models for the games G1 and G2:

GG1dB =

⎡⎢⎢⎣
0 −30 −19 −20

−20 0 −19 −20
−20 −30 0 −20
−20 −30 −19 0

⎤⎥⎥⎦ ,

GG2dB =

⎡⎢⎢⎢⎢⎢⎢⎣

0 −30 −19 −20 −15 −23
−20 0 −19 −20 −15 −23
−20 −30 0 −20 −15 −23
−20 −30 −19 0 −15 −23
−20 −30 −19 −20 0 −23
−20 −30 −19 −20 −15 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

respectively.d

With reference to the simulation setup of Figures 2a, 3a,
and 4a, we choose four transmit sequences from � and
consider them as the initial strategies for G1. Moreover,
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Figure 2 SINR versus the number of iterations, for a set of (a) L = 4 players, Algorithm 1, (b) L = 6 players, Algorithm 1.

for the corresponding figures of G2 (Figures 2b, 3b, and
4b), we add two more codes, still selected from �, to
the four aforementioned initial strategies. The analysis
is conducted in terms of SINR γl which each player is
able to obtain through the non-cooperative code design,
focusing on the performance provided by the three algo-
rithms. The average SINR among the transmitting radars
at the equilibrium, for all the players, as their number
increases, is also plotted. The results emphasize how, as
the number of interferers increases, the games actually
are able to reduce the consequential loss of performances
with respect to the case in which no code optimization
procedure is performed.
In Figure 2a,b, we plot the SINR of each player versus

the number of iterations required by Algorithm 1 to con-
verge to an NE, for the games G1 and G2, respectively;
these plots show the impact of the chosen code (strat-
egy) on the SINR of the set of players, as they pick up
different codes from the set �. Note that the starting

codes (strategies) do not provide satisfactory values of γl
for all the set of players; indeed, in both the games the
majority of the sensors experiment quite a low level of
SINR, with the exception of the first and the last play-
ers. The curves highlight that, as the players change their
transmitting codes according to Algorithm 1, the SINR
of each player converges to a fixed value: after a certain
amount of iterations, the iterative algorithm thus reaches
a fixed code (strategy). In particular, both the sets of
players share an average increase in their respective per-
formances, quantifiable in about 2.10 dB for the first game
and 1.51 dB for the second game, and no particular loss is
observed due to the growth of the number of transmitting
radars. Moreover, convergence is reached after a few
iterations.
In Figure 3a,b, the same analysis is conducted for

Algorithm 2. Again, the starting strategy seems to be quite
disadvantageous for both the sets of active radars, and in
particular for the second game (specifically, we experience
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Figure 3 SINR versus the number of iterations, for a set of (a) L = 4 players, (b) L = 6 players, Algorithm 2. (c) Average ISL versus the
number of active players, Algorithm 2. ISL at the NE points (solid-circle red line); ISL with a random choice (solid-cross blue line).
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Figure 4 SINR versus the number of iterations, for a set of L = 4 (a) and L = 6 (b) players, Algorithm 3. (c) Average PSL versus the number of
active players, Algorithm 3. PSL at the NE points (solid-circle red line); PSL with a random choice (solid-cross blue line).
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unpleasant performances in the cases of radars 1 and
4, with reference to the first game, and radars 3–4 for
the second game). Resorting to the coding procedure of
Algorithm 2, however, all the radars increase the respec-
tive performances; in particular, we observe an average
increase, in the achieved SINR values, of 1.56 dB for game
G1 and 2.66 dB for game G2. The analysis also shows a gain
in terms of ISL values, due to the game approach. Specif-
ically, in Figure 3c, we provide a comparison between
the average ISL, with respect to the increasing num-
ber of active radars (for the case at hand, we assume a
maximum of ten radars), obtained with the Algorithm
2 and the no-game strategy, respectively. In the setup
of this simulation, random initial strategies have been
selected for the radars and the results have been aver-
aged over 25 independent trials. The plots highlight that
the no-game approach is very sensitive to the number of
sensors composing the network; in fact increasing val-
ues of ISL can be observed when the number of active
radars increases. On the contrary, the updating proce-
dure of Algorithm 2 is capable of ensuring a quite flat ISL
behavior.
In Figure 4a,b, we focus on the performance of

Algorithm 3, and similar comments as for the previous
two algorithms can be made. The average increase, in
terms of SINR, can be quantified in 3.60 dB for the first
game, and 1.19 dB for the second one.
In Figure 4c, we consider the average PSL versus the

number of active radars, for both the no-game approach

and the non-cooperative game technique of Algorithm
3. The same simulation conditions as in Figure 3c have
been considered concerning the initial choice. Notice that
the average PSL for the no-game approach appears quite
unpleasant, as worse and worse PSL values are obtained
increasing the number of active sensors. On the contrary,
Algorithm 3 seems quite robust in terms of PSL with
respect to the number of active radars.
Finally, in Figure 5, we analyze the average SINR among

all the radars, at the NE, versus the number of active
radars in the network, with respect to Algorithms 1,
2, and 3; in particular, for the latter two algorithms,
the curves refer to the SINR values for the NE points
of Figures 3c and 4c (as such random initial strategies
have been considered for the radars operate according
to a no-game approach and the results are averaged
over 25 independent trials); for comparison purposes,
we also report the average SINR obtained when the radars
operate in a no-game scenario. The plots confirm that, at
the Nash equilibria, the radar network actually may enjoy
an increase in terms of SINR, with respect to the case
in which no-game is allowed. Moreover, as expected, the
performance gracefully degrades as the number of active
radars increases. This is a pretty natural behavior, since
the larger the number of radars the larger the power of the
interfering signals.
Overall, the results of this section confirm the effective-

ness of the proposed algorithms, as well as that all the
considered games converge to an equilibrium.
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Figure 5 Average SINR versus the number of active radars. Algorithm 1: SINR at the NE points (solid-circle blue line); SINR with a random choice
(dotted-cross blue line). Algorithm 2: SINR at the NE points (solid-star magenta line); SINR with a random choice (dotted-point magenta line).
Algorithm 3: SINR at the NE points (solid-diamond green line); SINR with a random choice (dotted-plus green line).
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5 Conclusion
In this article, we have considered a network of radars
sharing the same frequency band, and tuning their trans-
mitted waveforms in order to improve their SINR.
We have assumed that each radar can select the wave-

form to be transmitted from a finite set. Hence, we have
proposed code updating strategies according to some
non-cooperative games, based on the potential games
framework, to account for the cases of matched filter
detection, minimum ISL and minimum PSL detection.
Finally, we have discussed the situation where a non-
negligible Doppler shift exists in the received data. In all
the considered scenarios, the existence of NE is analyti-
cally proven.
Numerical results have confirmed that the proposed

games are effective in improving the system performance,
in the sense that at the NE each radar may enjoy an
SINR that is larger than that corresponding to the case
of a random choice of the coded waveform to transmit.
Moreover, it has also been verified that there is a graceful
performance degradation as the number of active radars
increases.
Possible future research tracks might account for the

possibility of some form of cooperation between the
radars of the network as well as the extension of the proce-
dure to the case where more advanced decision strategies
(in place of the linear filter followed by an envelope detec-
tor) are used. By doing so, we can also confer to the system
additional desired robust features such as for instance the
constant false-alarm rate property.

Appendix
Code design procedure
We choose our N-dimensional radar codes so that ||c|| =
1, c ∈ C

N ; otherwise stated, we fill the set � with
sequences lying on the unit-norm sphere. To this end, we
consider both standard codes available in open literature
and ad-hoc coding procedure.
As to the former class, we refer to some well-

known phase-coding techniques [35] to design the first
13 possible transmit sequences of the set �. Specifi-
cally, we assume that cl = 1√

N e
√−1φl , where φl =

[φl(1), . . . ,φl(N)]T is the phase sequence of the lth code,

and l = 1, . . . , 13. In Table 1, we summarize the classes
of phase codes herein used, as well as the values of the
parameters applied in the respective design procedures.e
In addition, to properly test our non-cooperative pro-

cedures, we increase the number of possible strategies
enriching with other suitable codes the set �. We resort
to the following construction procedure. First of all, we
force the coefficients cl(i), i = 1, . . . ,N , to belong to
a well-defined finite set �∗ with cardinality M. Then,
we obtain the transmit sequences picking up randomly
the codes from the set �N∗ with cardinality MN . Finally,
we normalize the selected sequences so as to get unit-
norm codes. For the specific case at hand, we set cl(i) �
{ai + √−1bi}/

√
2N for l = 14, . . . , 113, with {ai, bi} ∈

{−1,+1}2. With such a choice we can produce up to 22N
possible codes. Thus, we randomly choose 100 codes from
such a set, and use them in our simulations.
The aforementioned construction procedure does not

provide sequences very attractive from the radar point
of view; indeed, it can lead to signals with signifi-
cant modulus variations, poor range resolution, high
peak sidelobe levels, and more in general, to signals
with an undesired ambiguity function behavior. These
drawbacks can be circumvented imposing a control on
the aforementioned performance metrics at the code
design stage. Precisely, we can start from a good (in
the sense of the ambiguity function properties) code
c0 and devise some additional sequences which inherit
some attractive properties of c0. This goal can be
achieved forcing the new sequences to lie in a suitable
norm-ball centered around c0. In other words, we con-
sider sequences which are solutions to the feasibility
problem

{ ||c − c0||2 ≤ ε

||c||2 = 1
, (35)

where the parameter ε ∈ [0, 2] quantifies the desired
similarity level; the smaller ε, the higher the degree of
similarity among the ambiguity functions of the designed
radar code and the reference sequence.

Table 2 Set of similarity codes

Parameters φ0 Parameters φ0

r = 3 Chu – Px

– Frank r = 17 Golomb-Zhang

– MPS (Minimum Peak Sidelobe) r = 6, q = 6 Zadoff

– P4 – Polyphase Barker

– P1 – –

Set of similarity codes. c0 = 1√
N
ejφ0 : reference code; length N=16; {r,q} design parameters [35].
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Solutions to problem (35) can be found according to the
following algorithm.

1. Denote by a an N-dimensional complex vector
whose elements are continuous random variables.

2. Construct the unit-norm vector
c0⊥ = (I − c0c0†)a/‖(I − c0c0†)a‖.

3. Define the sequence ct = √
tc0 + √

1 − tc0⊥, where
the parameter t complies with t ≥ (1 − ε/2)2 = δε

and t ≤ 1.

Exploiting the above procedure, we have updated the
set �, so as to include additional 540 transmit sequences.
In Table 2, we show the set of reference codes; for
each sequence, we solve problem (35) K = 15 times
(with 15 different feasible values of t), thus devising 9K
possible codes. Finally, the procedure is implemented
for δε ∈ {0.41, 0.63, 0.75, 0.9}.

Endnotes
aActually, the SINR definition should include also the

coefficients α·,·; however, no prior knowledge of these
coefficients may be reasonably assumed, and we are thus
omitting them in the SINR definition reported in (4).
bWe are considering a bi-dimensional scenario where

G(θ) is the azimuth beam pattern. However, the exten-
sion to a three-dimensional situation accounting for both
azimuth and elevation is quite easy.
cWith |�j| we are denoting the cardinality of the set �j,

whereas with cij we are indicating the ith element of �j.
dRecall that in the above gain matrices the (m, n)th ele-

ment is a coefficient weighting the interference from the
mth radar on the nth receiver.
eThe reader might refer to [35], which is an exhaustive

compendium of the classic radar coding techniques.
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