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Abstract

In this article, a novel bicepstrum-based approach is suggested for ground moving radar target classification.
Distinctive classification features were extracted from short-time backscattering bispectrum estimates of the
micro-Doppler signature. Real radar data were obtained using surveillance Doppler microwave radar operating at

34 GHz. Classifier performance was studied in detail using the Gaussian Mixture Mode and Maximum Likelihood
decision making rule, and the results were verified on a multilayer perceptron and Support Vector Machine.
Experimental real radar measurements demonstrated that it is quite feasible to discern three classes of humans
(single, two and three persons) walking in a vegetation cluttered environment using proposed bicepstrum-based
classification features. Sophisticated bispectrum-based signal processing provides the extraction of new classification
features in the form of phase relationships in the radar data. It provides a novel insight into moving radar target
classification compared to the commonly used energy-based strategy.

1 Introduction

In recent vyears, radar analysis of human motion
using measurements of evolutionary Doppler frequency
variations has been under intensive study [1-9]. Recog-
nition, identification and classification of persons mov-
ing in a vegetation cluttered environment using ground
surveillance Doppler radar systems have a number of
applications including security, military intelligence and
battlefield purposes. One of the particular and effective
discriminative features for the classification of moving
persons is the micro-Doppler (m-D) contributions con-
tained in the backscattering radar signature [4,5].

The m-D signature of a target is a time-varying
frequency modulation contribution arising in radar
backscattering and caused by the movement of separate
parts of the target. Joint time-frequency (TF) analysis is
the basis of most of the existing methods used to extract
m-D features [1-3]. The time-varying trajectories of the
different instantaneous m-D frequencies mapped into the
TF domain are robust discriminative features belonging
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to a person or a group. However, it should be stressed
that the problem of recognizing single, two, three or more
moving persons using their m-D radar signatures is one of
the most difficult problems to solve.

Recently, approaches exploiting the m-D radar sig-
natures for moving person classification have been
reported in the literature [2,4,5,8]. Most approaches
deal with quadratic (spectrogram-based) TF analysis of
non-stationary and multi-component backscattered radar
signals. According to these approaches, discriminative
features are extracted from the energy-based TF dis-
tributions, i.e., estimates of backscattered signal energy
distribution per unit time per unit frequency. Unfortu-
nately, phase and frequency relationships between certain
Doppler spectral components in radar returns that con-
tain important information about phase- and frequency-
coupled m-D contributions are irretrievable lost in the
energy-based TF radar signatures. Therefore, a common
drawback of the energy-based TF analysis is the impos-
sibility of retrieving additional particular information
concerning frequency- and phase-coupling of instanta-
neous frequencies contained in the radar backscattering.
Phase coupling contained in radar backscattering carries
important information about individual target properties.

© 2013 Molchanov et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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Extraction of the latter phase relationships from radar
backscattering could provide additional insight into radar
moving target classification and improve the classification
probability rate compared with commonly used energy-
based classification features such as power spectrum and
cepstrum features.

It has been shown in our previous articles [6,7,10,11]
that sophisticated bispectrum-based signal processing
permits the extraction and use for radar target recog-
nition of the discrimination and classification of phase
coupled harmonics in raw radar backscattering contam-
inated by additive white Gaussian noise (AWGN) and
vegetation clutter. The distinctive benefits of the
bispectrum-based radar signature compared to a common
energy-based spectrogram can be characterized as fol-
lows. First, the possibility of retrieving the phase coupled
contribution which common energy-based techniques
are simply unable to provide. Second, the bispectrum
tends to zero for a stationary zero-mean AWGN, which
means that there are no phase coupled frequencies in a
linear Gaussian process. Therefore, bispectrum-based
signal processing provides suppression of the AWGN
contribution in the TF radar signature. As a result, the
powerful, i.e., the phase coupled contributions unam-
biguously belonging to a moving target are emphasized,
and the weak, i.e., the phase independent spectral contri-
butions belonging to vegetation clutter and AWGN, are
diminished. Therefore, the bispectrum-based approach
allows improved signal-to-noise ratio (SNR) in collected
radar signatures and, hence, provides robustness in its
discriminative features.

In this article, novel discriminative features computed
in the form of bicepstral coefficients extracted by using
bispectral estimation from radar echo-signals are sug-
gested and studied. The performance of the suggested
bicepstrum-based classifier is examined using experimen-
tal radar data processing for solving one of the most
important and difficult problems in radar automatic target
recognition (ATR) systems, which deals with discrimi-
nation and classification of a single walking person and
group of walking persons in a vegetation clutter and
AWGN environment.

The objective of this article is a comparative study of
ATR system performances evaluated by using the com-
mon spectrogram-based and suggested novel bicepstrum-
based approaches. Classification features based on the
bispectrum estimate have been proposed earlier [11,12].
In this article, we extend the comparative analysis of the
proposed features to estimate their advantages and disad-
vantages. In addition, a multilayer perceptron and support
vector machine are used as additional classifiers to com-
pare the results of the different classification schemes.

The article is organized as follows. First, in Section 2
the theoretical background of the solution is considered
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and new feature extraction techniques are proposed. Next,
in Section 3 the description of experimental data for
classification is given. Then, the proposed feature extrac-
tion techniques are evaluated and compared in Section 4.
Finally, conclusions are provided.

2 Theoretical background

The idea for the suggested approach deals with the well-
known properties of the bispectral estimation method
described in detail in [13]. Bispectral signal processing
allows the assessment of the magnitude and phase of
the correlation relationships between different harmon-
ics. When a phase relationship exists, the phase-coupled
harmonics contribute considerably to the bispectrum esti-
mate in the form of corresponding peaks arising in the
bifrequency plane. On the other hand, the bispectrum is
identically zero for a stationary zero-mean AWGN. There-
fore, unlike the energy spectrum, the bimagnitude, i.e.,
magnitude bispectrum estimate, contains the peaks in the
bifrequency domain caused only by coherent contribu-
tions in the signal under study.

We have demonstrated in our previous study [6,7] that
the swinging legs and arms of a walking person are not
independent mechanical sources provoking time-varying
instantaneous frequencies (IF) in the m-D spectrum con-
tent, but are related to each other via the “common basis”
or “common carrier” which is the translating and swaying
human torso.

The evident presence of phase-coupled harmonics
retrieved from real radar measurements performed
by a ground surveillance microwave radar has been
shown in [6]. It has also been demonstrated [6] that
multi-component and chirp-like returns collected by
surveillance radar contain the contributions of a num-
ber of correlated scattering centers spatially distributed
on the surface of the moving human body. Extrac-
tion of these bicoherent dependences and studying
their evolutionary behavior enables the acquisition of
a new class of information features for solving the
tasks of radar target recognition, identification and
classification.

The Doppler frequency shift Afp observed in a radar
signal backscattered by a moving person is equal to Afp =
2v/X, where v is the velocity of target and A is the radar
emitted wavelength. For a person moving with normal
speed of motion equal to 3—-5 km/h, the Doppler fre-
quency shift caused by translating the locomotion of the
human torso, is equal to Afp = 190 — 316 Hz. The lat-
ter frequencies are within the audio signal band. Though
swinging human arms provoke larger Doppler frequency
shift values, they are also within the audio frequency
band. Therefore, the received Doppler signal caused by
backscattering from a moving person can be related to
an audio signal. From this point of view, it is reasonable
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to consider two bispectrum-based algorithms that find
applications in the analysis and recognition of human
speech [14,15].

The main concept of radar data processing implemented
in this article is shown in Figure 1, where 1,...,M are
the M input segments. In this manner, an entire non-
stationary received signal s can be divided onto a series of
quasi stationary segments x1, . .., ¥ using a sliding win-
dow function ¥. The segment x,, is assessed as x,,(k) =
v (k) ~s((m —1)L+ k), where L is the length of the window
function expressed in the number of temporal samples.
The features are then extracted and conditional posterior
probabilities are computed for those segments.

Each segment is assumed to be independent from the
others. Therefore, the conditional probabilities for each
class of the entire sequence are equal to the product of the
conditional posterior probabilities of each segment. The
decision is made using the maximum likelihood rule.

The integrated bispectrum (IB) proposed in [14] is
defined as

Lf
IB(f) = Z f, u), (1)

where f = 1,...,K — 1 is the frequency index; B(f,u) =
X(HX@)X*(f + u — 1) is the signal bispectrum; X is the
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Fourier transform of the signal x; L is the width of the win-
dow function; K is the maximum frequency index; and :
denotes the complex conjugation.

Another bispectrum-based algorithm designed for
speech recognition purposes is described in [15]. This
algorithm, referred to as the DFB, deals with the averag-
ing of the bimagnitude samples in the bifrequency domain
along the fixed frequency direction f3 such as fi + f5 = f3:

K

=BG ) @
=1

DFB(f) =

A bicepstrum is the result of taking the inverse Fourier
transform of the logarithm of the bispectrum. In this arti-
cle, the following bicepstral coefficients denoted below
by CIB(f) and CDFB(f) are computed using the bispec-
tral data IB (1) and DFB (2). These bicepstral values are
exploited as the discriminative classification features as:

K
CIB(f) = Z log(|IB(j)| e /X |, 3)
1 K
CDFB(f) = EZ1og(|DFB(j)|)ei2”ﬁ/’< ) (4)
j=1

Ps=Pa(X|Ha) Pa(Xe|Ha) ... *

are then multiplied and the maximum likelihood rule is applied.
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Figure 1 Structure scheme of a decision making concept applied in this study. A non-stationary signal can be divided into a series of quasi
stationary segments. The features are extracted and conditional posterior probabilities are computed for those segments. Conditional probabilities
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To evaluate and compare correctly the performance
of the suggested bicepstrum-based classifier with the
common power cepstrum-based classifier, the following
power cepstrum coefficients C(f) are considered and
computed in our survey as:

1 K ) i 2
C(f)z‘K;bguxwlz)eﬂ”ﬁ“ . (5)

A human operator can distinguish different targets
listening to the baseband version of the received con-
tinuous wave radar signal [4,16]. The cepstrum coeffi-
cients (5) are commonly used as features for speech and
audio recognition [17,18]. Taking into account the sim-
ilarity in the signals used for speech recognition and
ground moving target classification [16], the selection of
cepstrum coefficients for the comparison seems reason-
able. Moreover, the cepstrum coefficients as a feature for
ground target classification are of great interest to other
researchers [4], and comparison with their research is
sensible.

From the various existing approaches to radar target
recognition and classification, the maximum likelihood
(ML) rule and the Gaussian mixture model (GMM) are
selected to evaluate the bispectrum-based classifier per-
formance. In our opinion, the GMM is a good strategy for
the unknown probability density function (pdf) approxi-
mation [19].

In the general case, the GMM [19] approximates the
probability density function of a feature vector y under
hypothesis H as:

N
PGIH) = > ru 0165, ©)

n=1

where N is the number of mixture components called the
GMM order; r, is the mixture weight of the nth compo-
nent, such that ) r, = 1; 9131 ) is the parameter referred to
the distribution of component # under the class hypoth-
esis H; and ¢(x|91(;' )) is the probability distribution of x
parameterized by Gg ),

The probability distribution of each component given in

(6) can be written as

D

¢ 05 = Bt exp(—5(x — up)" -
Ty 12
-1
(0)) " = ) ?)

where D is the dimension of the feature vector; 1"]({") is the
covariance matrix of component # for the hypothesis H;
and ,ug’) is the vector of the mean values of component
n for the hypothesis H. In this article, a full covariance

matrix is used [20].
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The posterior class conditional probability for the entire
received signal s is the product of the posterior class
conditional probabilities p(x,,|w):

M
pisiw) = [ pGomlw), (8)

m=1

where w is the class hypothesis.

The decision-making rule exploited in the ATR sys-
tem using the maximum likelihood (ML) method can be
defined as follows:

W= arg wrznlapr(slw), 9)

where p(s|w) is a likelihood function conforming to the
signal s referred to the classification hypothesis w.

3 Discussion of experimental results

Real radar data were collected by experimental mea-
surement performed with a ground surveillance Doppler
homodyne, monostatic, polarimetric and continuous
wave radar.

The radar backscattering data relevant to three pedes-
trian classes were accumulated and recorded. The follow-
ing scenarios were considered both in vegetation clutter
and open space environments. (1) Single moving per-
son: Person walking towards or away from the radar at
a velocity of 3—5 km/h. (2) Group of moving persons:
Two persons walking towards or away from the radar at a
velocity of 3—5 km/h. (3) Group of moving persons: Three
persons walking towards or away from the radar at a nor-
mal velocity of 3-5 km/h and either synchronously or
asynchronously.

The ground surveillance radar system is shown in
Figure 2. The parameters of the radar are: wavelength—8.8
mm; emitted radar microwave power—15 mW; receiv-
ing/transmitting antenna beam width in both E and H
planes—60°; level of side lobes in the horn antenna
pattern—24 dB; cross-polarization level lower that—
30 dB; receiver noise figure—20.2 dB; two-channel 16 bit
ADC; and a sampling rate in the digital records—8 KHz.
The averaged signal-to-noise ratio (SNR) values are equal
to 4 dB, 6 dB, and 11 dB for single, two and three moving
persons, respectively.

The total length of all recorded wave-files is more than
23 minutes. The measurements were performed during
the autumn period. Despite the radar being able to operate
in both vertical and horizontal polarization modes, only
the horizontal mode was considered for the classification.

Collection of the data for the dataset was performed
as follows. The initial position of a target was fixed at a
few meters from the radar. The person started to walk
away from the radar for approximately 40 s, stopped for
2 s, turned around and came back, stopped for about 2 s
and repeated the motion several times. Each considered
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Figure 2 Ground surveillance radar system used for experimental data collection. Wavelength—8.8 mm, emitted radar power—15 mW;
receiving/transmitting antenna beam width in both E and H planes—60°; level of side lobes in horn antenna pattern—24 dB; cross-polarization
level <—30 dB; receiver noise figure—20.2 dB; two-channel 16 bit ADC; and sampling rate in digital records—8 KHz.

class contained six sets of experiments performed with a
person walking away from the radar and five sets of exper-
iments with a person walking towards the radar. The same
persons have participated in all experiments.

Examples of time-frequency radar signatures of a single
person moving in vegetation clutter are shown in Figure 3.
Three types of TF distributions are shown: a spectrogram
computed in the form of the amplitude of the Short Time
Fourier Transform (STFT), and bispectrum-based radar
signatures computed by IB (1) and DFB (2). The time-
frequency distributions are computed with a Hamming
window of length L = 64 ms, without overlap.

It can be seen from Figure 3 that AWGN is suppressed
better in the bicepstrum-based radar signatures plotted
in both Figure 3b,c compared to the spectrogram repre-
sented in Figure 3a.

It can be seen from the Figure 3 that the analyzed signal
does not contain frequencies higher than 700 Hz, there-
fore, a sampling frequency for the ADC equal to 8 KHz is
a reasonable choice.

Dependencies between the values conforming to the
first and fourth bicepstrum coefficients given in CDFB (4)
and their GMM approximation represented by a 3-order
model at a level of 3o are illustrated in Figure 4. As can

Doppler shift, Hz
Doppler shift, Hz

Time, s

iu, e ol
“;:"-\ilirn*"*wf '::?l’;f“:'f Fag

Time, s

Doppler shift, Hz

Time, s

Figure 3 Time-frequency radar signatures measured in vegetation clutter and represented by: (a) spectrogram; (b) bicepstrum-based
features (1); (c) bicepstrum-based features (2). The spectrogram is computed in the form of the amplitude of the short time Fourier transform
(STFT), and the bicepstrum-based features are computed using IB (1) and DFB (2).
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Figure 4 Bispectrum based features CDFB (4) belonging to one (a), two (b) and three (c) walking persons and their approximation (d)
using the 3-order GMM at the level of 3 o. The regions occupied by information features corresponding to different classes overlap; therefore, a

be seen from Figure 4, the regions occupied by informa-
tion features corresponding to different classes overlap.
Therefore, a feature space with a higher dimensionality is
necessary to discriminate the classes.

Histograms illustrating the distribution laws for the
second cepstral and bicepstral coefficients computed by
using (5) and (4), respectively, are represented in Figure 5.
The histograms show that it is difficult to discern a sin-
gle walking person from two or three persons using just
this one feature. Both histograms in Figure 5a,b referred
to a single walking person but contain the overlapping
domains corresponding to the histograms obtained for
both two and three persons. However, classes belonging
to two and three walking persons are more separated in
the histograms plotted using bicepstral coefficients (4).

Classifier performance can be achieved using the fea-
tures with lower inter-class similarity, i.e., when the same
classifier but different feature vectors are used. To esti-
mate inter-class similarity, the Euclidean metric has been

computed for the sampled cross-correlation function. The
similarity measure (SM) is evaluated as follows:

1 J
SM() = 22> D IIXCF{Yip Vi, (10)

i=1 k=1,22,3
1=2,3,1
where j is the number of used cepstral or bicepstral
coefficients; XCF is the cross-correlation function; &,/
are the indexes belonging to three classes; i is the cep-
stral/bicepstral coefficient number; and Y} ; is the set of
cepstral/bicepstral coefficients number i belonging to the
class k.

Dependencies of SM on the number of first cep-
stral/bicepstral coefficients are illustrated in Figure 6. One
can see the benefit of using the bispectrum-based strategy
(see the straight curve in Figure 6) compared to the power
spectrum-based technique (dashed curve in Figure 6).
This benefit can be assessed by comparing the values
belonging to the straight and dashed curves in Figure 6.
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Figure 5 Histograms of the second bicepstrum/cepstrum coefficients related to the single (blue), two (red) and three (green) walking
persons and computed using: (a) (4) and (b) (5). The histograms show that it is difficult to discern a single walking person from two or three
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It is clearly seen that the correlation values are smaller
for the bispectrum-based feature extraction technique,
which means the latter technique possesses better orthog-
onality of its features. Therefore, a better classifier per-
formance should be achieved for the bispectrum-based
technique.

4 Analysis of classifier performance

4.1 Data separation

Commonly [3,4], to evaluate classifier performance, the
classification dataset is divided into two subsets of the
same size. One subset is used as a training dataset and
the other as a testing dataset. The disadvantage of such an
approach is that the classification probability rates might
vary if the small original dataset is split in a different man-
ner. To obtain more accurate and reliable classification
results, the K = 11 cross-validation technique is applied.
The initial data under analysis are split into K subsets of

ShA criterium

3 5 7 9 1" 13 15
MNumber of cepstrum coefficients

15
1

Figure 6 Inter-class similarity computed for the feature vector C
(5) (dashed curve) and CIB (3) (straight curve). The correlation
values are smaller for the bispectrum-based feature extraction
technique, which means the latter technique possesses better
orthogonality in its the features.

the same length, and K — 1 subsets are used as a training
dataset, and the remaining one as a testing dataset. The
cross-validation process is repeated K — 1 times (K — 1
folds) with each of the K subsets used as a testing dataset.
The K results from the folds are averaged to evaluate a
single estimation. The most important benefit of the K-
fold cross-validation strategy is that all measured data are
distributed somewhat uniformly within both training and
testing operations.

Eleven diverse experiments were performed for each of
three radar target classes and the 11-fold cross-validation
technique was exploited for target classification. This
implies that the features have been extracted from the
measured radar data ten times for the training dataset and
once for the testing dataset during each experiment, i.e.,
0.91 part of the data collected is used as a training dataset,
and the remaining 0.09 part as the testing (validation)
dataset for each fold.

4.2 Classification scheme

A scheme for the proposed classifier is shown in Figure 7.
The preprocessing block partitions the input signal into
a series of frames of L samples length. The spectrum
estimation block computes the spectrum of each frame
using a Hamming window. The spectrum contains the fre-
quencies higher than can be provoked by human gait, i.e.,
those frequencies that are higher than 900 Hz. Therefore,
in the next block denoted as “Spectrum processing” they
are removed by an ideal low pass filter. It can be seen from
Figure 3 that the maximum frequency in the signal under
consideration is near 640 Hz, therefore, higher frequen-
cies could be removed. Next, features are extracted from
the spectrum at the block denoted as “Feature extraction”
It could be one of the above-mentioned techniques C (5),
CIB (3), or CDFB (4). The conditional posterior probabili-
ties are computed at the block denoted as “GMM’, and the
decision is made using the ML rule (9).

Some parameters such as the length of segment L, the
number of GMM components and the number of used
classification features must be defined a priori. The exper-
imental system illustrated in Figure 8 is presented for this
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s(i) | Preproces Spectrum Spectrum
from radar sing estimation processing
w Feature
GMM (e .
Decision extraction
Figure 7 Scheme of the proposed classifier. The main steps necessary to refer a signal s(i) observed at the output of the radar to one of the
possible classes are illustrated.

purpose. An 11-fold cross-validation is applied for the
performance evaluation of the ATR system, where data
mining is carried out and the optimal parameters are esti-
mated. The concept “optimal” means the parameters with
which the best classification performance is obtained.

The scheme illustrated in Figure 8 is used for per-
formance evaluation. The block denoted “preprocessing
features” removes the outliers from the training set, dis-
carding 1% of the highest and lowest values. Next, the
parameters 6 of GMM are estimated using the Expecta-
tion Maximization algorithm [21]. The initial estimate of
the parameters is obtained by the k-means algorithm, and
for statistical stability the results of 10 GMMs are aver-
aged. Posterior class conditional probabilities extracted
from the segments are multiplied to obtain the posterior
class conditional probability of the entire received signal.
The latter operation is performed in the block “Integration
of probabilities”

The optimal number of both power cepstrum (5) and
bicepstral coefficients given by (3) and (4) has been

estimated. From one side, if a small number of them is
selected compared with the information containing in
other coefficients, worse probabilities will be obtained.
From the other side, the so called “curse of dimensional-
ity” can arise if a large number of coefficients have been
selected. We compute the probabilities of classification
only for the training set changing the number of coeffi-
cients from 1 to 50% of their maximum number. Then, the
number of coefficients is selected according to the max-
imum value of classification probability. The estimated
number of used coefficients depends on the segment
length, and decision-making time. Therefore, it is unique
for a fixed set of parameters. We consider 50% features at
most because of their symmetry (see (4), (3), and (5)). The
maximum number of features is z = L/9.

Empirically it was established that by varying the
GMM order, the classification probability rates do not
depend significantly on the GMM order. However, with
increasing feature vector dimensionality, the GMM order
should decrease. When only a few feature vectors are

Database | Preproces Spectrum Spectrum Feature Feature
B —— . = o - . .
sing estimation processing extraction ranking
e T i
| GMM Y :
! : i i training set
: Integratpqrj of < EM K Preprocessing - g Data‘ :
| probabilities features separation |
: A testing set | i
| |
| .
e oRAlEAI0MeS | 1-fold cross-validation
Y
w
ML
Decision

Figure 8 Scheme of parameter estimation. An 11-fold cross-validation is applied for the performance evaluation of the ATR system, where a data

mining is carried out and the optimal parameters are estimated.
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available GMM requires more components to achieve
good approximation of the probability density function.
However, when the ATR system operates with many fea-
ture vectors, a few components will be adequate. In the
considered case, we deal with a few feature vectors. The
processing data length is equal to 2 s (18 feature vectors
are used for each class within one realization of cross-
validation), and a large quantity of data are used when the
data length is equal to 16 ms (2468 feature vectors for each
class are used within one realization of cross-validation).
The GMM order was defined empirically. When the pro-
cessing data lengths were equal to 2 s, 1 s and 512 ms,
the GMM order was selected to be equal to five. For the
lengths of 256 ms, 128 ms and 64 ms, the GMM order was
equal to four and, finally, for 32 ms and 16 ms it was equal
to three.

4.3 Feature ranking

Feature ranking is an important operation contained in
classification algorithms. It ranks features according to
certain information criteria and only the most informa-
tive features are used for classification. The concept for
the criteria used in our feature ranking procedure is based
on Information Theory and came from the article [22].
Assume that we have a feature vector y with available val-
ues {y1,...,y;} and a class label vector z with the values
of {z1,...,zw}. The following conditional entropy H(z|y)
can then be computed as:

H(zly) = ) pOpH(ly =), (1)

j=1..J

where p(y;) is the probability of y taking the state y; and

H@) = Y plzw)log, p(zy) is the entropy of z.
w=1..W

The conditional entropy (11) indicates how much
entropy is left if the state of the feature y is known. The
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information about the class provided by the feature y is
given as:
1G(zly) = H(z) — H(zl). (12)
The features are sorted according to their IG value. We
will vary the number of used features and those having a

higher IG will be used first in the classification.

4.4 Performance evaluation
The proposed classification scheme uses the integration of
probabilities by dividing a non-stationary signal of length
N into M segments of length L. As a result, a sequence of
M quasi stationary signals is obtained.

The probability of correct classification is computed
as:

p— f: Ucor(w) et b (w) (13)
el Utotal (W) '

where W is the total number of available classes; U¢or (W)
is the number of correctly classified instances related to
the class w; Uiotal(w) is the total number of classified
instances related to the class w; and P,(w) is a priori
probability related to the class w. Unfortunately, a priori
probability is impossible to estimate using the available
experimental data. Because of this, we assume that a pri-
ori probability related to each separate class is of the same
value and equal to P, (w) = % Vv w.

The probabilities of correct classification depending
on the length of input signals and integration time are
given in percentage terms in Figure 9. Each cell in
Figure 9 situated at the intersection of the column cor-
responding to the window width (length of each seg-
ment) and row corresponding to the integration time
parameter, is split onto three subcells. Each subcell cor-
responds to the feature extraction technique considered.
The left subcell shows the probability obtained using the

information gain (IG) indicating the amount of additional  proposed bicepstrum-based technique CIB (3). The
FFT size (length of observed data)
16 ms 32 ms 64 ms 128 ms 256 ms 512 ms Is 2s
2s 73 78 83 [ 87 [ 84 8587 | 86| 86 |87 | 86 | 87 | 88 |87 |85 |87 |84 |83 |75 |78

32ms | 56 | 57 56 57 57 | 57
16ms | 53 [ 83 | 52

o 1s [ 72 76 78 76 80 8 80 ['84 ] 81| 81 [83] 82 [ 82 [ 83 81 [ 82 [ 84 82 |80 [84 [80
£ [512ms [ 70 [ 74 0360 74 | 77 g 76 |79 ] 78 | 76 |79 77 | 76 |79 ] 76 | 77 |19 |77

& [256ms [ 67 [70 [W00 70 [72 [ 72 | 71 [ 74 [ 72 [ 70 [ 73 [ 72 | 70 [ 72 ] 69 The techniques

S [ 128ms | 63 | 65 !| 65 67 | 67 ] 65 [ 67 ] 66 | 64 [ 66 | 65 given in each cell
=h

g [ 64ms |60 [61 61 | 61 | 60 [ 61 ] 60 CIB

Figure 9 The probabilities of correct classification given in percentages. Fach cell situated in the intersection of the column corresponding to
the window width (length of each segment) and row corresponding to the integration time parameter, is split onto three subcells. Each subcell
corresponds to the feature extraction technique considered; from left to right: CIB (3), CDFB (4) and C (5).
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middle subcell corresponds to the suggested bicepstrum-
based technique CDFB (4). The right subcell contains
data obtained using the common cepstrum-based tech-
nique C (5). Subcells containing the maximum value
of probability obtained using different techniques with
the same parameters are highlighted according to the
technique used.

The comparative analysis data represented in Figure 9
demonstrate the benefits of the bicepstrum-based tech-
niques compared with the common cepstrum-based tech-
nique. The bicepstrum-based techniques provide better
results with data lengths equal to or more than 64 ms.
The conventional cepstrum-based technique outperforms
the suggested techniques only when the data lengths are
less than 64 ms and the integration time is more than
128 ms. However, the difference between the techniques
under comparison is not very significant. The worst per-
formance of the bicepstrum-based classifier is caused by
low frequency resolution depending on the window width
exploited in the STFT. The considered non-parametric
estimation provides a frequency resolution equal to 63 Hz
and 125 Hz for data lengths of 32 ms and 16 ms, respec-
tively. To improve the frequency resolution in ATR sys-
tems, the parametric bispectrum-based techniques [10]
can be used.

It is well-known that the performances of ATR sys-
tems depend on the classifier, and may vary with different
types of classifier. All the above-mentioned results were
obtained using the statistical-based classifier, GMM with
the ML decision rule. Recently, the popularity of Neu-
ron networks (NN) and multi layer perception (MLP) has
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increased in ATR systems. Therefore, it is reasonable to
compare the obtained results with those obtained using
MLP. The MLP is selected to be a feed-forward back-
propagation Artificial Neural Network (ANN) with two
hidden layers (ten neurons are contained in each hidden
layer). Their transfer function is selected to be the tan-
sigmoid. The output layer contains three output nodes
with a purely linear transfer function. The mean squared
error performance function is selected to estimate the
ANN performance. The MLP is trained to estimate the
class conditional posterior probability of the feature vec-
tor, and this is archived using three output nodes. The
ANN is generated using standard Matlab functions.

Figure 10 shows the dependences of the correct clas-
sification probabilities on processing the data length
for a decision making interval equal to 2 s for the
two classifiers. The following peculiarities should be
emphasized in the comparison of the results presented in
Figure 10:

e For both considered bicepstral classifiers, the CDFB
technique (4) provides the best results with data
lengths larger than 64 ms and less than 1s;

e The common cepstrum-based technique C (5)
outperforms the suggested techniques only when the
data length is less than 64 ms;

e The best probability of correct classification for a
data length of 2 s is obtained using the bicepstral CIB
technique (3);

e Regularity of the results does not depend on the
classifier.

90

1 a)

75

Probability of correcrt classification

70 T T T T T T |
2s 1s 512 256 128 64 32 16
ms ms ms ms ms ms

Data length
—a—CDFB - ¢ —CIB C

Probability of correcrt classification

T T T T T 1

2s 1s 512 256 128 64 32 16
ms ms ms ms ms ms
Data length
—@&— CDFB - ¢ - CIB C

Figure 10 Probability of correct classification as a function of the processing data length for the GMM classifier (a) and MLP classifier (b)
Decision making interval is equal to 2 s. The regularity of the results does not depend on the classifier.
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Confusion matrices computed with a data length of
512 ms and decision making time of 2 s for all considered
techniques are listed in Table 1:

® The best classification performance for a single
walking person is achieved using the CDFB features
with 90% of the correct classifications outperforming
the other features by 2%;

e The class of two walking persons is the most
complicated for all considered feature extraction
techniques. The highest probability of correct
classification, equal to 83%, is provided using the CIB
features. The probabilities of correct classification
equal to 82% and 81% are provided using the CDFB
and C features, respectively;

e The last considered class of three walking persons is
classified with a probability of correct classification at
alevel of 89% using the CDFB and C features. The CIB
features provide 88% of the correct classifications.

Next, classification is performed using the Support
Vector Machine (SVM) with a linear kernel. It is a non-
probabilistic classifier, therefore, “integration of the prob-
abilities” (8) could not be performed. This step is replaced
by a majority voting method. The probabilities of correct
classification are computed using 2-fold cross-validation.

The classification results computed by SVM are shown
in Figure 11. The results are similar to those obtained

Table 1 Confusion matrices for the considered techniques
with a data length of 512 ms and decision making time of
2s

CDFB features
One person Two persons Three persons
One person 90 4 6
Two persons 6 82 12
Three persons 6 5 89

CIB features

One person Two persons Three persons
One person 88 8 4
Two persons 5 83 12
Three persons 4 8 88

C features

One person Two persons Three persons
One person 88 7 5
Two persons 6 81 13
Three persons 4 7 89

The confusion matrix shows the probability of declaring a class w; if the feature
set from class w; was at the input of the classifier. The three classes examined are
listed in the left column and the declared classes are listed in the top row. The
values within the main diagonal illustrate the probability of the correct
classification when the input class w; is correctly declared as w;.

Probability of correct classification

4’0 T T T T T T 1
2s 1s 512 256 128 64 ms 32 ms 16 ms
ms ms ms
Data length
=@ CDFB = o= CIB C

Figure 11 Probability of correct classification as a function of the
processing data length for the SVM classifier. The
decision-making interval is equal to 2 s.

85

~ ~ o)
o a S

D
(63}

Probability of correct classification

60
1 4 7 10 13 16 19 22 25

Dimensionality of feature vector

Figure 12 Probability of correct classification as a function of the
feature vector dimensionality. Parameters: the decision-making
interval is equal to 2 s; the processing data length is 64 ms; the
cepstrum-based technique; and the GMM classifier.
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Figure 13 Elapsed time for feature extraction depending on the processing data length and method used. The processing time required for
bispectrum-based techniques is significantly larger than for the cepstrum-based technique. Fortunately, real-time implementation is possible,

earlier. The cepstrum-based technique (C) outperforms
other techniques when the data length is less than
64 ms. The bispectrum-based techniques outperform the
cepstrum-based technique when the data length is higher
than 64 ms, by 2—4%.

The probability of correct classification depending on
the feature vector dimensionality is shown in Figure 12.
The curve is calculated for the cepstrum-based features
and GMM classifier, with a processing data length of
64 ms and decision making time of 2 s. Before calculating
the probabilities, the features are sorted according to the
IG criterion and therefore, more of the informative fea-
tures are used first. It can be seen in Figure 12 that the
function rapidly rises when there are fewer than four fea-
tures. The function has a peak at number of features equal
to seven, and corresponded features are selected to pro-
vide the classification result. The function then decreases
with the increase in feature vector dimensionality.

It should be noted that bispectrum-based techniques
require larger digital signal processing times because of
additional computation for the 3-D-valued bispectral den-
sity. Therefore, it is of practical interest to estimate the
computational time and compare it for all the techniques
considered. Computations were performed by a computer
with the following parameters: Intel Core 2 DUO CPU
3 GHz, 3.2 Gb RAM, operation system Windows XP SP 2,
and Matlab R2010a.

Figure 13 illustrates the time required for feature
extraction using the three techniques considered. For all
techniques and all available values of data length, the pro-
cessing time is smaller than the data length. Therefore,
a real-time implementation of all algorithms is possible.
The processing time required for the bispectrum-based
techniques is significantly larger than for cepstrum-based

techniques. This is the cost of better classification perfor-
mance. Fortunately, the signal processing time required
for bispectrum-based techniques can be optimized using
the symmetry properties of bispectra [13].

5 Conclusions

This article proposed bispectrum-based feature extrac-
tion from micro-Doppler radar signatures to classify
moving radar targets. Data were collected using ground
surveillance Doppler radar for one, two and three mov-
ing persons. Pattern features were extracted from inte-
grated and averaged short-time bispectrum estimates
of transient Doppler radar signals in the form of two
types of bicepstral coefficients. Diverse scenarios were
considered and the 11-fold cross-validation test was
employed to improve the classification accuracy. Exper-
imental results demonstrate that it is quite feasible to
recognize three classes of persons moving in a vegetation
cluttered environment using the proposed bispectrum-
based features extracted from micro-Doppler radar
backscattering. Bispectrum-based pattern features extrac-
tion from radar backscattering provides additional insight
into moving target radar classification that is superior to
the commonly used energy-based information features.
The experimental results obtained are useful from the
point of view of practical recommendations for security
and military ATR systems and open new possibilities for
ground moving target recognition and classification.
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