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Abstract

In urban scenarios, radar returns consist of a direct path return along with multipath returns from signal reflections off
surfaces such as building walls or floors. When multipath is resolvable, and given the knowledge of the geometry of
the reflecting surfaces, it has recently been demonstrated that multipath returns create additional “virtual” radar
sensors, thereby permitting target localization with a single radar sensor. The goal of this article is to determine
theoretical variance lower bounds on how well a single-sensor system is able to localize a target in the presence of
exploitable multipath and discuss several practical issues that arise in this context, including the multipath association
problem, clutter, and the impact of wall roughness. Exploiting multipath, rather than viewing it strictly as a hindrance,
is an emerging topic in the radar community whose potential is not yet fully understood. Towards this goal, we first
derive the Cramér-Rao and the Bayesian Cramér-Rao bounds on target localization using a single-sensor which
exploits resolvable multipath. For a wide class of radar-target geometries, functions termed multipath preservers are
derived which indicate when multipath is physically observable in the radar returns; these functions assist in
evaluating the potential of multipath exploitation in urban sensing. Given a reflecting geometry, the obtained lower
bounds allow the radar operator to anticipate blind spots, place confidence levels on the localization results, and
permit sensor positioning to optimally aid in exploiting multipath for target localization. It is shown that variance
bounds on the location parameters improve with richer resolvable multipath generating mechanisms.

Keywords: Target localization, Radar, Multipath exploitation, Bayesian Cramér-Rao, Urban sensing,
Experimental design, Statistical identifiability

1 Introduction
When radar signals are reflected from building walls in
urban scenarios, multipath radar returns result, causing
false positives. The objective of multipath exploitation is
to identify these multipath returns, which exist because
of the target and its surrounding reflecting geometry,
and exploit them to improve the radar system perfor-
mance. Recently, it has been noted that when multipath
returns are resolvable and the reflecting surface geometry
is known a priori (e.g., via prior surveillance), multi-
path radar returns create virtual radar sensors, permitting
non-coherent target localization with a single-sensor [1].
This single-sensor localization approachmay offer a viable
sensing solution to modern urban sensing challenges.
In other non-radar applications, such as wireless sensor
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localization, the multipath also results in virtual beacons
(receivers) similarly permitting localization with a single
sensor.

1.1 Goal
Our goal is to better understand the fundamental limits
of idealized multipath exploitation in the context of sin-
gle sensor systems and to analytically discuss the system
performance with practical considerations including for
example, the roughness of walls and the presence of clut-
ter. Single-sensor systems are covert, may be smaller, sim-
pler to deploy, and more cost-effective than multi-sensor
systems; however, this simplicity may come at the cost of
increased signal processing complexity and/or decreased
performance when compared to multi-sensor systems.
As little work has emerged on single-sensor multipath
exploitation, we focus on the theoretical gains possible
here, which could be used as a benchmark for future
multipath exploiting localization schemes.
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For analytical tractability, the direct path time delay and
the multipath time delays are assumed to be normally
distributed perturbed versions of their true counterparts.
The main crux of this article is in evaluating the poten-
tial of single-sensor-based localization from a theoretical
perspective using the Cramér-Rao bounds (CRBs) and
the Bayesian Cramér-Rao bounds (BCRBs). Further, the
objective is also to determine spatial regions within a
geometry where such systems are most beneficial in local-
izing targets via multipath exploitation. The former pro-
vides a lower bound on the variance of the non-coherent
localization error, whereas the latter determines optimal
target or sensor positions where single-sensor radar sys-
tems offer the most benefit. Neither of these have yet been
addressed for a single-sensor system, and considering
practical constraints in the literature.
Towards our goal, we study one particular geometry

as an example: a single target enclosed in a rectangular
urban canyon. The multipath generating mechanisms, i.e.,
the walls, are assumed to be smooth at the radar oper-
ating frequencies, resulting in specular reflections. The
wall roughness and its impact on localization is handled
subsequently.

1.2 Contributions
Our contributions are summarized as follows.
In the multipath exploitation literature [1-7], it is

assumed that multipath returns exist; no such condi-
tions are enforced here. Rather, we introduce the con-
cept of “multipath preservers” indicating when multipath
is present, which are incorporated into the subsequent
theoretical analysis.
Next, we derive the CRBs and the BCRBs for the tar-

get downrange and the crossrange using a single sensor
which exploits resolvable multipath. Using the relevant
metrics from the theory of optimal experimental design
[8,9], and employing the multipath preservers, the CRBs
and BCRBs allow the radar operator to anticipate blind
spots, permit sensor or target positioning, improve inter-
pretability of the radar returns, and place confidence
levels on single-sensor localization employing multipath
exploitation. Thismay all be accomplished beforehand, for
example during the radar resource scheduling or before
deployment, since the geometry is assumed to be known
a priori. Experimental design principles can be applied to
the problem at hand since the Fisher information matri-
ces (FIMs) are the functions of the location parameters,
namely the downrange and the crossrange. It is shown
that richer resolvable multipath generating mechanisms
always improve target localization, in the CRB and BCRB
sense.
In addition, we discuss several topics which may impact

the utility of single-sensor localization: the multipath
association problem (i.e., to determine which multipath

return corresponds to which wall), the impact of wall
roughness, and finally clutter.We provide initial directions
for handling these possible impediments, and simulations
which indicate their potential impact.
We note that our focus is on using the CRB and BCRB

to understand and exploit the multipath, rather than on
improving the estimation of the multipath or the direct
path time delays, or deriving performance bounds on the
time delay estimation [10]. Instead, the focus is on eval-
uating single-sensor localization performance bounds via
multipath exploitation given a model of the estimates of
the direct and multipath time delays.

1.3 Past work
Multipath exploitation in radar has been reported in the
recent literature [2-7], all of which assume specular mul-
tipath. Statistical radar detection was treated in [2], target
tracking in [3], airborne radar applications in [4], range-
Doppler application in [5], experimental indoor multipath
detection in [6], and localization, but not with a single
sensor in [7]. The CRBs on the location parameters using
multiple sensors were subsequently derived in [7]. Multi-
path in multiple sensor systems was studied in [11], where
synthetic aperture multipath ghosts were observed but
not exploited. Synthetic aperture through-the-wall mul-
tipath ghosts were associated and mapped back to the
target locations using a technique derived in [12]. It was
shown that the association and mapping increase the SNR
at the target location, while simultaneously reducing the
false positives in the synthetic aperture radar (SAR) image.
It was shown that exploiting the multipath SAR ghosts,
target classification is improved in [13].

1.4 Organization
The remainder of this article is organized as follows:
the model for the single-sensor technique is described
in Section 2; in Section 3, the CRBs and BCRBs are
derived. Using experimental design criteria, the applica-
tions of sensor and target positioning are addressed in
Section 4. Other topics such as associating the multipath
to the walls, impact of the wall roughness on themultipath
returns, and clutter are discussed in Section 5. Simula-
tions are presented in Section 6, and conclusions drawn in
Section 7.

2 Model
For ease of exposition we start with a single reflecting
surface such as the side wall of a building as shown in
Figure 1a, considered in two dimensions, with origin “O”
shown. The target denoted as (T), radar (R), the vir-
tual radar created due to the multipath w.r.t wall-1 and
denoted as (VR1) are also shown in the figure. The wall
roughness is considered to bemuch smaller than the radar
operating wavelength, and hence specular reflections are
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Figure 1 Radar scene.

assumed for now. The radar and target are located at
xr =[−xr , yr]T and xt =[−xt , yt]T . There are three paths,
shown in Figure 1a, which result in time delays as follows:

τ1 = 2||xt − xr||/c, τ2 = 2||x1r − xt||/c,
τ3 = τ1/2 + τ2/2 (1)
x1r :=[ xr , yr]T

where c denotes the speed of light in freespace and is
assumed constant throughout. The time delays, τ2 and τ3
with τ1 ≤ τ3 ≤ τ2, are referred to as the II-order and
I-order multipath, respectively. The first-order (I-order)
multipath incorporates one reflection at wall-1, while
the second-order (II-order) multipath incorporates two
reflections at wall-1. Rewriting (1), we may express the
relationship between the location and time-delay variables
as

(xt − xr)2 + (yt − yr)2 = c2τ 21 /4 (2a)
(xt + xr)2 + (yt − yr)2 = c2τ 22 /4 (2b)

x2t
c2τ 23 /4

+ (yt − yr)2

(c2τ 23 − 4x2r )/4
= 1. (2c)

It is readily seen that (2a) and (2b) are the equations of
circles, whereas (2c) is the equation of an ellipse which
has its foci at the radar, xr and the virtual radar at x1r ,
consistent with a bistatic radar configuration. The circles
and ellipses in (2) are the loci or the iso-range contours
traced by target and its multipath w.r.t wall-1 ([14], p.42).
It may then be shown that the common intersection point
of (2a)–(2c) is the target location xt. When the measured
time delays τi, i = 1, 2, 3 are substituted in (2), the target
may be non-coherently localized, provided the multipath
and direct path are detectable and resolvable in the range
profile [1]. The multipath therefore creates virtual mono-
static and virtual bistatic receivers aiding localization with
a single real monostatic sensor. It is assumed through-
out that the multipath radar returns are detectable and
resolvable in this article. When this assumption is invalid,
multipath exploitation becomes challenging, if possible at
all. Given that multipath exploitation is still a relatively
emerging topic in radar, as a first step, we are interested
in determining performance bounds under idealized con-
ditions; investigating performance under conditions when
some or all the assumptions start to break down is an
interesting topic for future work.
Now consider Figure 1b, which shows an urban canyon

type geometry with the target inside the urban canyon,
of dimension D1 and D2, respectively. Denote the multi-
path time delays generated from wall-2 as τ4 and τ5 (τ1 ≤
τ5 ≤ τ4), and wall-3 as τ6 and τ7 (τ1 ≤ τ7 ≤ τ6). The
time delays τ4 and τ6 are similar to delay τ2 but generated
from double reflections from wall-2 and wall-3 respec-
tively. Likewise, τ5 and τ7 are similar to the delay τ3 and
consist of a one-way propagation via the direct line of
sight path, and a bounce on the return (or vice versa).
Due to these similarities τp, p = 2, . . . , 7 are not explicitly
shown in Figure 1b. These time delays may be expressed
as follows:

τ4 = 2||x2r − xt||/c, τ5 = τ1/2 + τ4/2,
τ6 = 2||x3r − xt||/c, τ7 = τ1/2 + τ6/2 (3)
x1r :=[ xr , yr]T , x2r :=[−xr , 2D2 + 2Dy + yr]T ,
x3r :=[−(2D1 − xr), yr]T

for virtual radars at positions xjr, j = 1, 2, 3, and the
parameter Dy the standoff distance as shown.

2.1 Multipath preservers
Using geometric arguments we derive simple functions
that indicate when multipath is present in the radar
returns. In general, these functions predict spatial zones
where rich multipath may be present, and which could
be ‘mined’ for potential multipath exploitation. For sensor
positioning, these functions may be used in a straightfor-
wardmanner to place spatial constraints on the number of
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feasible sensor positions, with the objective of maximiz-
ing the multipath exploited system performance. Further,
these functions could also be used a posteriori in plac-
ing some confidence on the target location estimates. The
formulation in (1) and (3) assumes that multipath returns
are always present for each corresponding wall and was
an implicit assumption in [1-7,11-13]. This is in general
not true. To understand the reason, consider point A in
Figure 1a, having coordinates xA =[ 0, yA]T , yA(xr, xt) :=
ytxr+xtyr
xt+xr , and explicitly a function of the radar and target

coordinates. Clearly, for multipath to exist for this wall, we
must have that Dy + yr � yA � D2 + Dy + yr . We can
now formulate a multipath preserving function, denoted
as f1(yA),

f1(yA) = 1
[
Dy + yr � yA � D2 + Dy + yr

]
, (4)

where 1[·] is the indicator function. In essence, (4) implies
that if point A is not on its respective wall, then no multi-
path is observed, which implies τ3 = τ2 = 0. In the same
spirit, we may derive the multipath preserving functions
for the other two walls in Figure 1b as

f2(xB) = 1[0 � xB � D1], (5)
f3(yC) = 1

[
Dy + yr � yC � D2 + Dy + yr

]
, (6)

with coordinates

xB(xr, xt) := xr(D2 + Dy + yr − yt) + xt(D2 + Dy)

2D2 + 2Dy + yr − yt

yC(xr, xt) := ytxr − ytD1 + yrxt − yrD1
xr + xt − 2D1

,

where xB =[−xB,D2 + Dy + yr]T and xC =[−D1, yC]T
are the coordinates of points B and C in Figure 1b, respec-
tively. The conditions in (4), (5), (6) are derived from
simple geometrical constraints; hence, the coordinates of
the points, A,B,C are the functions of both xt and xr.
When the need arises, their dependence on xr and xt will
explicitly be noted.
Incorporating multiple (more than 2) reflections at mul-

tiple walls and their corresponding multipath preservers
into our model is straightforward, but is not considered
here as the radar returns associated with multiple reflec-
tions have low signal power due to two factors (ignoring
the radar cross section of the target itself ): the path loss
and the reflection coefficients. The path loss is inversely
proportional to a function of the distance traveled by the
individual multipath. In general, for each signal reflection
a fraction of the incident power is lost, and is related to the
reflection coefficient for that particular wall. The reflec-
tion coefficients in turn depend on the material prop-
erty of the walls as well as the incidence and refraction
angles. If indeed multipath from such multiple reflec-
tions are detectable and resolvable, it may be shown from
the results in the next section that localization will only
improve in the CRB sense. Although not treated explicitly

here, note that inclusion of a front wall in say Figure 1b
yields a through-wall radar scenario [12,15] in which
case the analysis here provides a valid approximation, for
example when Dy � D1,D2.

3 CRBs and BCRBs
We now proceed to derive expressions for lower bounds
on the target localization error co-variance in classical and
Bayesian settings. To do so, we express the FIM in terms of
the assumed to be known (up to additive Gaussian noise)
multipath delays, and incorporate the multipath preserver
functions from the previous section. The target localiza-
tion error covariance matrix is then lower bounded by the
CRB, i.e., the inverse of the FIM. In the Bayesian setting
where we assume prior statistics on the target location,
the target localization error covariance is bounded by the
BCRB—the inverse of the analogous Bayesian information
matrix (BIM).
If s(t) is the signal transmitted by the radar, then in

general, the received radar return denoted by sr(t) is
expressed as

sr(t) =
7∑

p=1
ρps(t − τp) + vn(t) + vc(t)

where ρp captures the strength of the various direct
and multipaths, vc(t) is the clutter in sr(t), and vn(t)
is the noise. Although not explicitly stated, we have
assumed an omni-directional radar, and in practice the
ρp will also depend on the antenna pattern. In general,
it is noted that the direct and multipath each have dif-
ferent SNRs as well as different signal-to-clutter ratios
(SCRs) as captured by the different ρp, p = 1, 2, . . . , 7.
In essence, their individual SNRs and SCRs will affect
their detectability in the range profile, and is not the
focus here. In other words, we will assume that the τp
are all detectable in the range profile. Modeling urban
clutter is difficult, and moreover not straightforward to
model stochastically. We will therefore ignore clutter
and treat only the noise in the FIM and BIM analysis.
Clutter however is discussed in Section 5, and incor-
porated as spurious time delays in the simulations, i.e.
Section 6.
In practice, the time delays, τp, p = 1, . . . , 7 are

obtained from correlating the transmitted signal with the
received radar returns, see for example [1]. It is there-
fore reasonable to assume that the measured time delays,
denoted as ζp, are perturbed versions of their true coun-
terparts. The perturbations denoted as vp are assumed to
be zero mean, normally distributed, and mutually uncor-
related random variables of variance σ 2

p . Therefore, the
p-th time delay measurement, ζp, is given by

ζp = f (p) × τp + vp, p = 1, 2, · · · 7, (7)
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where f (1) = 1, f (2) = f (3) = f1(yA), f (4) = f (5) =
f2(xB), and f (6) = f (7) = f3(yC). The assumption of nor-
mality imposed on the vp ensure analytical tractability of
the CRBs. If the τp are well separated in the τ domain,
which is the case for large bandwidth, then the vp may be
modeled as uncorrelated; this is our assumption.

3.1 CRBs
The CRB for target localization is given by the inverse of
the FIM for target location xt. We break the complete FIM
down into its various components, i.e., first, we examine
the FIM considering only the multipath and direct path
w.r.t to each wall independently. Let Fk(xt) denote the FIM
considering only wall k = 1, 2, 3 assuming x1t :=[ xt , yt]T ,
i.e., suppressing the negative sign of xt in xt. Using (7)
and for the time being assuming that the corresponding
multipath preservers are unity,

Fk(xt) =
[

1
σ 2
1

∂τ1

∂x1t

(
∂τ1

∂x1t

)T
+

(
Gk(σk , σ2k+1) � ∂τ k

∂x1t

)

×
(
Gk(σk , σ2k+1) � ∂τ k

∂x1t

)T
]

(8)

where ‘�’ denotes the Hadamard product or elementwise
multiplication, τ k :=[ τ2k , τ2k+1], and

Gk(σk , σ2k+1) =
[
1/σ2k 1/σ2k+1
1/σ2k 1/σ2k+1

]
, k = 1, 2, 3

∂τk

∂x1t
:=

[(
∂τ k
∂xt

)T
,
(

∂τ k
∂yt

)T
]T

∈ �2×2,

∂τ1

∂x1t
:=

[
∂τ1
∂xt

,
∂τ1
∂yt

]T
∈ �2×1,

∂τ k
∂(·) :=

[
∂τ2k
∂(·) ,

∂τ2k+1
∂(·)

]
∈ �1×2.

From here onward and for notational succinctness, we
will drop the explicit dependency of matrices Gk on
(σ2k , σ2k+1). The partial derivatives in (8) are obtained
from (1) and (3). As an example the partial derivatives to
compute F1(xt) are now given

∂τ1

∂x1t
= 2

c

[−(xt − xr)
||xt − xr|| ,

(yt − yr)
||xt − xr||

]T
∂τ2

∂x1t
= 2

c

[
(xt + xr)
||x1r − xt|| ,

−(yr − yt)
||x1r − xt||

]T
(9)

∂τ3

∂x1t
= 1

2
∂τ1

∂x1t
+ 1

2
∂τ2

∂x1t
.

Using (9), the following matrix can readily be constructed:

∂τ1

∂x1t
=

[
∂τ2
∂xt

∂τ2
∂yt

∂τ3
∂xt

∂τ3
∂yt

]T

. (10)

The FIM, F1(xt) can now be constructed using (9) and
(10). From (8), we note that if any one of the multipath
preservers in (4), (5), or (7) is zero, then those corre-
sponding FIMs are rank deficient and hence singular at the
corresponding target locations.
The complete FIM incorporating all the multipath time

delays and the direct path is given by

F(xt) =
[

1
σ 2
1

∂τ1

∂x1t

(
∂τ1

∂x1t

)T
+

3∑
k=1

(
Gk � ∂τ k

∂x1t

)

×
(
Gk � ∂τ k

∂x1t

)T
]
.

(11)

From (11), it is seen that richer resolvable multipath
mechanisms improve the CRBs by adding more statisti-
cal information to the FIM. The same conclusion can be
made if we were to include higher-order multipath from
multiple reflections as discussed in Section 3, provided of
course they are detectable. From (11), notice that for F(xt)
to be full rank and hence nonsingular, at least one matrix
must satisfy

∃k : rank
((

Gk � ∂τ k

∂x1t

) (
Gk � ∂τ k

∂x1t

)T
)

≥ 1,

k = 1, 2, 3.
(12)

Equation (12) implies that apart from the direct path time
delay, and regardless of the values assumed by the multi-
path preservers, at least one of the multipath time delays
τp, p = 2, . . . , 7 must be detectable in the τ -domain.
Indeed if it is known a priori that the target is shadowed
(no direct path time delay, τ1), then at least any two of the
multipath time delays must be detectable or identifiable in
the τ -domain.
Until now we considered only two dimensions, however,

for the complete 3D problem, we may extend our results
in a straightforward manner, for example, by taking the
right-hand side of (12) to be 2 instead of 1, and with xt now
comprising the downrange, crossrange, and height param-
eters, and with suitable modification of the time delays to
incorporate the 3D structure.
We now incorporate the multipath preservers formally

into our FIM definitions. Define the regions, ℵ and
ℵk , k = 1, 2, 3 such that

ℵ :={(−x, y) |0 ≤ x ≤ D1,Dy + yr ≤ y ≤ D2 + Dy + yr}
(13)

ℵk :={(−x, y) ∈ ℵ |fk(gk(x, y)) = 1}
where ℵk ⊆ ℵ, and g1(x, y) := yA(xr, (x, y)), g2(x, y) :=
xB(xr, (x, y)), and g3(x, y) := yC(xr, (x, y)). In other words,
ℵ consists of the entire region inside the urban canyon,
and ℵk are the regions inside the urban canyon where the
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corresponding multipath preservers are unity. The FIMs
can now be redefined as Fk := Fk(xt)1[xt ∈ ℵk] and F :=
F(xt)1[ xt ∈

3⋃
k=1

ℵk]. It is noted that one hand, Fk are

evaluated at only those target locations which yield unit
values for their corresponding multipath preservers. For
all other locations Fk are rank-1 and hence singular, which
implies that unbiased estimation of the target is not possi-
ble. On the other hand, it is clear that F is non-singular at
those target locations where at least one of the multipath
preservers are unity.

3.2 BCRBs
Assume that prior surveillance has made available the
information that the target is located in a certain region
inside the urban canyon in Figure 1b. As an example
and an envisaged scenario, a prior unmanned aerial vehi-
cle visit to the canyon has detected possible targets in a
certain area, and has directed further investigation via a
single-sensor, land-based radar. In such situations, BCRBs
[16] are useful in analyzing the system performance.
Assume for simplicity that the target is uniformly

distributed in (−xmax, ymax) × (−xmin, ymin) inside the
canyon. The joint probability density function of xt and yt
is then,

p(xt , yt) = 1
[
(xt , yt) ∈ (xmax, ymax) × (xmin, ymin)

]
/(xmax − xmin)(ymax − ymin).

Note that we may incorporate different distributions of
the target priors; this uniform distribution example is
just a simple initial example of how one would go about
obtaining the BCRBs. Let us define the measured time
delay vector, ζ =[ ζ1, . . . , ζ7]T , and p(ζ , xt , yt) as the joint
pdf of ζ , xt , and yt . Then the BIM which considers multi-
path from all the walls is

B =E

{
−∂ ln p(ζ , xt , yt)

∂x1t

(
∂ ln p(ζ , xt , yt)

∂x1t

)T
}

=E

{
E

{
−∂ ln p(ζ |(xt , yt))

∂x1t

(
∂ ln p(ζ |(xt , yt))

∂x1t

)T
}}

+E

{
−∂ ln p(xt , yt)

∂x1t

(
∂ ln p(xt , yt)

∂x1t

)T
}

=E
{
F(xt , yt)

} + 0 =
xmax,ymax∫∫

xt=xmin,yt=ymin

F(xt , yt) dxt dyt .

(14)

The zero matrix in (14) arises as the joint pdf p(xt , yt) is
a non-informative prior. For other distributions assumed,
the second term will be non-zero. The BIM considering

the direct path and the multipath from the k-th wall is
then given by

Bk =
xmax,ymax∫∫

xt=xmin,yt=ymin

Fk(xt , yt) dxt dyt , k = 1, 2, 3. (15)

Like the classical CRBs, the BCRBs are present on the
diagonals of the inverted BIMs. Unlike the FIMs, the BIMs
are not a function of the target position vector, xt; they are
a function of the radar location xr.
Some of the double integrals for computing the BIMs

are intractable and expressed as integrals of elliptic inte-
grals [17]. For example, consider the element in the first
row, first column of matrix Bk , k = 1, 2, 3. It is readily
shown that the following term is required to obtain the
BIMs:

Ia =
xmax,ymax∫∫

xt=xmin,yt=ymin

x2r − x2t dxt dyt
||xt − xr|| ||x1r − xt||

Considering the integral w.r.t xt , and decomposing the
integrand into two parts, we have the following integrals
Ib and Ic which are needed to obtain Ia:

Ib =
xmax∫

xt=xmin

x2t
||xt − xr|| ||x1r − xt|| dxt ,

Ic =
xmax∫

xt=xmin

x2r
||xt − xr|| ||x1r − xt|| dxt

Now consider Ib, where i :=
√−1

Ib = −(I1 − I2)
γ1(x2r + (yt − yr)2)

, I1 :=
xmax∫

xt=xmin

√
1 − γ1x2t
1 − γ2x2t

dxt ,

I2 : =
xmax∫

xt=xmin

1√
1 − γ1x2t

√
1 − γ2x2t

dxt ,

γ1 := −1
((yt − yr) − ixr)2

,

γ2 = 1
(xr − i(yt − yr))2

. (16)

We can write I1 and I2 as

I1 =E(sin−1(
√

γ2xmax),
√

γ1/γ2)

− E(sin−1(
√

γ2xmin),
√

γ1/γ2),

I2 =F(sin−1(
√

γ2xmax),
√

γ1/γ2)

− F(sin−1(
√

γ2xmin),
√

γ1/γ2),

where F(·, ·) and E(·, ·) denote the incomplete elliptic inte-
gral of the first and the second kinds, respectively, and
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whose first and second parameters represent the complex
amplitude and complex modulus, respectively [17]. Simi-
larly the integral Ic may be evaluated employing the elliptic
integral F(·, ·).
The above are an example of computations needed to

evaluate one term in the BIM; there exist many such
terms which are evaluated as integrals of F(·, ·) and
E(·, ·). Numerical integration is employed in evaluating
the BIMs for two reasons. First, the incomplete ellip-
tic integrals are themselves evaluated numerically, see
for example [17] and references therein. Second, it can
be shown that the functions whose integrals we seek
have no singularities in the region of interest as long
as

supp p(xt , yt) ⊆ ℵ, for any valid distribution p(xt , yt),

where ‘supp’ denotes support. Numerical integration may
produce erroneous results when regions include the sin-
gular points; but no such problems occur here since we
consider only meaningful target priors, i.e., those whose
supports are entirely inside the urban canyon.

4 Target or sensor positioning using statistical
experimental design

The FIMs and BIMs not only provide us with theoreti-
cal bounds on localization error variance when exploit-
ing resolvable multipath, but they may also be of use in
designing radar experiments which seek to maximize the
ability to exploit multipath. That is, radar operators may
wish to either determine where targets are best localized,
or where sensors must be placed in order to best localize
(surveillance). These optimization problemsmay be posed
in terms of statistical experimental design theory using
several optimal design criteria [8].

4.1 Optimal positions for target localization given fixed
radar position

Consider the situation where we have only a single wall,
as in Figure 1a, with corresponding FIM F1(xt). The radar
operator wants to know a priori where the target is best
localized via multipath exploitation. Although in practice
this is of course not in our control, but rather useful to
know since estimated locations in the vicinity or at the
optimal positions could be assigned as high confidence
targets. Let us consider the D-optimal design, which max-
imizes the determinant of the FIM, and therefore min-
imizes the generalized variance of the optimal location
estimate vector, x̂t [8]. Cast as an optimization problem
for fixed xr, we have,

max
xt

detF1(xt) (17)

s.t yA(xr, xt) ≤ D2 + Dy + yr , −yA(xr, xt) ≤ −(Dy + yr)

Solving (17) via the Karush–Kuhn–Tucker (KKT) con-
ditions, one can show there exist multiple optimal solu-
tions for xt which must satisfy

x2t + (yt − yr)2 − x2r = 0, A1xt + b1 ≤ 0 (18)

A1 :=
[−(D2 + Dy) xr

Dy −xr

]
,

b1 :=
[−xr(D2 + Dy + yr)

xr(Dy + yr)

]
.

In (18) the first condition is an equation of a circle,
whereas the second is the affine inequality constraint
which is identical to the multipath preserver in (4) but in
matrix form. Using the same approach, i.e. when we opti-
mize Fk(xt), k = 2, 3 instead, the corresponding circles are
given by

For F2 : (xt + xr)2 + (yt − D2 − Dy − yr)2

− (D2 + Dy)
2 = 0

For F3 : (xt + D1)
2 + (yt − yr)2 − (D1 − xr)2 = 0.

(19)

The optimal target locations w.r.t. these walls must sat-
isfy their corresponding circles in (19) and corresponding
multipath preservers in (5), respectively. These optimal
circles comprising the optimal target locations follow a
simple pattern: from the radar at xr draw three lines, one
to each wall, or its imaginary extension, which intersects it
at a 90 degree angle. Then, the points of intersections with
the walls or their extensions are the respective centers of the
circles, and the distance of the centers from the radar loca-
tion are the respective radii. It is further stressed that these
optimal circles in (18) and (19) are not to be confused with
the iso-range contours or constant range loci traced by the
target, as in (2).
The optimal target location w.r.t the full FIM (i.e., all

walls together) is expressed as follows:

max
xt

detF(xt) (20)

s.t yA(xr, xt)≤D2 + Dy + yr , −yA(xr, xt) ≤ −(Dy + yr)
xB(xr, xt)≤D1, −xB(xr, xt) ≤ 0
yC(xr, xt)≤D2 + Dy + yr , −yC(xr, xt) ≤−(Dy + yr).

The geometric insights resulting from the optimization
problem are possible when we consider a single wall at
a time, as in (17); however, we have not been able to
obtain such analytically and intuitively succinct results
when optimizing the full FIM (rather than the FIM for
one wall at a time) as in (20). As such, the optimization
is carried out numerically, and will be re-visited in the
simulations in Section 6.
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4.2 Optimal radar position for Bayesian target localization
Now consider positioning the sensor, when one has some
form of a priori knowledge of the target location. This
is well suited to a Bayesian approach where we seek to
determine the sensor position xr which minimizes the
determinant of the BIM (again using D-optimal criteria).
We start again by designing the best sensor position in the
presence of one of the three walls at a time, i.e., we express
this as three separate optimization problems:

max
xr

detBk(xr), k = 1, 2, 3

s.t xr /∈ ℵp, and xr ∈ �k(xt) (21)

where ℵp := supp p(xt , yt) and

�1(xt) := {x|Dy + yr ≤ yA(x, xt) ≤ D2 + Dy + yr , xt ∈ ℵp}
�2(xt) := {x|0 ≤ xB(x, xt) ≤ D1, xt ∈ ℵp}
�3(xt) := {x|Dy + yr ≤ yC(x, xt) ≤ D2 + Dy + yr , xt ∈ ℵp}.

The first constraint in (21) states that the radar position
cannot be in the target prior pdf support. The second con-
straint states that a radar position is considered feasible if
all target positions within the prior pdf ’s support satisfy
their respective multipath preservers. It is not insightful
to consider a particular radar position which does not sat-
isfy the multipath preservers for all target positions within
the support of the target prior pdf. It is noted that for
the urban canyon this is NOT restrictive-sincemeaningful
target priors are defined inside the urban canyon. Closed
form solutions to (21) are intractable, but are evaluated
numerically in Section 6.
The sensor positioning optimization for the general

BIM (all walls together) is

max
xr

detB(xr)

s.t xr /∈ℵp, andxr ∈
3⋃

k=1
�k(xt).

(22)

The first constraint in (22) is identical to that in (21). The
second constraint states that a radar position is consid-
ered feasible if it belongs to least one of the �k , k = 1, 2, 3,
as defined in (21). It is noted that there are several other
design criteria, however as stated in ([8], p.153),D-optimal
designs are practically relevant. A closed form solution
to (22) is not possible, and the optimization will be per-
formed numerically in Section 6. It is stressed that these
computations may be performed offline, i.e., during the
sensor deployment phase. In practice and unlike other
optimization problems, it is noted here that the number
of variables to be optimized is three or two, depending on
the 3D or 2Dmodel, hence computational complexity may
not be an issue.

5 Other relevant topics pertinent to localization
It is stressed that the main focus of this article is to deter-
mine the performance bounds on single sensor target
localization via multipath exploitation, as well as sen-
sor and target positioning using statistical experimental
design. In the previous sections, the experimental design
techniques and the lower variance bounds on the tar-
get location were formulated under somewhat idealized
assumptions: that the time-delays were already estimated
and associated to each of the resolvable multipath com-
ponents, that all reflections were specular, and that there
was no clutter present. In this section however, we com-
ment briefly on these ideal assumptions and their impact
on target localization.

5.1 Multipath association
In (7), we assumed that we had estimates of the time-
delays which were correctly associated with each of the
multi-path returns (i.e., which wall and which path for that
wall). Going back one step, in the measured range pro-
file, even if the time delays are resolvable, they are not
necessarily ordered as in τi, i = 2, . . . , 7. They are rather
naturally ordered in an ascending order w.r.t their mea-
sured distances. The question is now, how to associate
each of the time-delays to the different paths.
The first time delay, being the shortest, may be asso-

ciated with the direct path. Labeling the remaining time
delay peaks in the range profile may be accomplished by
noting that the second order multipath, namely τp, p =
2, 4, 6 and the first-order multipath, namely τq, q = 3, 5, 7
share a linear relationship with the direct path, τ1 given by,

τq = τ1/2 + τp/2. (23)

Clustering first- and second-order multipath and wall
association is briefly discussed next for completeness;
more details are in [1]. Using (23) and employing a search
using a least squares utility function, the first-order and
second-order multipaths may be clustered together. Let
us assume that the clusters are denoted as vectors given
by τA, τB, τC . After clustering, their wall associations are
still unknown. Since there are three clusters to be associ-
ated to the three walls, there exist 3! permutations. Let us
denote the permutations or models asMj, j = 1, 2, . . . , 3!.
Let the mean vector under the assumption of correct
wall association be denoted as τ o. Now consider another
model-dependent vector τ̃ (Mj) = Pjτ ′, where τ ′ =
[ τ1, τT

A , τ
T
B , τ

T
C ]

T and Pj are the associated permutation
matrices, with the special case of P1 being the identity
matrix of appropriate dimensions. With the distribution
assumptions in (7), for the correct model, the random
vector τ̃ (Mj) − τ o has zero mean, and for other incor-
rect wall associations, themean ismis-specified and hence
non-zero. Then, if we define C(Mj) as the estimated
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covariance matrix after say maximum likelihood estima-
tion of the target location xt , then correct wall association
given by the index ĵ is deduced from

ĵ = argmin
j∈{1,2,...,3!}

ln det{C(Mj)} (24)

The location estimates at ĵ are the estimates of the target
locations at the correct wall association. The cost func-
tion in (24) is the standard information-theoretic model
selection criteria, albeit without the penalizing function
[18]. Not surprisingly, the penalty is irrelevant here since
the free parameters for the 3! models are identical to one
another. This implies that the error residuals (after max-
imum likelihood estimation) may be used equivalently
instead of (24) for associating themultipath with the walls.
Let us denote τ̄ o as the measured or extracted time delays
whose elements are ordered identical to those in τ o. Now
if τ j(x̂

j
t) is the estimated time delay vector as a function of

the jth location estimate x̂jt , then the jth model residual,
Rj, is defined asRj = ||τ̄ o − τ j(x̂

j
t)||2.

5.2 Clutter
Clutter creates spurious time delay peaks in the radar
range profile which are readily confused with genuine tar-
gets. However, clutter may be mitigated in certain circum-
stances. In urban scenarios where there is rich multipath,
the assumption that targets are stationary may not neces-
sarily be true, i.e., urban targets are often moving, albeit
slowly. Furthermore, urban radar scenes consist of several
stationary fixtures (or clutter), for example lamp-posts,
billboards, signs, etc. which could highly be reflective. If
a pulse-Doppler framework is advocated, then stationary
clutter such as those described may be mitigated using
simple moving target indication (MTI) techniques such
as the delay line canceler [19]. For example, using the
simplest two-tap delay line canceler results in the single
sensor technique providing location updates repeatedly
after two consecutive pulse repetition periods throughout
the coherent processing interval (CPI). This is more than
sufficient for urban targets since they are slowly moving.
In general, standard MTI may be sufficient to mitigate

radar returns from stationary clutter, however, there could
be scenarios where MTI is imperfect and clutter returns
are persistent. Furthermore, MTI does not mitigate inter-
actions between the moving targets and stationary clutter.
For such relatively rare (but possible) scenarios, clutter
manifests as spurious persistent peaks in the range profile.
The multipath clustering search described in the previ-
ous section to label and cluster the first- and second-order
multipath before wall association proves useful in isolat-
ing the clutter time delays, provided they are not confus-
able with the multipath returns, i.e., follow for example,

(23) with other multipath time delays. Simulation exam-
ples with extraneous clutter time delays, and application
of the clustering to identify them is demonstrated in
Section 6 for multiple targets.

5.3 Impact of wall roughness
Thus far, we have considered smooth surfaces which result
in ideal specular reflections for the multipath. We investi-
gate if this is realistic, and whether wall roughness would
impact localization via multipath exploitation. In partic-
ular, when the wavelength is comparable to the rough-
ness/depth of groves (craters) in the walls, we ask whether
this leads to severe scattering with several diffuse mul-
tipath components and smearing, and if so, how would
it affect the time-delay estimates, when compared to the
ideal case of smooth scattering from walls. To perfectly
address the impact of wall roughness, a full investiga-
tion using electromagnetic (EM) theory would be needed;
which necessitates, in part, knowledge of the material
properties of the walls, and the various angles of inci-
dence to compute the equivalent reflection coefficients
but for the diffuse multipath components. Here, we take
a higher-level signal processing approach and use sim-
ple, analytically tractable models to evaluate these effects,
to obtain an approximate sense of the impact of wall
roughness on localization.
EM conditions which describe wall roughness into

classes, smooth, slightly rough, moderately rough, and
very rough can be seen in [20], which furthermore
provides a good introduction to modeling rough sur-
faces via radar. Interestingly, from [20], it maybe con-
cluded that for a given incidence angle, a surface appears
rough with decreasing wavelengths, and independent of
wavelength, a surface appears smooth as the incident
angle increases. Typically in urban scenarios, to facili-
tate operational covertness large standoff distances maybe
employed, which lead to large incident angles for most
walls. EM intensive bistatic and backscattering models for
rough walls are beyond the scope of analysis here, but
could be seen in [21-24] and references therein.
Consider Figure 2 which shows an exaggerated rough-

ness texture of say wall-1. The solid blue line is the spec-
ular second-order multipath, and the red dashed-dotted
line is one of the many diffuse second-order multipaths.
The baseline smooth wall is also shown in this figure. The
specular component has the angle of incidence w.r.t to
normal n1 equal to the angle of reflection, θ . Likewise in
Figure 2, the diffuse component has the angle of incidence,
α which is different and not equal to the angle of reflec-
tion β . It is noted that the normals are w.r.t the baseline
smooth walls.
Our wall roughness model is based on using random

perturbations to model roughness, as first pioneered by
Rice [25], and used in for example [21-23] and references
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Figure 2 Exaggerated wall craters to demonstrate roughness:
Dashed black (baseline smooth wall), solid blue (specular
multipath), dashed red (diffuse multipath), dashed-dotted red
and blue (the normals at the reflection points w.r.t the baseline
smooth wall).

therein. That is, to emulate roughness/craters on the wall,
we consider N subreflectors which form the length of the
wall(s). Each subreflector is placed at a random depth
from the baseline smooth wall. The random depths are
chosen from a Gaussian distribution with the means cor-
responding to the locations of the baseline smooth walls,
and the standard deviation as a percentage of the oper-
ating wavelength [5]. To simulate pattern roughness or
in other words texture, the random subreflectors may
be spatially correlated [5,25]. If the spatial correlation is
high, then the craters have a pattern to their roughness;
if not, then the roughness is un-patterned. The multipath
returns from the N subreflectors are superposed, with

each subreflector contributing diffuse multipath (the red
dotted lines in Figure 2).
Since the scattering properties of the random reflec-

tors are unknown, we will weight their contribution in
the radar returns. Selecting or modeling this weighting
function would be an excellent topic for an in-depth EM
investigation. Here however, we propose a simple but flex-
ible weighting model based on several physical realities in
the system. First, it may be shown (using constrained opti-
mization and Lagrange multipliers, for example) that the
length of the blue specular reflection multipath compo-
nent is smaller than any of the diffuse second-order (or
higher-order) red multipath components. This leads us to
design a weighting function as follows: if a subreflector is
closer to the specular point, the overall path length trav-
eled is shorter (and hence experiences lower path loss) and
its diffuse multipath component is weighted higher when
compared to the diffuse multipath from a subreflector
which is much farther away from the specular reflection
point on the wall. It is however stressed that no specu-
lar multipath is intentionally incorporated into our model.
This leads to “locally specular” return signal with many
diffuse components around the specular reflection but of
smaller magnitude.
The model will be evaluated via numerical simulations,

and the specific values assumed by the weighting and
spatial correlation are seen there. We note that both the
weighting and spatial correlation functions are selected
from a fairly general class of functions where one parame-
ter is tunable—this allows ourmodel to incorporate a wide
variety of surfaces.
The diffusemultipath returns from roughwalls may per-

turb the range-profile and hence the time-delay estimates,
which in turn will perturb the target location estimates.
We outline the relationship between the two next. Let
us consider a single wall at first. Assume that �xt :=
[�xt ,�yt]T is the resultant location perturbation arising
from perturbations in the time delays, �τi.
Consider the direct path, first- and second-order multi-

path from wall-1, then

τ1 + �τ1 =2||xt − xr + �xt||
c

,

τ2 + �τ2 =2||x1r − xt − �xt||
c

,

τ3 + �τ3 =τ1/2 + τ2/2 + �τ1/2 + �τ2/2. (25)

Subtracting (1) from (25), we obtain

�τ1 =2
c

[ ||xt − xr + �xt||
||xt − xr|| − 1

]
× ||xt − xr||

�τ2 =2
c

[ ||x1r − xt − �xt||
||x1r − xt|| − 1

]
× ||x1r − xt||

�τ3 =�τ1/2 + �τ2/2 (26)
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Equation (26) maybe simplified further, in particular �τ1
and �τ2 maybe rewritten as

�τ1 =2
c

⎡
⎣

√
1+ ||�xt||2

||xt − xr||2 + 2(∇||xt − xr||)T
||xt − xr||2 �xt − 1

⎤
⎦

× ||xt − xr|| (27)

�τ2 =2
c

[√
1+ ||�xt||2

||x1r − xt||2 + 2(∇||x1r − xt||)T
||x1r − xt||2 �xt − 1

]

× ||x1r − xt||
where ∇(·) is the gradient operator with respect to xt. In
(27), we ignore the (small) terms containing ||�xt||2 in
the square root. Using this and simplifying the resulting
expressions with a binomial expansion results in a linear
equation given by

�τw1 = A1�xt

where �τw1 :=[�τ1,�τ2,�τ3]T and the matrix A1 is
given by

A1 =(2/c)
[∇(||xt − xr||),∇(||x1r − xt||),

∇(||xt − xr||)/2 + ∇(||x1r − xt||)/2
]T .

The analysis until now was for a single wall, i.e., wall-1.
Incorporating the corresponding matrices and time delay
perturbations for the other two walls, we may write

�τ = A�xt (28)

where the vector �τ consists of the direct and multi-
path time delay perturbations form the rough walls-1,2,3.
The matrix A is similar to matrix A1 but in addition con-
sists of gradient vectors of the multipath time delays from
the other two walls, and is straightforward to compute.
The linear system in (28) is overdetermined with �xt =
(ATA)−1AT�τ as the least squares solution. Equation
(28) describes a deterministic relationship between the
time delay and location perturbations. Since the wall
roughness is modeled stochastically, the perturbation bias
and perturbation variance of the location estimates can be
analyzed via Monte Carlo simulations using (28), and are
shown in Section 6.
We remark that when we incorporate wall roughness,

location estimates are biased. It remains to be seen if
target location estimates obtained from range profiles
generated by EM models would also yield a bias. Never-
theless for biased estimates as such, the CRBs previously
derived would not be immediately applicable, and biased
CRBs could be derived instead [16]. However, if one were
to obtain the target location biases a priori, then we would
be able to offset their effect and use the derived CRBs
directly. Formally incorporating wall roughness—via this
stochastic model—into the previous CRBs and experi-
mental design is not straightforward given that the wall

roughness model is random itself. When the wall rough-
ness specifications are unknown, such as the location and
the depth of each subreflector, which is true in practice,
then, it may be more prudent to assume smooth walls and
hence directly apply the results derived here.

6 Simulations
We now proceed to examine various aspects of single-
sensor localization through multipath exploitation using
numerical simulations. All coordinates and dimensions
are in meters unless specified otherwise. The standoff dis-
tance, Dy = 3, is assumed constant in all the simulations.
The noise variance σ 2

p = σ 2,P = 1, 2...7.

6.1 FIMs, multipath preservers, and target positioning
Figure 3 shows the determinant of the FIMs when the
radar is assumed to be at position xr =[−5, 2]T , shown
as ♦. The target position is varied in downrange and
crossrange inside the urban canyon whose dimensions are
D1 = D2 = 20. In these figures, the determinant of
the FIMs are first normalized (the value of σ 2 becomes
irrelevant) by their maximum value and depicted in the
dB scale. The dB scale is employed to clearly show the
dynamic range of the experimental design criteria. Here-
after, the normalization as well as conversion to dBs will
be employed for depicting the design criteria, unless men-
tioned otherwise.
In Figure 3a, we consider the direct path and the mul-

tipath from the first wall (w1) only, and det(F1) is shown
for varying downrange and crossrange target positions.
The blue regions do not experience multipath (multipath
blind), as predicted by its corresponding multipath pre-
server in (4). Themultipath blind zones and visible regions
w.r.t Figure 3a are shown in Figure 4a as a binary image.
The determinants of the FIMs w.r.t the wall 2,3 are shown
in Figure 3b,c, and the corresponding multipath blind and
visible zones in Figure 4b,c. The corresponding walls are
shown as solid white and red lines in Figure 3 and Figure 4,
respectively. It is interesting to note that, for this geome-
try, multipath from the second, i.e., the back wall (w2) is
always present, as the target’s crossrange is varied within
the canyon.
The determinant of the FIM when all the walls are con-

sidered is shown in Figure 3d. When considering walls
1, 2, or 3 individually, there exist several optimal target
locations which maximize the determinant of their corre-
sponding FIMs. As derived in (18) and (19), the optimal
locations lie on circles which are also shown in Figure 3a–
c therefore validating our analysis. The corresponding
circles are also shown in Figure 3d. Interestingly, it is seen
that the optimal locations lie above the intersection of
these circles, and are closer to wall-3 and wall-1. A final
important phenomenon is seen from Figure 3b: a deep
notch all along the radar’s crossrange position is observed.



Setlur and Devroye EURASIP Journal on Advances in Signal Processing 2013, 2013:53 Page 12 of 23
http://asp.eurasipjournals.com/content/2013/1/53

Figure 3 Target positioning: walls (in white), for: (a) w1,(b) w2, (c) w3, (d) all, Radar (♦). Part of the optimal circles for walls-1,2,3 as in (18) and
(19) are shown with solid black lines.

This is the shadow region, i.e., a region where, if a target
was present, nothing behind it would be seen by the radar.
Interestingly, the design criteria similar to (17) but for
wall-2 chooses this as a multipath blind zone even though
the multipath preserver formulation for wall-2 does not
take into account whether a point of reflection is in the
shadow region; the experimental design however does.

6.2 BIMs and sensor positioning
The application of sensor positioning via experimental
design is demonstrated next. In Figure 5a–c, the determi-
nant of the BIMs are shown when walls 1, 2, and 3 are
considered independently, and in Figure 5d when they are
considered together. As in the previous case, themultipath
blind and visible zones can be inferred from Figure 6a–d,
and are determined as explained in the paragraph follow-
ing (21). In these figures, the target prior pdf is uniformly
distributed over the square with (xmax, xmin) = (6, 4)
and (ymax, ymin) = (16, 14), as shown by �. The shadow
region notches are now clearly seen in Figure 5a–c. If
the sensor is placed at these notches, then those corre-
sponding multipath delays will not exist and cannot be

used for subsequent exploitation. As mentioned before,
these shadow region notches are placed automatically by
the experimental design criteria and not by the multipath
preservers. We see from Figure 5d that some of the opti-
mal sensor positions are inside the canyon, and close to
the target prior region. It is noteworthy that these optimal
sensor positions are not on the boresight(s) of the target
prior region. For covertness, it is clear from Figure 5d that
the optimal sensor positions outside the canyon and away
from the target prior will be preferred.
The sensor positioning w.r.t the FIMs are shown in

Figure 7 for a target at the center of the prior region of the
previous example. The results are more or less identical
except that, due to the prior information, the values in the
BIM scenario are slightly higher, but this cannot be seen
due to the normalization employed. However, no straight-
forward comparisons can be made between the two since
the former uses prior information, whereas the latter does
not use the same. Identical shadow region notches are
also clearly seen in the FIM scenario. The multipath blind
and visible regions are shown only for walls 1 and 3 in
Figure 8a,b, respectively.
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Figure 4 Feasible regions: black (blind), white (visible), walls (red)-(a) w1, (b) w2, (c) w3, (d) all, Radar (♦).

6.3 Multipath association, with and without clutter and
higher-order multipath

We now provide a geometric interpretation of the multi-
path association algorithm for associating two targets in
clutter and higher-order multipath. As detection is not
the focus here, a simple peak picking strategy identical to
the one used in [1] is used to extract the multipath time
delays from the range profile. Three higher-order multi-
paths were considered for each of the two targets. The first
higher-order multipath consists of the propagation from
the radar to the target via one reflection each at walls-1,2,
and returning by the same path. The second higher-order
multipath consists of the one-way path propagation iden-
tical to the first higher-order multipath, but returning to
the radar via one reflection at wall-2. Similarly, the third
higher-order multipath consists of the one-way path sim-
ilar to the first case, and the return path is via a single
reflection at wall-3. The first higher-order multipath con-
sists of four reflections in total, whereas the second and
third consist of three reflections each.
To demonstrate the first- and second-order time delay

clustering and wall association, a simulation example is

shown with white Gaussian noise added to the radar
returns. We illustrate a form of “worst-case” analysis for
clustering and associating multipaths with not one, but
two targets in clutter which may arise from target–clutter
interactions or from clutter remnants after MTI, and as
described in Section 5. An SNR of 3 dB and two targets
were assumed at locations (−5.6, 11), and (−16, 4.5). The
noisy range profile after matched filtering is shown in
Figure 9a. Extraneous time delay peaks representing the
stationary clutter is shown in Figure 9a marked with two
arrows. The true direct, true multipath, and true clut-
ter time-delay peak locations are shown with ♦, and the
true higher-order multipath locations are shown with �
in Figure 9a, respectively. For such-low SNR scenarios,
we observed that over a small set of independent trials,
several arbitrary noise peaks were selected, and the prob-
ability of correctly localizing both the targets was 60%.
Theoretical detection criteria as well as rigorous Monte
Carlo analysis are required to analyze the performance in
low-SNR scenarios, and is not the main crux of this arti-
cle. The true locations and the locations of the peaks after
matched filtering are exact up to the second decimal place
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Figure 5 Sensor positioning (BIM): walls (in white), For: (a) w1, (b) w2, (c) w3, (d) all, Target prior (�).

w.r.t the range. The true range of the direct and multipath
peaks is given in Table 1. We outline first the clustering,
and then the wall association algorithms and demonstrate
their performance in simulations.

6.3.1 Clustering of the first- and second-ordermultipath
From Table 1, and from Figure 9a, the first two peaks are
at (6.02,9.41) in meters. The algorithm starts by assum-
ing that the first peak is the direct path of some arbitrary
target. The second peak is initially hypothesized as a first-
order multipath, while the remaining peaks are candidate
second-order multipaths. The relation between the direct
path, I- and II-order multipath as in (23) is then used
to identify the correct cluster. Applying this to the spe-
cific example, from the candidate II-order multipath time
delay estimates, the peak at 12.81m is selected. Hence
(9.41, 12.81) are grouped. Using the same algorithm, the
other peaks (15.91, 25.81) and (17.19, 28.35) are grouped
for the direct path at 6.02m. The second target’s direct
path, I, and II-order multipath are now clearly identi-
fied. Using the same principle, the first target’s direct, I-,
and II-order multipath are identified, whereas the clut-
ter peaks at 15.33 and 22m are outliers and are rejected

from the analysis. Similarly, the higher-order multipath
are treated as outliers by the clustering algorithm and
are rejected. After clustering or grouping the multipath,
their wall associations are unknown and are dealt with
next.

6.3.2 Wall association
There are six permutations for associating the grouped
I- and II-order multipath pairs to the three walls. The
permutation with the least cost (cost defined as in (24)),
or equivalently corresponding to the least model fitting
residual is then selected as the correct wall association.
The model residuals do not convey geometric insights

to wall association, since they are merely numbers. How-
ever, the ellipses and circles as in (2), i.e., the iso-range
contours do. The other ellipses and circles w.r.t walls-2,3
can readily be constructed. A straightforward relation-
ship between the residuals and the circles and ellipses
exist, and can readily be shown. For the correct wall asso-
ciation, the iso-range contours intersect at one location
ideally, giving a low model residual. However, when the
wall associations are incorrect, the iso-range contours do
not all intersect at one location, resulting in a high model
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Figure 6 Feasible regions: black (blind), white (visible), walls (red)—(a) w1, (b) w2, (c) w3, (d) all, Target prior (�).

residual. This thus allows us to visualize the wall associa-
tion algorithm.
The ellipses and circles for the first and second target

at the correct wall association is shown in Figure 9b. In
this figure, the estimated target locations are shown as
(blue square symbol). We have three ellipses correspond-
ing to the I-order multipath from walls-1,2,3. Likewise for
each target we have four circles, the circle centered at the
radar (blue asterisk symbol) is the iso-range contours cor-
responding to the direct path. The other remaining circles
are centered at the virtual radars (red asterisk symbol),
and correspond to the iso-range contours of the II-order
multipath fromwalls-1,2,3. Therefore, in total in Figure 9b
we have 6-ellipses and 8-circles.
We examine the intersections of the elliptical and cir-

cular loci in Figure 10. In this figure, the circles and
ellipses are shown for the six permutations. The grouped
multipath corresponding to the first target located at
(−5.6, 11) was used. In Figure 10a, wall-1 association is
correct whereas the rest are incorrect. In other words,
the ellipses and circles corresponding to wall-1 correctly
intersect at the right target location. Similarly, we see
from Figure 10c,d that wall-2 and wall-3 associations

are correct, whereas the rest are not. In Figure 10f, all
the ellipses and circles intersect the right target loca-
tion; this is the correct wall association. It appears that
Figure 10d,f is more or less identical. This is not true. The
magnified version of Figure 10d in the inset shows three
iso-range contours intersecting at one location, whereas
the rest of the iso-contours intersect at different loca-
tions. In Figure 11a–f, similar elliptical and circular loci
are shown but for the second target at (−16, 4.6). The
circles and ellipses in Figure 11f correspond to the cor-
rect wall association. Interestingly, due to ill-fitting some
of the iso-range contours have purely complex parame-
ters and are therefore not correctly rendered. For example,
and are therefore not correctly rendered. For example, the
ellipse corresponding to wall-2 association in Figure 11a,e
has a complex minor-axis parameter, and is therefore not
correctly shown.
The example assumed that clutter and higher ordermul-

tipath was satisfactorily rejected by the clustering algo-
rithm. In cases when the clutter or higher-order multipath
time delays obey the relation (23) with some of the other
single and double bounce multipath time delay peaks,
they would be clustered incorrectly leading to erroneous
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Figure 7 Sensor positioning (FIM): walls (in white), For: (a) w1, (b) w2, (c) w3, (d) all, Target (◦).

Figure 8 Sensor positioning feasible regions: - black (blind), white (visible), walls (red)—(a) w1, (b) w3, Target (◦).
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Figure 9 Two targets example. (a) 3-dB SNR range profile for two targets and with two clutter peaks (arrows) at 15.33 and 22m, and few higher
order multipath shown by (red triangle symbol), (b) elliptical and circular loci after clustering and wall association. In (b), direct path circles (solid
black) centered at radar (blue asterisk symbol), bistatic ellipses (blue) and monostatic circles centered at virtual radars (red asterisk symbol), w.r.t
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Table 1 True range values of direct path (black), I-order multipath (blue) and II-order multipath (magenta) for first target
at (−5.6, 11) and second target at (−16, 4.5)

Direct path I-order multipath II-order multipath

wall-1 wall-2 wall-3 wall-1 wall-2 wall-3

Target-1 12.72 16.74 16.38 18.84 20.75 20.04 24.95

Target-2 6.02 17.19 15.91 9.41 28.35 25.81 12.81

estimates. A combinatorial approach as in [1] could used
but at a computational cost which increases exponen-
tially with the number of targets or clutter time delay
peaks. Nevertheless, due to the overdetermined system of
equations, correct localization may be achievable by omit-
ting the incorrect cluster from the analysis, provided it is
identified easily from the circular and elliptical iso-range
contour intersections.

6.4 Impact of wall roughness
Finally, we look at the impact of wall roughness on local-
ization performance. Range profiles for rough walls after
matched filtering are shown in Figure 12, for 1, 3, and 10%
roughness in walls-1,2,3. The effects as seen in Figure 12
are for one random realization of the wall roughness per-
centages and for one instance of N = 500 equi-spaced
randomly generated subreflectors for each wall. The loca-
tions of each subreflector on a particular wall is given
by a 2D coordinate vector consisting of a determinis-
tic x or y coordinate (depends on the wall), and the
other coordinate (y or x resp.) whose location (depth) is
randomly chosen. The carrier frequency was chosen to
be 10GHz in these simulations. The standard deviation
of the random depths of the craters for each subreflec-
tor was chosen to be the roughness percentage w.r.t the
operating wavelength. The statistical means of the ran-
dom depths of the craters were assumed to be identi-
cal to the baseline smooth values, as if, the walls were
smooth.
The spatial correlation of the random depths of the sub-

reflectors are assumed to follow an exponential model
with parameter η for walls-1,2,3. Similarly the weight-
ing of the multipath returns from each subreflector are
also assumed to follow an exponential model but with
parameter γ . We denote Zk as the specular deterministic
x-coordinate (for k = 2) or the specular deterministic y-
coordinate (for k = 1, 3) w.r.t wall-k, and similarly denote
Pkn as the corresponding deterministic x-coordinate
(k = 2) or the corresponding deterministic y-coordinate
(k = 1, 3) of the nth subreflector, n = 0, 1, . . . ,N − 1.
With similar notation let us denote Qkn as the random x-
coordinate (k = 1, 3) or random y-coordinate (k = 2). It
is noted that Zk and Pkn are deterministic, whereas Qkn
is random. The weighting function denoted asW(n, k) for
the diffuse multipath radar return from the nth subreflec-
tor on the kth wall, and the spatial correlation function

denoted as S(n1, n2), between the n1th and n2th subre-
flector on the same wall, are given by

W(n, k)= exp (−γ |Zk − Pkn|)
S(n1, n2)=exp (−η|n1 − n2|) , (n1, n2) ∈ 0, 1, . . . ,N − 1

Zk =

⎧⎪⎨
⎪⎩
yAk=1
xBk=2
yCk=3

, Qkn∼

⎧⎪⎪⎨
⎪⎪⎩
N (0, κ2λ2o) k=1

N (D2 + Dy + yr , κ2λ2o) k=2

N (−D1, κ2λ2o) k=3
S(n1, n2)=

{
(Qkn1 − {Qkn1})(Qkn2 − {Qkn2})

}
,

where N (·, ·) denotes the standard normal distribution,
λo is the operating wavelength, and κ = wall roughness %.
The first- and second-order multipaths from each of these
subreflectors are now weighted and superposed along
with the direct path, and expressed as

srough(t) = s(t − τ1)

+
3∑

k=1

N∑
n=1

W(n, k) (s(t−τ1/2−τ̄kn/2) + s(t − τ̄kn))

where τ̄kn is the second-order (double bounce) multipath
time delay from the kth wall and nth subreflector, τ1 is the
direct path. The first-order multipath (single bounce) as
before is sum of half the direct, and half the second-order
multipath time delay. As a particular example, for k = 1,
τ̄1n = 2||xr − u1n||2/c + 2||u1n − xt||2/c, where the coor-
dinate vector of the nth subreflector is u1n =[Q1n,P1n]T
with P1n ∈[ yr +Dy,D2 +Dy + yr]. Similar definitions are
readily derived for k = 2, 3.
The parameters η = 0.3 and γ = 0.3 were used for

generating Figure 12. The canyon dimensions are simi-
lar to those used in Figure 3, with the target located at
(−12, 22). The target RCS was unknown. Due to large
number of diffuse multipath from walls-1,2,3, we made
the target reflectivity slightly higher than the power from
all the received diffuse multipath components. In practice,
the strengths of the time delay peaks in the range pro-
file will depend on several factors such as the monostatic
RCS, bistatic RCS, and of course the material properties of
the walls. If we order the peaks with descending order of
magnitude, the second to the seventh largest peaks are the
first- and second-order multipaths. Indeed we see other
extraneous peaks which are attributed to wall roughness
in Figure 12a–c, and in particular we also see that the
extraneous peaks are stronger for the 10% wall roughness
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a b

c d

e f

Figure 10 Non-coherent localization wall associations for the first target at (−5.6, 11) in Figure 9b, evaluated at the 3! permutations
shown (a)–(f). (f) Shows the correct association with the circles and ellipses intersecting at one common location. Plotting conventions are
identical to Figure 9b.
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a b

c d

e f

Figure 11 Non-coherent localization wall associations for the second target at (−16,4.6) in Figure 9b, evaluated at the 3! permutations
shown (a)–(f). (f) Shows the correct association with the circles and ellipses intersecting at one common location. Plotting conventions are
identical to Figure 9b.
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Figure 12 One realization of range profiles after matched filtering for (a) 1%, (b) 3%, and (c) 10%wall roughness.

case. The coherent loss of SNR is also seen in the first- and
second-order multipath time delay peaks as they widely
fluctuate in their magnitudes for different wall roughness
percentages. In certain cases, we see that some of the
peaks merge while some them split. All of these effects are
due to the random constructive and random destructive
phase effects due to the superposition of the diffuse multi-
path, and result in perturbation of the time delays leading
to perturbation in locations of the target.

6.4.1 Impact of varyingwall roughness and diffuse returns
weighting.

To evaluate the mean perturbation and the variance of the
target perturbation location error, 500 Monte Carlo trials
were performed for varying wall roughness and varying γ .

The target location perturbation is derived from (28) for
each trial. The mean and variance of the perturbation are
given in Table 2. The locations of the local maximums in
the range profile, within a 0.5-m search window on either
side of the true locations of the time delays were used in
the Monte Carlo analysis. In general from the table, and
as expected, the localization perturbation bias increases,
whereas the localization perturbation variance decreases
for increasing wall roughness percentages. Likewise,
both the perturbation bias and variance decrease with
increasing weighting, i.e., γ . Surely, we see some examples
especially for the 3 and 10% scenarios, when these trends
are not followed. Not much attention needs to be focused
on them, as they are attributed to the random effects and
warrant more Monte Carlo trials which nevertheless are

Table 2 Perturbation statistics (downrange, crossrange) for fixed spatial correlation η = 0.3 and various wall roughness
percentages and weighting parameter

Wall roughness (%) 1% 3% 10%

For γ = 0.1

Perturbation bias (m) (0.0246, 0.06) (−0.0039, 0.0882) (−0.0529, 0.1338)

Perturbation variance (m2) (0.0001, 0.0001) (0.0022, 0.0011) (0.0121, 0.0024)

For γ = 0.3

Perturbation bias (m) (0.0201, 0.0756) (0.0037,0.0886) (−0.0173, 0.1148)

Perturbation variance (m2) (0.0001, 0.0001) (0.0008, 0.0008) (0.0041, 0.0012)

For γ = 0.6

Perturbation bias (m) (0.017, 0.0787) (0.0149,0.0802) (−0.0057, 0.099)

Perturbation variance (m2) (0.000, 0.000) (0.0002, 0.0002) (0.0017, 0.0007)
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Table 3 Perturbation statistics (downrange, crossrange) for 10%wall roughness percentage, for a fixed weight
parameter γ = 0.3, and varying spatial correlation, η

Spatial correlation (η ) 0.1 0.5 0.99

Perturbation bias (m) (−0.0207, 0.1097) (−0.0212, 0.1189) (−0.0210, 0.1237)

Perturbation variance (m2) (0.0023, 0.0012) (0.0041, 0.0014) (0.0044, 0.0014)

computationally heavy. On a global scale such as the l2-
norm of the perturbation bias and variance, these trends
are rather followed perfectly.

6.4.2 Impact of varying spatial correlation
The results for the 500 Monte Carlo trials for fixed rough-
ness percentages, fixed weighting but for varying spatial
correlation are shown in Table 3. An insignificant varia-
tion in the results are seen for varying values of η, implying
that texture does not play a large role in target location
perturbations. This is to be expected as the depth of sub-
reflectors are on the order of wavelengths, which are in
millimeters. Hence, their random correlated or random
uncorrelated depths will not perturb the diffuse multipath
time delays (range) significantly, therefore in general not
affecting the perturbation statistics.

6.4.3 Impact of number of sub-reflectors
The results from the 500 Monte Carlo trials with varying
number of subreflectors is shown in Table 4. The weight-
ing, spatial correlation, and wall roughness are assumed
fixed. As a trade-off between computations and accuracy,
any value of N comparable to the operating wavelength as
well as the wall dimensionsmaybe used for the wall rough-
ness model. In our case, the wavelength corresponding to
10GHz is 0.03m. The maximum dimensions of the walls
are 20m in the x − y dimensions. Hence, the dimension
of each subreflector is 0.2m for N = 100 and 0.01m for
N = 2000, both of which are comparable to the wave-
length. Other values of N, for example N = 10, are not
realistic in modeling rough walls for the considered wave-
length. From this table when N = 500, the x-coordinate
of the perturbation bias is higher, and may warrant more
trials. However, the perturbation bias in the y-coordinate
is more or less insensitive to changes in N. The perturba-
tion variance shows insignificant variation w.r.t changes in
N since the minimum value ofN assumed already consid-
ers several diffuse resolvable and possibly several diffuse
unresolvable multipath.

7 Conclusions and future directions
We have performed initial studies into the potential per-
formance of the emerging area of single-sensor-based tar-
get localization scheme which exploits multipath returns,
assuming they are resolvable and the geometry of the
reflecting scene is known. To do so, we assumed a single
target in a rectangular urban canyon comprised of three
walls. For this geometry, Bayesian as well as the classical
Cramér-Rao lower bounds on the target localization error
variance were obtained. It was shown that each contribut-
ing multipath source, namely the walls, increases the FIM
therefore improving the CRBs. Geometrical constraints,
termed “multipath preservers” were derived to ensure
that multipath was physically observable in the radar
returns. Incorporating these into the D-optimal experi-
mental design criteria, we demonstrated that FIMs and
the BIMs aid in anticipating multipath blind zones, per-
mitting optimal sensor or target positioning, and placing
confidence levels on the multipath exploitation proce-
dures. It was seen via simulations that the experimental
design procedures discounted target or sensor positions
in the shadow regions.
Wall roughness was incorporated into the radar returns,

and its impact was shown on localization. Diffuse mul-
tipath from the craters on rough walls led to a bias in
the location estimates when compared to the locations
estimated from their smooth counterparts. As the wall
roughness increases, the location bias increases. Wall
association and multipath clustering were shown to be
essential for correct localization, and were demonstrated
using simulations, and their geometric interpretations, in
the presence of extraneous clutter time delay peaks.
In the single-sensor paradigm, there is a scope for future

research investigations along several directions. First, one
may observe that when multipath is resolvable, it provides
the radar operator with additional degrees of freedom.
That is, from (7), we see that, in the urban canyon setting
with three walls, there are seven multipath components
(or equations) and two unknowns, i.e., the elements in

Table 4 Perturbation statistics (downrange, crossrange) for 10%wall roughness percentage, γ = 0.5, η = 0.3, but for
varying number of subreflectors on walls-1,2,3

Number of subreflectors (N) 100 500 1000 2000

Perturbation bias (m) (−0.0072, 0.1152) (−0.0109, 0.1052) (−0.0017, 0.0980) (−0.0067, 0.1040)

Perturbation variance (m2) (0.0032, 0.0008) (0.0022, 0.0099) (0.0019, 0.0005) (0.0025, 0.0007)
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xt. Until now, we have assumed that the canyon dimen-
sions namely, D1 and D2, are known, which is a standard
assumption in the literature on multipath exploitation
[1-7]. However, one may ask when it is possible to use
the additional degrees of freedom to estimate the canyon
dimensions, given that its geometry is rectangular? Sur-
prisingly, it can be shown numerically that the FIM of the
concatenated vector [ xtT ,D1,D2]T , denoted as Fall, exists
and is non-singular for those target locations satisfying
f1(yA) = f2(xB) = f3(yC) = 1. Using radar returns includ-
ing multipath to estimate building blueprints is not new
and was part of the “visibuilding” program [26], possi-
bly aimed at a multi-sensor sensing framework. However,
since our approach uses a single sensor, a broad measure-
ment campaign must be embarked upon to truly deter-
mine the potential of employing a single sensor in urban
scenarios for estimating the canyon blueprint as well as
the target location. Nevertheless at least analytically, when
f1(yA) = f2(xB) = f3(yC) = 1, the non-singularity of
the FIM Fall states that this is possible. Non-singularity of
the FIM is a sufficient and necessary condition for (local)
statistical identifiability [27]. Indeed in most cases, identi-
fiable models implies estimable parameters [28], there are
of course exceptions, see for example [29]. It is neverthe-
less hoped that the scenario as discussed with respect to
the single sensor is not an example of such an exception.
Second, if a pulse Doppler framework is utilized,

then the additional degrees of freedom provided by the
Doppler could be used to improve multipath cluster-
ing performance, especially when confusable interactions
between target and stationary clutter exists. When the
Doppler information is fused, then the systemwill provide
location updates for every CPI.
Finally, other future directions could include revisiting

the perturbation bias and variance by using an EM inten-
sive rough wall modeling, and compared with the results
from the model assumed here. Sensitivity to localization
should be examined when the canyon dimensions are
slightly in error. Due to the over-determined nature of this
problem, localization could still be possible when some of
the multipath are not detectable or un-resolvable. There-
fore, lastly and more importantly, algorithms to efficiently
tackle such scenarios should be investigated.
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