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Abstract

This article presents a Bayesian algorithm for detection and tracking of a target using the track-before-detect
framework. This strategy enables to detect weak targets and to circumvent the data association problem originating
from the detection stage of classical radar systems. We first establish a Bayesian recursion, which propagates the
target state probability density function. Since raw measurements are generally related to the target state through a
nonlinear observation function, this recursion does not admit a closed form expression. Therefore, in order to obtain a
tractable formulation, we propose a Gaussian mixture approximation. Our targeted application is passive radar, with
civilian broadcasters used as illuminators of opportunity. Numerical simulations show the ability of the proposed
algorithm to detect and track a target at very low signal-to-noise ratios.
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1 Introduction
Most currently available civilian and military radars use
collocated transmit and receive antennas to send an elec-
tromagnetic signal and detect the signal reflected back by
a potential target [1]. However, it has been known since
the 1930s that the antennas used for transmission and
reception can also be located at different positions [2].
Such a configuration, known as passive radar, has received
considerable attention during the last two decades [2,3].
The main reason for this renewed interest is that the
transmitted signal needs neither extra hardware, nor extra
power by using commercial FM or TV broadcasters as
illuminators of opportunity. Moreover, the detection of
targets is covert, since a passive radar does not radiate any
pulsed signal.
In conventional detection strategies, a threshold is

applied on the raw data at a constant false alarm rate
(CFAR) to declare the presence of a potential target [1].
This detection stage generates missed detections and false
alarms due to the presence of clutter. The main diffi-
culty with this approach is the fact that it is not known
a priori whether a thresholded measurement originates
from a target or from clutter. This issue, known as the
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data association problem, can be solved using the well-
knownmultiple hypotheses tracker (MHT) [4] or the joint
probabilistic data association filter (JPDAF) [5]. However,
for low signal-to-noise ratio (SNR) targets, the detection
threshold must be lowered to allow a sufficient probability
of detection, thus generating an excessive number of false
alarms.
An alternative strategy, known as track-before-detect

(TBD), uses unthresholded measurements [6]. There-
fore, TBD methods are generally more computationally
demanding, since all available raw data are processed.
However, TBD methods enable the detection of weak tar-
gets, since the loss of information due to the detection
threshold is removed. The approaches available in the
literature rely mainly on batch or recursive processing.
Methods based on batch processing [7,8] use dynamic
programming on consecutive scans of measurements.
These batch methods have essentially two drawbacks.
Firstly, the target state-space is discretized, thus introduc-
ing quantization errors. Secondly, a detection delay must
be tolerated, since a decision is usually taken only after
processing the entire batch of consecutive scans. Batch
methods not relying on discretized state-spaces include
the ML-PDA [9] and Histogram PMHT [10] algorithms.
Since the focus of this article is on TBD methods pro-
cessing rawmeasurements, we will not considerML-PDA,
which processes thresholded measurements (with a low
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detection threshold). The Histogram PMHT algorithm is
able to update existing tracks but its drawback is that
an external track confirmation or termination mecha-
nism is needed. Methods based on recursive processing
[11-13] use Bayesian filtering on a continuous-valued tar-
get state-space. However, since the observation model
is a nonlinear function of the target state, the required
Bayesian recursion does not admit a closed form. Exist-
ing implementations of the Bayesian recursion use particle
filtering, which has the drawback to be computationally
demanding for high dimensional state-spaces [14]. In this
article, we introduce a novel TBD algorithm based on a
recursive Bayesian methodology. The proposed structure
is inherited from classical radar detection theory, where
the delay/Doppler space is divided into regularly spaced
intervals. Unlike the computationally intensive particle
filtering solution retained in [12], we use a Gaussian
mixture approximation [15] with a single Gaussian per
delay/Doppler bin to propagate the target state probability
density function (pdf) over time. The resulting algorithm
has the following interpretation: the weight (resp. the
mean) of a Gaussian represents the a posteriori probability
that a target is present in the corresponding delay/Doppler
bin (resp. the target state estimate given that a target is
present in the corresponding delay/Doppler bin). At first,
a Gaussian mixture approach, as initially introduced in
[15], may seem impractical since the embedded Kalman
filtering requires the inverse of matrices of size the length
of the observation vector, which is typically very large in
TBD. By fully exploiting the statistical independencies in
the received signal, we will show how to design a tractable
algorithm requiring the inversion of matrices of very small
dimension.
The main technical contributions of this article are as

follows:

• the development of a passive radar system model,
enabling recursive Bayesian TBD filtering to take full
advantage of the statistical independencies at the
matched filter output

• the derivation of a Gaussian mixture implementation
suitable for a global surveillance of the state-space, by
allocating a Gaussian for each delay/Doppler bin

• the introduction of an entropy-based target detection
rule.

Throughout the article, bold letters indicate vectors and
matrices, while Im denotes them × m identity matrix and
0n×m the n×m all-zero matrix. A diagonal matrix, whose
diagonal entries are stored in vector a and whose off-
diagonal entries are zero, is denoted by diag{a}.N (x;m,P)

denotes a Gaussian distribution of the variable x, with
mean m and covariance matrix P. sinc(.) denote the
sinus cardinal function. The dot product of two vectors

u =[u1,u2, . . . ,un]T and v =[ v1, v2, . . . , vn]T is defined as
u.v = ∑n

i=1 uivi.
This article is organized as follows. First, Section 2

describes a system model for passive radar, suitable for
recursive Bayesian TBD. In Section 3, we introduce our
Bayesian recursion for TBD target detection and track-
ing, using a tractable Gaussian mixture implementation.
Finally, in Section 4, the performances of the proposed
algorithm are assessed through numerical simulations and
compared with existing methods.

2 Passive radar systemmodel
2.1 Signal model
An illuminator of opportunity sends a continuous signal
of bandwidth B, whose complex baseband equivalent sig-
nal is denoted by s(t). At the surveillance antenna, the
contribution of a moving target has the form [2]

sr(t) = A(t)ejφ(t)s(t − τ(t)) + w(t). (1)

The time-dependent parameters A, φ and τ denote the
amplitude, the phase and the propagation delay, respec-
tively. In particular, if ν(t) denotes the Doppler frequency
due to the target motion, the first order derivative of φ(t)
is given by 2πν(t). For simplicity, the contribution of clut-
ter and ambient noise is modeled as a zero-mean complex
additive white Gaussian noise (AWGN) w(t), with vari-
ance σ 2. Let xe, xr and x(t) denote the position of the
emitter, surveillance antenna and target in a 3D cartesian
coordinate system. Let v(t) denote the target velocity vec-
tor. Let fc be the carrier frequency and c the speed of light,
then τ(t) and ν(t) can be expressed as [2]

τ(t) = ||x(t) − xe|| + ||x(t) − xr||
c

ν(t) = fc
c
v(t).

(
x(t) − xe

||x(t) − xe|| + x(t) − xr
||x(t) − xr||

)
.

Remark 2.1. The contribution of the direct path and
ground clutter in (1) can be neglected, using the methods
suggested in [3], namely physical shielding, Doppler pro-
cessing, high gain antennas, sidelobe cancellation, adaptive
beamforming or adaptive filtering.

2.2 Matched filtering
We assume that the receiver has a reference channel
[2] able to recover s(t) perfectly. Therefore, coherent
integration can be performed by cross correlating the
received signal with the transmitted signal s(t), shifted
in delay. Let T denote the integration time. Assuming
that T is sufficiently small, the signal parameters A, φ,
and τ in (1) can be considered as constant during each
integration window.
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During the k-th integration window, the output of the
matched filter corresponding to a delay shift t is given by

yk(t) = 1
T

(k+1)T−T/2∫
kT−T/2

sr(θ)s(θ − t)∗dθ (2)

Injecting (1) into (2), we obtain

yk(t) = Aejφ× 1
T

(k+1)T−T/2∫
kT−T/2

s(θ−τ)s(θ−t)∗dθ+nk(t),

(3)

where nk(t) is the noise term

nk(t) = 1
T

(k+1)T−T/2∫
kT−T/2

w(θ)s(θ − t)∗dθ . (4)

Using the change of variable u = θ − t − kT , (3) becomes

yk(t) = Aejφ× 1
T

T/2−t∫
−T/2−t

s(u+kT+t−τ)s(u+kT)∗du+nk(t).

(5)

Define the autocorrelation function (AF) as

χk(t) = 1
T

T/2−t∫
−T/2−t

s(u + kT + t)s(u + kT)∗du (6)

then (5) can be written as

yk(t) = Aejφχk(t − τ) + nk(t). (7)

The noise term nk(t) is Gaussian distributed and has the
following first and second-order statistics

E[ nk(t)] = 0

E[ nk(t)nk(t − θ)∗] = σ 2

T
χk(θ). (8)

Now, sampling the matched filter output at the Nyquist
frequency, i.e. at delay shifts of the form

ti = t0 + i
B
, i = 0, . . . , I (9)

where t0 is the delay associated with the direct path from
the emitter to the surveillance antenna, we obtain the vec-
tor of noisy observations yk =[ yk(t0), . . . , yk(tI)]T for the
k-th integration window. We introduce the notation y1:k
to denote the collection of past and present observation
vectors {y1, . . . , yk}.
Assumption 2.2. The signal s(t) is a noiselike waveform.
Therefore, the autocorrelation function (6) is a assimilated
to a thumbtack function [1], i.e.

χk(t) ≈ 0, if |t| > 1/B.

Figure 1 gives an illustration of an autocorrelation func-
tion satisfying assumption (2.2).
It follows from (8) and (9), that the elements of yk can be

considered as independent Gaussian variables.

2.3 State-space representation
According to Section 2.2, the dynamics of a target at
the k-th integration window can be represented by a
continuous-valued vector xk =[ ak , bk , τk , νk]T , where
ak + jbk , τk and νk denote the target’s complex amplitude,
propagation delay and Doppler frequency, respectively.
Using the dynamical model for the complex amplitude

introduced in [16], we obtain{
ak = cos

(
2πνk−1T

)
ak−1 − sin

(
2πνk−1T

)
bk−1

bk = sin
(
2πνk−1T

)
ak−1 + cos

(
2πνk−1T

)
bk−1.

(10)

Considering that the Doppler frequency is proportional
to the first-order derivative of the delay and using a con-
stant velocity model, the dynamics of the target, at the
discrete time instant k, are described by{

τk = τk−1 − νk−1
T
fc

νk = νk−1.
(11)

Figure 1 Example of autocorrelation function satisfying assumption (2.2).
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Equations (10) and (11) can be written as a discrete-time
process equation

xk = f (xk−1) + uk , (12)

where the process noise uk ∼ N (04×1,Q) accounts for
unmodeled perturbations and is assumed independent of
the observation noise.

2.4 Observation likelihood
Assuming that observation yk(tm) originates from the
Gaussian distributed background noise, according to (8)
its likelihood can be written as

p0(yk(tm)) = N
([

Re(yk(tm))

Im(yk(tm))

]
; 02,

σ 2

2T
I2
)
.

Using the independence of the observations, a property
obtained as a result of assumption (2.2), the likelihood of
the observation vector yk , given that all components orig-
inate from the background noise is given by the following
factorization

p0(yk) =
I∏

m=0
p0(yk(tm)). (13)

Let us now consider an hypothesized target, whose
propagation delay lies in the i-th delay bin [ ti−1, ti], i.e.

ti−1 ≤ τk < ti,

where i ∈ {1, 2, . . . , I}. Again, using the independence of
the observations the likelihood of the observation vector
yk conditioned on xk can be factorized as

p(yk|xk) = p(yk(ti−1), yk(ti)|xk)
∏

m/∈{i−1,i}
p0(yk(tm)),

(14)

where yk(ti−1), yk(ti) (resp. yk(tm), for m �= {i − 1, i})
correspond to the observations affected (resp. unaffected)
by the presence of an hypothesized target in the i-th
delay bin. In Bayesian filtering, the conditional likelihood
needs to be known only up to a proportionality factor (see
Section 3). Therefore, dividing (14) by the constant (13),
we obtain the more convenient likelihood ratio [11]

p(yk|xk) ∝ p(yk(ti−1), yk(ti)|xk)
p0(yk(ti−1))p0(yk(ti))

. (15)

These factorizations will later prove useful in reducing
drastically the complexity of the proposed Bayesian TBD
recursion (see Remark 3.2).
From (7) and the noise statistics in (8), we have

p(yk(ti−1), yk(ti)|xk) = N

⎛
⎜⎜⎝
⎡
⎢⎢⎣

Re(yk(ti−1))
Im(yk(ti−1))
Re(yk(ti))
Im(yk(ti))

⎤
⎥⎥⎦ ; hik(xk),R

⎞
⎟⎟⎠

(16)

where the observation function associated to i-th delay
bin has the form

hik(xk) =

⎡
⎢⎢⎣
Re

(
(ak + jbk)χk(ti−1 − τk)

)
Im

(
(ak + jbk)χk(ti−1 − τk)

)
Re

(
(ak + jbk)χk(ti − τk)

)
Im

(
(ak + jbk)χk(ti − τk)

)
⎤
⎥⎥⎦ (17)

and the noise covariance matrix is R = σ 2

2T I4.

3 Bayesian recursion for TBDmultitarget
detection and tracking

Recursive Bayesian filtering consists in propagating the
a posteriori pdf p(xk−1|y1:k−1) forward in time, so as to
obtain p(xk|y1:k), by taking into account the newmeasure-
ment yk at instant k. It is well-known that this is achieved
by applying successively the following steps [17]:

(1) Prediction

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

(18)

(2) Correction

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1). (19)

Unfortunately, in our case the integral in (18) and the
multiplication in (19) do not admit a closed form due
to the nonlinearities in the dynamics (see (10)) and in
the observation model (see (16)). Therefore, some form
of approximation is needed. For the purpose of target
detection, we assume no prior knowledge about the loca-
tion of a target and not even prior knowledge of its
existence. Thus we seek a Bayesian recursion able to
perform a global surveillance of the entire state-space.
Monte Carlo approaches like particle filtering [11-13]
are not well suited for this propose. The reason is that
the resampling step of particle filtering has a natural
tendency to eliminate prematurely entire regions of the
state-space (corresponding to low particle weights) [18].
This phenomenon prevents long enough coherent inte-
gration for low SNR targets to generate particles with
significant weights, unless a prohibitive number of parti-
cles is employed. As a remedy, we propose a parametric
approach, where the pdfs in (18) and (19) belong to known
distribution families.

3.1 Choice of a distribution family
A usual choice is the Gaussian distribution family [19],
which leads to the simple extended Kalman filter (EKF)
[20] for the desired recursion (18) and (19). Obviously, this
approach would fail here because inherent approxima-
tions due to the linearization of the process equation and
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observation function [20] are invalid on the entire state-
space. Therefore a more careful choice of distribution
family is needed.
We propose to partition the state-space in

delay/Doppler bins of equal size. Let us consider discrete
values of the Doppler frequency variable ν, of the form:

fj = f0 + j	ν, j = 0, . . . , J (20)

where f0 denotes the lowest Doppler value and 	ν the
discretization step. The discretization of the delay in
(9) and Doppler frequency in (20) defines an implicit
partition of the delay/Doppler plane into bins, as illus-
trated by Figure 2. We define the i-th delay bin as
the interval [ ti−1, ti], for i = 1, . . . , I. Similarly, define
the j-th frequency bin as the interval [ fj−1, fj], for j =
1, . . . , J . The delay/Doppler bin (i, j) is then defined
as [ ti−1, ti]×[ fj−1, fj]. The observation function can be
locally linearized with respect to the delay variable τ

inside each delay bin. Similarly, we set the value of 	ν so
that the process equation can be locally linearized with
respect to the Doppler variable ν inside each Doppler bin.
	ν is thus a parameter of choice depending on the radar
application at hand.
We adopt the Gaussian mixture distribution family [15],

with a single Gaussian per delay/Doppler bin of the form

p(xk|y1:k) =
I∑

i=1

J∑
j=1

wi,j
k N (xk : x

i,j
k|k ,P

i,j
k|k). (21)

The mixture weight wi,j
k can be interpreted as the prob-

ability that a target is present in bin (i, j) at instant k.

N (xk : x
i,j
k|k ,P

i,j
k|k) represents the target state pdf, given that

a target is present in bin (i, j) at instant k.
The reason for this choice is that each component of

the Gaussian mixture now verifies locally the linearization
approximation of an EKF. Next, we show how the desired
recursion (18) and (19) can be expressed in closed form,
while preserving the form (21) for each time instant.

3.2 Initialization
Assuming no prior knowledge, the probability of target
presence must be the same in each bin. Also, given that
a target is present in bin (i, j), the target state pdf must
account for the initial uncertainty over the entire bin
extent. Therefore we choose

p(x0) =
I∑

i=1

J∑
j=1

wi,j
0 N (xk : x

i,j
0 ,P

i,j
0 ), (22)

where

wi,j
0 = 1

IJ
,∀(i, j) (23)

xi,j0 =[ 0, 0, (ti−1 + ti)/2, (fj−1 + fj)/2]T ,∀(i, j) (24)

Pi,j
0 = diag{[ σ 2

a , σ 2
a , ((ti−ti−1)/2)2, ((fj−fj−1)/2)2] },∀(i, j),

(25)

where σ 2
a is related to the dynamic range of the target

amplitude.
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Figure 2 Delay/Doppler plane partitioned into bins of equal size.
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3.3 Prediction
Assuming that the a posteriori target state pdf at instant
k − 1 belongs to the Gaussian mixture distribution family
(21), it can be written as

p(xk−1|y1:k−1)=
I∑

i=1

J∑
j=1

wi,j
k−1N (xk−1; x

i,j
k−1|k−1,P

i,j
k−1|k−1).

(26)

Injecting (26) into (18), the predicted target state pdf
becomes

p(xk|y1:k−1) ≈
I∑

i=1

J∑
j=1

wi,j
k−1N (xk ; x

i,j
k|k−1,P

i,j
k|k−1) (27)

where⎧⎨
⎩
xi,jk|k−1 = f (xi,jk−1|k−1)

Pi,j
k|k−1 = Fi,jk P

i,j
k−1|k−1F

i,j
k
T + Q

(28)

and Fi,jk is the jacobian matrix of f (.) with respect to the
state

Fi,jk ≈ ∂f (xk)
∂xk

∣∣∣
xk=xi,jk−1|k−1

.

The demonstration is postponed to Appendix 1.
Remark 3.1. The expression of xi,jk|k−1 and Pi,j

k|k−1 corre-
spond to the well-known EKF prediction step applied to the
Gaussian component in bin (i, j).

3.4 Correction
Injecting (27) into (19), we obtain

p(xk|y1:k) ≈
I∑

i=1

J∑
j=1

wi,j
k N (xk ; x

i,j
k|k ,P

i,j
k|k). (29)

where

andHi,j
k is the jacobian matrix of the observation function

hik(.) with respect to the state

Hi,j
k ≈ ∂hik(xk)

∂xk

∣∣∣
xk=xi,jk|k−1

.

The demonstration is postponed to Appendix 2.
Remark 3.2. The expression of xi,jk|k, P

i,j
k|k correspond to

the well-known EKF correction step applied to the Gaus-
sian component in bin (i, j). However, the expression of the
weight wi,j

k has an extra denominator, which accounts for
the fact that only the observations yk(ti−1) and yk(ti) are
used during the correction step in bin (i, j), while all other
observations in yk are ignored. This simplification, due to
the factorization (14), has a huge impact on the complexity
of the proposed algorithm. Indeed we see from (30), that the
correction step in each delay/Doppler bin requires only a
4× 4matrix inversion. Instead, a straightforward applica-
tion of the original Gaussian sum methodology in [15] (i.e.
using all the elements of yk for the correction step in each
delay/Doppler bin) requires a full-fledged (I + 1) × (I + 1)
inversion per delay/Doppler bin, which makes it unus-
able in practice, even for moderate values of I. In fact, the
idea of reducing the size of on-line matrix inversions for a
single EKF, using an information filter implementation, has
appeared previously in [21]. Here, we use a similar idea
in the context of a Gaussian mixture filter using a bank of
parallel EKFs.

3.5 Per bin mixture reduction
A Gaussian component at instant k − 1 is initially located
by design inside the delay/Doppler bin (i, j), i.e. its mean
vector xi,jk−1|k−1 =[ âi,jk−1|k−1, b̂

i,j
k−1|k−1, τ̂

i,j
k−1|k−1, ν̂

i,j
k−1|k−1]

T

verifies{
τ̂
i,j
k−1|k−1 ∈[ ti−1, ti]

ν̂
i,j
k−1|k−1 ∈[ fj−1, fj] .

(31)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ki,j
k = Pi,j

k|k−1H
i,j
k
T
(
Hi,j

k P
i,j
k|k−1H

i,j
k
T + R

)−1

xi,jk|k = xi,jk|k−1 + Ki,j
k

⎛
⎜⎜⎝
⎡
⎢⎢⎣
Re(yk(ti−1))
Im(yk(ti−1))
Re(yk(ti))
Im(yk(ti))

⎤
⎥⎥⎦ − hik(x

i,j
k|k−1)

⎞
⎟⎟⎠

Pi,j
k|k = Pi,j

k|k−1 − Ki,j
k H

i,j
k P

i,j
k|k−1

wi,j
k ∝

wi,j
k−1N

⎛
⎜⎜⎝
⎡
⎢⎢⎣
Re(yk(ti−1))
Im(yk(ti−1))
Re(yk(ti))
Im(yk(ti))

⎤
⎥⎥⎦ ; hik(x

i,j
k|k−1),H

i,j
k P

i,j
k|k−1H

i,j
k
T + R

⎞
⎟⎟⎠

p0(yk(ti−1))p0(yk(ti))

(30)
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However, due to the target dynamics (during the pre-
diction step) or the observations (during the correction
step), the updated mean vector xi,jk|k at instant k, is not
guaranteed to remain inside the delay/Doppler bin (i, j).
Therefore two situations may arise.
In the first situation, delay/Doppler bin (i, j) hosts sev-

eral Gaussian components (i.e. the target state is now
estimated by a Gaussian mixture) including either the
Gaussian component originally located in bin (i, j) at
instant k − 1 or Gaussian components crossing delay or
Doppler bin boundaries between instant k− 1 and instant
k. For obvious engineering reasons, we cannot allow the
number of Gaussian components to grow exponentially
with time. Thus at instant k, all the Gaussian components
verifying (31) belong to the delay/Doppler bin (i, j) and are
collapsed to a single weighted Gaussian component using
moment matching (see [22, p. 210]).
In the second situation, bin (i, j) is empty (i.e. no

Gaussian component verifies (31) at instant k). In order to
ensure proper surveillance of the entire state-space dur-
ing subsequent time instants, we assign to bin (i, j) the
Gaussian component

εN (xk : x
i,j
0 ,P

i,j
0 ),

where ε is a small weight (fixed to 10−5) and the parame-
ters xi,j0 , P

i,j
0 have been defined in Section 3.2.

Finally, the weights of the Gaussian components must
be renormalized, so that they sum to one.

3.6 Target detection and state estimation
Define Zk as the random variable associated to the deter-
mination of the position of a target in the delay/Doppler
grid of Figure 2, at instant k. Then, Zk is a discrete ran-
dom variable taking values in the ensemble of bins {(i, j)},
with 1 ≤ i ≤ I and 1 ≤ j ≤ J . In Section 3.1, the mix-
ture weight wi,j

k has been defined as the probability that
a target is present in bin (i, j) at instant k. Therefore, the
probability mass function of Zk is

P(Zk = (i, j)) = wi,j
k ,∀(i, j)

and the average uncertainty about the location of a target
in the delay/Doppler grid at instant k, is the entropy of Zk
[23]

Hk = −
I∑

i=1

J∑
j=1

wi,j
k log2(w

i,j
k ), (32)

expressed in bits. We know from information theory, that
the average uncertainty Hk is maximum when Zk is an
equiprobable random variable, which according to (23)
happens when k = 0. As more and more observations are
processed, Hk decreases with k when a target is present.
We consider that a target has been located within one
delay/Doppler bin, if the average uncertainty is strictly less

than 1 bit (which corresponds to an equiprobable choice
between two bins).
If Hk < 1, the delay/Doppler bin containing the

detected target, (ı̂, ĵ ), is obtained by applying the maxi-
mum posterior mode (MPM) criterion. Note that at very
low SNR, Hk must be first order low-pass filtered before
thresholding, in order to eliminate most false alarms.
Then the target state estimate x̂k and covariance P̂k is
obtained by appling the minimum mean-square error
(MMSE) criterion

⎧⎪⎪⎨
⎪⎪⎩
x̂k =

∫
xkN (xk : x

ı̂,ĵ
k|k ,P

ı̂,ĵ
k|k)dxk =xı̂,ĵ

k|k

P̂k =
∫

(xk−x̂k)(xk−x̂k)TN (xk : x
ı̂,ĵ
k|k ,P

ı̂,ĵ
k|k)dxk =Pı̂,ĵ

k|k .

(33)

3.7 Complexity evaluation
The complete target detection and state estimation proce-
dure is summarized in Algorithm 1.

Algorithm 1 Target detection and kinematic state
estimation procedure at instant k = 0, . . . ,K

Initialization:
H0 = log2(IJ)
p(x0) is chosen as (22)
for k = 1 to K do

Prediction: Compute p(xk|y1:k−1) from (27) and (28)
Correction: Compute p(xk|y1:k) from (29) and (30)
Compute Hk from (32)
if Hk < 1 then

A target is detected in bin
(ı̂, ĵ ) = argmax(i,j) w

i,j
k

with state estimation parameters
x̂k = xı̂,ĵ

k|k
P̂k = Pı̂,ĵ

k|k .
else

No target detection.
end if

end for

It is well known that the complexity of one recursion
of the EKF is O(N3

x ) [14], where Nx is the dimension of
the target kinematic state. Neglecting the contribution of
occasional per bin mixture reductions (see Section 3.5)
and of the target detection and state estimation stage
(see Section 3.6), the computational complexity of the
proposed algorithm can be evaluated asO(N3

x IJ) per scan.

4 Simulation results
We consider a digital radio broadcaster as illuminator of
opportunity, sending a digital audio broadcasting (DAB)
signal using transmission mode I [24]. The modulation
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used for the transmitted signal is orthogonal frequency
division multiplexing (OFDM). The duration of an OFDM
symbol is 1,246μs and the total bandwidth is B =
1.536MHz. We can consider a point target model, since
the bistatic range resolution [2] is c/B ≈ 195m, where c
denotes the speed of light. We set the carrier frequency to
fc = 230MHz.
According to [25], the AF of the transmitted signal has

the form

χk(t) = sinc(Bt). (34)

Therefore, assumption (2.2) is satified if we neglect the
secondary lobes of the sinc function in (34). The position
of the surveillance antenna in a 3D cartesian coordi-
nate system is given by xr = [ 0, 0, 0]T and the position
of the emitter is given by xe = [−50 × 103,−50 ×
103,−3]T , where all quantities are expressed in meters.
Then, t0 = 257/B corresponds approximately to the
propagation delay of the direct path between the emitter
and the receiver. The extent of the surveillance volume
(here several tens of kilometers around the surveillance
antenna) is determined by the number of delay shifts,
I = 1150.
Regarding the parameters of the proposed TBD algo-

rithm, the autocorrelation matrix of the process noise in
(12) is set to

Q = diag{[ 0, 0, 0.0022, 0.00042] }.
σa is fixed to 100. This corresponds to a 40 dB SNR dif-
ference between the lowest and highest possible target
SNR, typical of radar applications. Moreover, the size of
the Doppler bins is set to 	ν = 12.54Hz. This value
was found by trial and error, by augmenting progressively
the size of the Doppler bins, until the linearization of
the process equation inside each Doppler bin leads to
an unacceptable deterioration of the proposed method at
low SNR. Besides, due to the limitations imposed on tar-
get velocities, the frequency shifts of interest are in the
interval [−400, 400]Hz, so we set f0 = −400 and J = 64.
For all simulations, a high-speed constant velocity tar-

get, whose parameters are listed in Table 1, is considered.

4.1 Benchmark batch TBD algorithm
In order to assess the performances of the proposed
method, we seek a benchmark algorithm having similar
features in order to provide a fair comparison. Namely,
the benchmark algorithm must be a TBD method, per-
forming a global surveillance of the state-space (i.e. of all

delay/Doppler bins at each scan) and able to detect auto-
matically the presence/absence of a target in the field of
view. The batch processor proposed in [8] is good candi-
date. Joint tracking and detection is achieved using a gen-
eralized likelihood ratio testing strategy (GLRT). In order
to obtain a fair comparison, the delay/Doppler space is
oversampled in such a way that the average running time
per scan is approximately the same as for the proposed
method, that is

ti = t0 + i
2B

, i = 0, . . . , 2I

fj = f0 + j
	ν

3
, j = 0, . . . , 3J .

(35)

Consequently, the benchmarkmethod reduces to a Viterbi
algorithm (VTA), whose cost metric is based on the
squaredmodulus of rawmatched filter outputs (the reader
is referred to [8] for details). Here the raw matched fil-
ter output corresponding to the k-th integration window,
associated to delay ti and Doppler shift fj, is expressed as

yk(ti, fj) = 1
T

(k+1)T−T/2∫
kT−T/2

sr(θ)s(θ − ti)∗e−j2π fjθdθ . (36)

Coherent integration is performed over consecutive scans
indexed by k = 1, . . . ,M forming a batch, where M is a
parameter of choice.
In its original version [8], the benchmark method waits

until the end of each batch before making a decision and
performing the backtracking stage if a target is declared.
Here we use a modified detection rule for the benchmark
algorithm. At each of the M available scans, the cumu-
lated metric of the best path in the VTA is compared to
a threshold, corresponding to a probability of false alarm
fixed to 10−4. With this modification, a target is declared
as soon as one of the M thresholds is exceeded. However,
we choose to begin the backtracking stage only at the end
of the M scans even when the target is detected before,
since revisiting the state history at the end may lead to a
better path.
Neglecting the contribution of the backtracking stage,

the computational complexity of the benchmark batch
TBD algorithm can be evaluated asO(54IJ) per scan.

4.2 Performance comparison
The matched filtering integration time T is chosen small
enough so that the received signal’s phase in (2) (resp. the
received signal’s Doppler in (36)) remains approximately

Table 1 Target parameters

SNR (dB) before Initial position (km) Velocity (m/s) Birth Death

matched filtering x(t = 0) v(t) instant (s) instant (s)

−34 [ 30, 40, 20]T [ 180,−180,−50]T 0.4 1.2
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Table 2 TBD algorithm performances

TBD Algorithm Mean time to CPU time per
detect (s) scan (min)

Proposed method 0.06 0.49

Benchmark method 0.07 0.46

constant during one integration window. Therefore the
proposed TBD (resp. the benchmark TBD) algorithm uses
matched filtering with integration time equal to one (resp.
32) OFDM symbol(s). We assume no prior knowledge
about the existence of the target. Also, no prior knowledge
about the birth and death instants of a target is avail-
able. Therefore, both algorithms are reinitialized every
0.2 s in order to detect a new target appearing in the radar
field of view (or drop a disappearing target). Consequently
for the benchmark TBD method, the VTA processes a
batch of 0.2 s of received signal, that is M = 5 con-
secutive scans given that a scan becomes available every
32 OFDM symbols. The computation resources are mea-
sured as the CPU time per scan, obtained for a Matlab
© implementation of both methods on a 3.16GHz Intel
Xeon machine. Note that from the results in Table 2, the
computation resources consumed by both algorithms are
approximately the same, thus ensuring a fair comparison
between both methods.
We first compare the proposed and benchmark TBD

algorithms in terms of detection performance for the
target parameters in Table 1. Detection performance
is measured in terms of mean-time-to-detect (MTTD)
and probability of detection, Pd. The MTTD is the

average time delay between the onset of a target and its
actual detection. The results in Table 2 show that both
algorithms have approximately the same MTTD. Also,
Figure 3 illustrates the evolution of the detection prob-
ability versus time, beginning at the onset of the target.
The proposed algorithm and the benchmark approach
have comparable detection probabilities. If the target SNR
is further lowered with respect the value in Table 1, the
detection probability drops sharply for both methods.
Such an SNR threshold phenomenon is typical of TBD
radar detection [6].
We now compare both algorithms in terms of estima-

tion accuracy. Let us first consider a single run of the
proposed TBD algorithm. Figure 4 depicts the evolution
of the entropy Hk (see Equation (32)) over time (t). As
expected, in the presence of a target (i.e. for each win-
dow of duration 0.2 s such that t ∈[ 0.4, 1.2]s), the target
is successfully detected since the entropy drops below the
detection threshold. Otherwise when the target is absent,
the entropy remains bounded away from the detection
threshold and no target detection is declared. Figures 5
and 6 show that the normalized bistatic delay (τB) and
Doppler (ν) are estimated with very good precision, but
not before the target is actually detected. The benchmark
TBD algorithm has the opposite behavior. Figures 7 and 8
show that only rough estimates of the normalized bistatic
delay (τB) and Doppler (ν) are produced. This is due
to the inherent quantization of the state-space in delay
and Doppler bins (see Equation (35)). However, thanks to
the VTA backtracking, an estimate is made available for
every scan, even the first one. These results are confirmed
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Figure 3 Probability of detection during a batch: proposedmethod (solid curve), benchmark method (stem curve).
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Figure 4 Entropy evolution (solid) and detection threshold (dotted).

by Monte Carlo simulations. Figures 9 and 10 illustrate
the root mean square errror (RMSE) of the normalized
bistatic delay and Doppler for the proposed method. The
dashed vertical lines correspond to the MTTD after the
beginning of each batch of 0.2 s. We observe that between
the beginning of each batch and the next dashed ver-
tical line, the RMSE can be quite high. This can be
explained by the contribution of the runs during the
Monte Carlo simulations, for which the target has not yet

been detected (i.e. the entropy has not yet dropped below
the detection threshold). We observe that the RMSE of
the normalized bistatic delay is steadily decreasing with
time after the MTTD is reached and converges to a
small value, namely 0.05. A similar behavior is observed
for the RMSE of the Doppler shift, which converges
to 0.3Hz.
For the benchmark method, Figures 11 and 12 illustrate

the RMSE of the normalized bistatic delay and Doppler,

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
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830.5
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Figure 5 Normalized bistatic delay: true value (solid) and proposed TBD estimate (dotted).
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Figure 6 Doppler shift: true value (solid) and proposed TBD estimate (dotted).

respectively. Due to the quantization of the state space,
those quantities need not be decreasing with time. For
instance, the normalized bistatic delay drifts away from
the nearest grid point during the target existence (see
Figure 7). Moreover, the RMSE of the normalized bistatic
delay (resp. the RMSE of the Doppler) has a maximum
value of 0.25 (resp. 2.5Hz). As expected, these values cor-
respond approximately to 50% of the grid size in (35).

Therefore, the proposed TBD algorithm outperforms the
benchmark method in terms of estimation accuracy. If the
target SNR is increased, the estimation RMSE decreases
(resp. remains constant) for the proposed method (resp.
for the benchmark method). This feature may be valu-
able in counter-battery radars or for weapon fire con-
trol systems, which need to locate a target as precisely
as possible.
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Figure 7 Normalized bistatic delay: true value (solid) and benchmark TBD estimate (dotted) relatingM = 5 consecutive scans.
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Figure 8 Doppler shift: true value (solid) and benchmark TBD estimate (dotted) relatingM = 5 consecutive scans (+).

5 Conclusions
We have presented a novel TBD algorithm for weak
radar target detection. The proposed method, derived
by applying Bayesian filtering on raw matched filter out-
puts, cannot be obtained analytically due to nonlinear-
ities in the process and observation models. Therefore,
an approximation in the form of a Gaussian mixture
implementation is introduced, that reduces to a bank

of interacting EKFs. The proposed method has two dis-
tinctive features. Firstly, comparing to existing Gaussian
mixture filters, the exploitation of the independencies at
the matched filter output reduces drastically the com-
putational complexity of the EKFs. Secondly, by allocat-
ing a Gaussian component to each delay/Doppler bin,
a global surveillance of the state-space is ensured for
each scan.
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Figure 9 Normalized bistatic delay RMSE for the proposed TBDmethod.
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Figure 10 Doppler shift RMSE for the proposed TBDmethod.

With focus on a passive radar application using digital
audio broadcasters as illuminators of opportunity, we have
shown that the proposed approach outperforms classical
TBD strategies based on the VTA.
Future work will tackle the problem of finding a

Markov Chain Monte Carlo implementation of the
proposed work with acceptable complexity. Indeed, a
naive particle-based implementation is unable to explore

the entire state-space without omission, unless a pro-
hibitive number of particles is used. This phenomenon
is related to the resampling step of particle filtering,
which has a natural tendency to eliminate prematurely
entire regions of the state-space before a weak target
gets even a chance to emerge with sufficient weight.
Finally, an extension to multi-target scenarios will also
be considered.
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Figure 11 Normalized bistatic delay RMSE for the benchmark TBDmethod.
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Figure 12 Doppler shift RMSE for the benchmark TBDmethod.

Appendix 1: Proof of the prediction step (27)
Injecting (26) into (18), we have

p(xk |y1:k−1)

=
I∑

i=1

J∑
j=1

wi,j
k−1

∫
p(xk |xk−1)N (xk−1 :x

i,j
k−1|k−1,P

i,j
k−1|k−1)dxk−1.

By linearizing the process equation (12) around xi,jk−1|k−1,
we have

xk ≈ f (xi,jk−1|k−1) + Fi,jk (xk−1 − xi,jk−1|k−1) + uk ,

uk ∼ N (04×1,Q),

where Fi,jk is the jacobian matrix of f (.) with respect to the
state

Fi,jk ≈ ∂f (xk)
∂xk

∣∣∣
xk=xi,jk−1|k−1

.

It follows that locally around xi,jk−1|k−1

p(xk |xk−1) ≈ N
(
xk ; f (x

i,j
k−1|k−1) + Fi,jk (xk−1 − xi,jk−1|k−1),Q

)
.

Finally, we obtain (see for instance [26, p. 38])∫
p(xk|xk−1)N (xk−1; x

i,j
k−1|k−1,P

i,j
k−1|k−1)dxk−1

≈ N
(
xk ; f (x

i,j
k−1|k−1),F

i,j
k P

i,j
k−1|k−1F

i,j
k
T + Q

)
,

which is the desired result.

Appendix 2: Proof of the correction step (29)
Injecting (27) into (19), we have

p(xk|y1:k) ∝
I∑

i=1

J∑
j=1

wi,j
k−1N (xk ; x

i,j
k|k−1,P

i,j
k|k−1)p(yk|xk).

Using (15), this expression becomes

p(xk|y1:k) ∝
I∑

i=1

J∑
j=1

wi,j
k−1N (xk ; x

i,j
k|k−1,P

i,j
k|k−1)

× p(yk(ti−1), yk(ti)|xk)
p0(yk(ti−1))p0(yk(ti))

.

A local linearization of the observation function (17)
around the xi,jk|k−1 leads to

hik(xk) ≈ hik(x
i,j
k|k−1) + Hi,j

k|k−1(xk − xi,jk|k−1)

where

Hi,j
k ≈ ∂hik(xk)

∂xk

∣∣∣
xk=xi,jk|k−1

.

It follows from (16) that locally around the xi,jk|k−1

p(yk(ti−1), yk(ti)|xk) ≈N

⎛
⎜⎜⎝
⎡
⎢⎢⎣

Re(yk(ti−1))
Im(yk(ti−1))
Re(yk(ti))
Im(yk(ti))

⎤
⎥⎥⎦ ;

hik(x
i,j
k|k−1) + Hi,j

k|k−1(xk − xi,jk|k−1),R
)
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Finally, we obtain (see for instance [26, p. 40–41])

N (xk ; x
i,j
k|k−1,P

i,j
k|k−1)p(yk(ti−1), yk(ti)|xk)

∝ N

⎛
⎜⎜⎝xk ; x

i,j
k|k−1 + Ki,j

k

⎛
⎜⎜⎝
⎡
⎢⎢⎣

Re(yk(ti−1))
Im(yk(ti−1))
Re(yk(ti))
Im(yk(ti))

⎤
⎥⎥⎦ − hik(x

i,j
k|k−1)

⎞
⎟⎟⎠ ,

Pi,j
k|k−1 − Ki,j

k H
i,j
k P

i,j
k|k−1

⎞
⎟⎟⎠

× N

⎛
⎜⎜⎝
⎡
⎢⎢⎣

Re(yk(ti−1))
Im(yk(ti−1))
Re(yk(ti))
Im(yk(ti))

⎤
⎥⎥⎦ ; hik(x

i,j
k|k−1),H

i,j
k P

i,j
k|k−1H

i,j
k
T + R

⎞
⎟⎟⎠
(37)

where Ki,j
k is the Kalman gain matrix defined in (30). This

completes the demonstration.
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