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Abstract

The application of supervised learning machines trained to minimize the Cross-Entropy error to radar detection is
explored in this article. The detector is implemented with a learning machine that implements a discriminant function,
which output is compared to a threshold selected to fix a desired probability of false alarm. The study is based on the
calculation of the function the learning machine approximates to during training, and the application of a sufficient
condition for a discriminant function to be used to approximate the optimum Neyman–Pearson (NP) detector. In this
article, the function a supervised learning machine approximates to after being trained to minimize the Cross-Entropy
error is obtained. This discriminant function can be used to implement the NP detector, which maximizes the
probability of detection, maintaining the probability of false alarm below or equal to a predefined value. Some
experiments about signal detection using neural networks are also presented to test the validity of the study.
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1 Introduction
In this article, an extension of the theoretical study
presented in [1] about the capability of supervised
learning machines to approximate the Neyman–Pearson
(NP) detector is presented. This detector can be
implemented by comparing the likelihood ratio, �(z),
to a detection threshold fixed taking into account
Probability of False Alarm (PFA) requirements, as
stated in expression (1) [2,3], being f (z|Hi), i ∈
{0, 1}, the likelihood functions under both, the null
(H0) and the alternative (H1) hypothesis.

�(z) = f (z|H1)

f (z|H0)

H1
≷
H0

η(PFA) (1)

The NP criterion has been widely used in radar applica-
tions. The robustness of the likelihood ratio detector for
moderately fluctuating targets was studied in [4]. In the
last years, considering also radar applications, the NP cri-
terion has been applied in MIMO radars [5,6], distributed
radar sensor networks [7], and for the detection of ships in
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marine environments [8]. The NP criterion has also been
applied in some other topics: watermarking [9,10], fault-
induced dips detection [11], detection in sensor networks
[12], disease diagnosis [13,14], biometric [15], or gravita-
tional waves detection [16]. Great efforts are being made
nowadays to solve a number of problems related to signal
detection in noise [17].
For the NP detector to be implemented, both likelihood

functions must be known. Usually, statistical models of
interference and targets are assumed and their param-
eters are estimated using the available data. Obviously,
detection losses are expected when the interference or tar-
get statistical properties vary from those assumed in the
design. In addition, when some of the parameters are ran-
dom, and the composite hypothesis tests must be used,
the average likelihood ratio can lead to intractable inte-
grals that should be solved by numerical approximations.
The usage of learning machines based detectors, allows us
to approximate the NP detector, just using training data
obtained experimentally, without knowledge of the like-
lihood functions. The main advantage of this approach
is that no statistical models have to be assumed during
the design, and if a suitable error function is used during
training, a good approximation to the optimal NP detector
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is obtained [1]. The main drawback is the difficulty of
obtaining representative training samples, and the defini-
tion of the most suitable learning machine architecture.
The application of supervised learning machines to

approximate the NP detector has already been studied.
The easiest way is to use a learning machine with only
one output, which is compared to a threshold in order
to decide in favor of the null or the alternative hypoth-
esis. The threshold is used to fix the desired PFA. This
scheme has been used previously is several works [1,18-
20]. An equivalent implementation consist in varying the
bias of the output neuron [21,22]. A different approach
is used in [23]: a two-output NN with outputs in (0, 1)
was used, comparing the subtraction of both outputs to
a threshold. This approach is equivalent to using a NN
with only one output and desired outputs {−1, 1} [24].
More recently, Radial Basis Function Neural Networks
(RBFNN) have also been applied to approximate the NP
detector [25-27]. Support Vector Machines (SVMs) have
been applied to signal detection in background noise [28].
Finally, detectors based on committee machines have also
been proposed [29-32].
The possibility of approximating the NP detector using

adaptive systems trained in a supervised manner was
studied in [33]. A sufficient condition for a discriminant
function to be suitable for implementing the NP detec-
tor was obtained. In [1], those results were used to carry
out a more general study about the capability of learning
machines to approximate the NP detector when they are
trained in a supervisedmanner to minimize an error func-
tion, demonstrating that the Sum-of-Squares error is suit-
able to approximate the NP detector, and the Minkowski
error with R = 1 is suitable to approximate the minimum
probability of error classifier. With R = 1, the Minkowski
error reduces to the mean absolute deviation.
The Sum-of-Squares error is optimal for training super-

vised learning machines in order to detect or to classify
Gaussian signals. If non-Gaussian interference is assumed
in the radar, probably there exists some other error func-
tions which give rise to better results, motivating the study
to know if they fulfil the sufficient condition established
in [1,33]. In this article, one more error function is con-
sidered, the Cross-Entropy error. The study demonstrates
that the Cross-Entropy error is also suitable to be used for
training supervised learning machines in order to approx-
imate the NP detector, even improving the performance of
learning machines trained with the Sum-of-Squares error.
The article is structured as follows: In Section 2, the

problem this article deals with is presented. The function
that a learning classifier with one output approximates
to, when has been trained to minimize the Cross-Entropy
error, is calculated in Section 3. The condition stated in
[1] is applied to demonstrate that the approximated func-
tion is useful to approximate the NP detector. In Section 4,

some experiments are presented to illustrate the previous
theoretical studies. Finally, in Section 5 themain contribu-
tions of this article are summarized, and conclusions are
extracted.

2 Problem statement
The usefulness of supervised learning machines trained
to minimize the Sum-of-Squares error to approximate
the NP detector, and the usefulness of the Minkowski
error with R = 1 to approximate the minimum proba-
bility of error classifier, have been demonstrated in [1].
In this article, we extend the study to the Cross-Entropy
error. The discriminant function the learning machine
approximates to after training is obtained, and the suffi-
cient condition stated in [33] is applied. The detector is
implemented by comparing the output of the discriminant
function to a threshold. The final approximation error
will depend on the selected error function, the selected
training and validation sets, the system structure, and the
training algorithm [34]. In order to obtain a good approxi-
mation, the training set must be a representative subset of
the input space, the function implemented by the learning
machine must be sufficiently general that there is a choice
of adaptive parameters which makes the error function
sufficiently small, and the learning algorithm must be able
to find the appropriate minimum of the error function
[35].
In our study, a learning machine with one output is

considered, that is used to classify input vectors z =
[ z1, z2, . . . , zL]T into two hypotheses or classes, H0 and
H1, which stand for the absence of target and for its pres-
ence, respectively, in radar detection problems. The basic
detector scheme is represented in Figure 1.
Given a decision rule, let Zi be the set of all possible

input vectors that will be assigned to hypothesis Hi, and
Z the ensemble of all possible input vectors (Z0 ∪ Z1 =
Z). The output of the learning machine is represented by
F(z), and the desired output by tHi . A training set, Z =
Z0∪Z1, where Z1 is composed ofN1 training patterns from
hypothesisH1, and Z0 is composed ofN0 training patterns
from hypothesis H0 (N = N1 + N0), is available.
In order to study the suitability of the error function

to be used to approximate the NP detector, the same
strategy applied in [1] is used. The function the learning
machine approximates to after training is obtained, as a
function of the likelihood functions and the prior proba-
bilities. The implemented detector compares the learning
machine output to a threshold η0, which varies to fix the
PFA. The NP detector is usually implemented by compar-
ing the likelihood ratio to a threshold ηlr , fixed according
to the required PFA. A sufficient condition has been estab-
lished in [1,33], which states that for a learning machine
to approximate the NP detector, the relation between ηlr
and η0 doesn’t depend on the input vector.
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Figure 1 Scheme of the learning classifier-based detector to approximate the NP optimum detector.

In the following sections, in order to obtain the func-
tion the learning machine approximates to after training,
the strong law of large numbers is going to be applied
[36]. It asserts that if 〈Xi〉 is a sequence of independent
and identically distributed random variables which has an
expectation μ, then:

μ = lim
N→∞

1
N

N∑
i=1

Xi (2)

3 Discriminant function approximated by a
learning-machine trained tominimize the
cross-entropy error

The error function to be studied is the Cross-Entropy
Error [34,37], defined in the following expression, when
a one output learning machine is considered, the desired
outputs are one and zero, and F(z) : Z −→ (0, 1) (the
function implemented by the system maps Z into the
interval (0, 1)):

E = − 1
N

⎡
⎣ ∑
z∈H1

ln[ F(z)]+
∑
z∈H0

ln[ 1 − F(z)]

⎤
⎦ (3)

If the number of patterns tends to infinity (N → ∞), the
error can be expressed as follows:

Em=− lim
N→∞

⎡
⎣N1
N

1
N1

∑
z∈H1

ln[ F(z)]+N0
N

1
N0

∑
z∈H0

ln[ 1 − F(z)]

⎤
⎦

(4)

Applying the strong law of large numbers, expression (5)
is obtained:

Em = −
∫
Z

(
P(H1)f (z|H1) ln(F(z))

+P(H0)f (z|H0) ln(1 − F(z)
)
dz

(5)

The function F(z) that minimizes Em, which will be
denoted by F0(z), is obtained using calculus of variations,
and particularly the Euler-Lagrange differential equation
[38,39]. The calculus of variations can be used to find the

function F(z) that minimizes the functional J(F) defined
as follows:

J(F) =
∫
Z
I
(
z, F(z),

∂F(z)
∂z1

,
∂F(z)
∂z2

, . . . ,
∂F(z)
∂zL

)
dz,

(6)

where z =[ z1, z2, . . . , zL]T , I is twice differentiable with
respect to the indicated arguments, and F is a function in
C2(Z) that assumes prescribed values at all points of the
boundary δZ of the domain Z . The function F that mini-
mizes J(F) can be obtained by solving the Euler-Lagrange
equation (7), where F ′

k = ∂F
∂zk .

∂I
∂F

−
L∑

k=1

∂

∂zk

(
∂I
∂F ′

k

)
= 0 (7)

In our problem, J(F) = Em(F), and I(z, F(z)) = −P(H1)
f (z|H1) ln(F(z)) − P(H0)f (z|H0) ln(1 − F(z)), which does
not depend on the first derivatives of F. Therefore, F only
needs to be defined in C0(Z) and the Euler-Lagrange
equation reduces to:

∂

∂F
(−P(H1)f (z|H1) ln(F(z))−P(H0)f (z|H0) ln(1 − F(z))

)= 0

(8)

The function F0(z) that minimizes Em is given in (9) and
the detection rule is obtained by comparing F0(z) to η0
(10).

F0(z) = P(H1)f (z|H1)

P(H1)f (z|H1) + P(H0)f (z|H0)
(9)

P(H1)f (z|H1)

P(H1)f (z|H1) + P(H0)f (z|H0)

H1
≷
H0

η0 (10)

Dividing the numerator and denominator of the left side
of rule (10) by f (z|H0), an equivalent rule can be obtained,
which is a function of the likelihood ratio:

P(H1)�(z)
P(H1)�(z) + P(H0)

H1
≷
H0

η0 (11)

Extracting the likelihood ratio, a new equivalent rule
(12) can be derived, which compares the likelihood ratio
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to a new threshold, ηlr . The expression which relates ηlr
and η0 is presented in (13):

�(z)
H1
≷
H0

P(H0)η0
P(H1)(1 − η0)

= ηlr (12)

η0 = ηlrP(H1)

P(H0) + ηlrP(H1)
(13)

The relation between ηlr and η0 does not depend on
the input vector, z. Thus, according to the sufficient con-
dition proposed in [1,33], the detection rule (10) is an
implementation of the NP detector.

4 Experiments
In this section, detectors based on Multilayer Perceptrons
(MLPs) are designed for three cases studies: detection
of colored Gaussian signals in white Gaussian interfer-
ence, detection of colored Gaussian signals in correlated
Gaussian clutter plus white Gaussian noise, and detection
of non-fluctuating targets in K-distributed interference
[40,41]. In practical situations, the statistical properties
of the interference can be estimated and tracked to some
degree, but the target parameters are very difficult to esti-
mate. When the target parameters are unknown, the NP
detector is built with the Average-Likelihood ratio, that is
compared to a threshold. The three cases study have been
selected because the optimum NP detector can be easily
approximated using a Maximum Likelihood estimator of
the Average-Likelihood ratio.
Two strategies are followed to check the performance of

the proposed detectors:

• First, the supervised learning machine-based
detectors are compared with an approximation of the
NP detector. The Average-Likelihood ratio is
approximated by a Maximum-Likelihood estimator,
based on the Constrained Generalized Likelihood
Ratio (CGLR) [42]. The CGLR is built with a number
of filters equal to the dimension of the input vector
(L). An increase in the number of filter does not
produce a significant improvement in the
performance of the CGLR.

• Second, the detectors obtained after training the
MLPs with the Cross-Entropy error, are compared
with the equivalent obtained after training with the
Sum-of-Squares error, and the Minkowski error with
R = 1. These comparisons are only performed for the
first case study, due to space limitations, but similar
comparative results are obtained in the other two
cases study. The comparison is completed with a
representation of PD versus SNR for the best
detectors obtained with the different error functions,
for the first case study.

The Receiver Operating Characteristic (ROC) curves of
all the considered detectors are represented, to show the
validity of our approach.

4.1 Considered detection problems
The following detection problems are studied in this arti-
cle, to assess the capability of learning machines trained
to minimize the Cross-Entropy error to implement good
approximations of the NP optimum detector:

• Case study 1: Detection of Gaussian fluctuating
targets in presence of Additive White Gaussian Noise
(AWGN). This case corresponds to target detection
in the clear conditions. This case study has been
subdivided into two:

– Detection of Gaussian targets with unknown
correlation coefficient.

– Detection of Swerling I (SWI) targets with
unknown Doppler shift.

• Case study 2: Detection of Gaussian fluctuating
targets in presence of correlated Gaussian clutter and
AWGN. This model can be used for target detection
in AWGN and sea/land clutter with low resolution
radar systems, or high resolution radar systems with
incidence angle higher than 10 degrees. Again, this
case study has been subdivided into two:

– Detection of Gaussian targets with unknown
correlation coefficient.

– Detection of SWI targets with unknown
Doppler shift.

• Case study 3: Detection of non fluctuating targets in
presence of spiky K-distributed clutter (ν = 0.5,
where ν is the shape parameter of the
K-distribution). This model is suitable for target
detection in sea/land clutter with high resolution
radar systems and low grazing angles. In this case, the
problem of detecting Swerling V (SWV) targets with
unknown Doppler shift is considered.

4.2 Detectors architecture, training and test parameters
Multilayer Perceptrons with real arithmetic are designed.
Each MLP has an input layer, one hidden layer, and one
output. In these examples, a pulsed radar which provides
eight complex-valued echoes in each exploration, due to
antenna rotation and beamwidth, is considered (this is
the usual case in air traffic control radars). Each complex
valued echo consist of the in-phase and quadrature com-
ponents. Considering that the input vector is composed
of eight complex valued echoes, L = 16 real inputs are
required. The dependence of performance on the number
of neurons in the hidden layer (M) is studied. The output
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is compared to a hard threshold, selected according to
PFA (Figure 1). According to this, the architectures of
the MLPs are labeled with MLP L/M/1. The activation
function of the processing units is the sigmoidal one.
For training the different MLPs, a training set com-

posed of 50, 000 patterns has been used. The training set
consists of patterns belonging to both hypothesis, that
are considered with equal prior probabilities (the same
number of patters forH0 andH1). A cross-validation strat-
egy has been used during training to avoid over-fitting,
following the k-fold approach with k = 5. The valida-
tion set is composed of 10, 000 patterns, 5, 000 from each
hypothesis.
For testing, a different set of patterns has been used.

The number of patterns under hypothesis H0 is 2 · 107, to
estimate PFA values higher than 10−6 using conventional
Monte-Carlo simulation with a relative error lower than
10%, while the number of patterns under hypothesis H1 is
5 · 104, to estimate PD.
The algorithm used for training with the Cross-Entropy

error is the one described in [43], while the algorithm
used for training with the Sum-of-Squares error and the
Minkowski error (R = 1), is the Conjugate Gradient
method [44].

4.3 Results
In this subsection the results obtained for the above men-
tioned detection problems are presented. Different Signal
to Interference Ratios (SIR) are considered in the exper-
iments to obtain PD > 0.8 for PFA values of interest in
radar applications. The SIR becomes the Signal to Noise
Ratio (SNR), when the interference is only noise, and Sig-
nal to Clutter Ratio (SCR), when the interference is only
clutter. For the MLPs, the influence of the number of hid-
den neurons, and therefore, the influence of the learning
machine architecture is studied too. In some of the cases,
the results are better when the number of hidden neurons
is higher, but for detecting targets in spiky K-distributed
clutter, very good results are obtained even with a low
number of neurons in the hidden layer. This is because
the surface which separates the acceptance regions of both
hypothesis in the optimum detector can be approximated
with a simpler architecture. In all the cases, there exists an
architecture of the neural network that guarantees a very
good approximation to the optimum detector, when the
neural network is trained with the Cross-Entropy error.

4.3.1 Detection of Gaussian fluctuating targets in AWGN
First, the detection of Gaussian fluctuating targets with
unknown correlation coefficient in AWGN is studied. In
this case, the SNR is 7 dB. MLPs with a number of hid-
den neurons which varies from 14 to 23, in steps of 3, have
been trained and tested. The ROC curves of the detectors
based on MLPs trained with the Cross-Entropy error are

presented in Figure 2. As higher the number of neurons,
better the approximation to the CGLR detector, demon-
strating that the optimum detector can be approximated
with a MLP if the number of freedom parameters of the
architecture to be fitted during training is high enough for
the considered detection problem.
For comparison purposes, MLPs have been trained to

minimize the Sum-of-Squares error and the Minkowski
error (R = 1). The ROC curves are presented in Figures 3
and 4, respectively. The results training with the Sum-
of-Squares error show high variability, and the results
training with the Minkowski error (R = 1) are clearly
worse, as expected from the theoretical study presented
in [1], and with high variability too. To show the depen-
dence with SNR, the best MLP-based detectors have been
selected, and tested with different SNR values. The results
are presented in Figure 5.
In a second experiment, the SWI targets with unknown

Doppler shift in AWGN is considered. The Doppler shift
is modeled as a uniform random variable in the interval
[ 0, 2π ). In this case, the SNR is 10 dB. Again, MLPs with
different number of hidden neurons have been trained and
tested with the Cross-Entropy error, the Sum-of-Squares
error, and the Minkowski error (R = 1), to study the
dependence of performance on the network architecture.
The number of hidden neurons that has been considered
varies from 14 to 23, in steps of 3. The ROC curves are
presented in Figures 6, 7 and 8.
The results obtained training with the Cross-Entropy

error are clearly the best. The results obtained training
with the Sum-of-Squares error show higher variability
and are slightly worse. The results obtained training with

Figure 2 ROC curves of the MPLs with different number of
hidden neurons, trained to minimize the Cross-Entropy error for
detecting Gaussian targets with unknown correlation coefficient
in AWGN.
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Figure 3 ROC curves of the MPLs with different number of
hidden neurons, trained to minimize the Sum-of-Squares error
for detecting Gaussian targets with unknown correlation
coefficient in AWGN.

the Minkowski error (R = 1) are clearly the worst, as
expected.

4.3.2 Detection of Gaussian fluctuating targets in presence
of correlated Gaussian clutter and AWGN

In this section, we focus on the study of the Cross-Entropy
error function. The results obtained with the other two
above mentioned error functions are not presented, due
to space limitations, but similar conclusions could be
extracted in this case. Now, the number of hidden neu-
rons varies from 14 to 20, in steps of 3, because a good

Figure 4 ROC curves of the MPLs with different number of
hidden neurons, trained to minimize the Minkowski error
(R = 1) for detecting Gaussian targets with unknown correlation
coefficient in AWGN.

Figure 5 Variation of PD versus SNR, for the best detectors
obtained training with the Cross-Entropy error (MLPent ), the
Sum-of-Squares error (MLPmse), and the Minkowski error
(R = 1) (MLPmae).

approximation to the NP detector can be obtained with a
simpler architecture.
In this case, the detection of Gaussian fluctuating targets

in correlated Gaussian clutter and AWGN is considered.
The level of interference is expressed with the SIR, but
the clutter to noise ratio (CNR) should also be known.
Again, two different kinds of targets are considered: those
with unknown correlation coefficient (ρt), and Swerling
I targets with unknown Doppler shift (the Doppler shift
is modeled as a uniform random variable in the interval
[ 0, 2π)).

Figure 6 ROC curves of the MPLs with different number of
hidden neurons, trained to minimize the Cross-Entropy error for
detecting Swerling I targets with unknown Doppler shift in
AWGN.
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Figure 7 ROC curves of the MPLs with different number of
hidden neurons, trained to minimize the Sum-of-Squares error
for detecting Swerling I targets with unknown Doppler shift in
AWGN.

The results for the detection of correlated Gaussian
targets in correlated Gaussian clutter and AWGN are
presented in Figures 9 and 10. In both figures, the CNR =
20dB, and ρt is unknown, modeled as a uniform random
variable in the interval [ 0, 1]. In Figure 9, ρc = 0.7 and
SIR = 0dB. In Figure 10, ρc = 0.995 and SIR = −10dB.
The results for the SWI targets with unknown Doppler

shift in correlated Gaussian clutter and AWGN are
presented in Figures 11 and 12. In both figures, the CNR =
20 dB, and the Doppler shift is unknown, modeled as
a uniform random variable in the interval [ 0, 2π). In

Figure 8 ROC curves of the MPLs with different number of
hidden neurons, trained to minimize the Minkowski error (R=1)
for detecting Swerling I targets with unknown Doppler shift in
AWGN.

Figure 9 ROC curves of the MPLs with different number of
hidden neurons, trained to minimize the Cross-Entropy error for
detecting Gaussian targets with unknown ρt in Gassian clutter
plus AWGN (CNR = 20dB, ρc= 0.7, SIR = 0 dB).

Figure 11, ρc = 0.7 and SIR = 13 dB. In Figure 12, ρc =
0.995 and SIR = 1 dB. Again, training with the Cross-
Entropy error, as higher the number of hidden neurons,
better the obtained approximation to the CGLR detector
taken as reference.

4.3.3 Detection of non fluctuating targets in presence of
spiky K-distributed clutter

In this case, the results obtained with MLPs with different
number of hidden neurons for detecting non-fluctuating

Figure 10 ROC curves of the MPLs with different number of
hidden neurons, trained to minimize the Cross-Entropy error for
detecting Gaussian targets with unknown ρt in Gassian clutter
plus AWGN (CNR = 20dB, ρc= 0.995, SIR = −10dB).
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Figure 11 ROC curves of the MPLs with different number of
hidden neurons, trained to minimize the Cross-Entropy error for
detecting Swerling I targets with unknown Doppler shift in
Gassian clutter plus AWGN (CNR = 20dB, ρc= 0.7, SIR = 13dB).

targets in spiky K-distributed clutter are presented. These
experiments have been included to show the utility of
our approach for detection purposes with high resolution
radars and low grazing angles. In this case, the considered
interference is only clutter (ρc = 0 and SCR = 9 dB in
Figure 13, and ρc = 0.9 and SCR = −3 dB in Figure 14).
The good approximation to the reference detector can be
observed in all cases, even for very low PFA values, and
with a reduced number of neurons in the hidden layer.

Figure 12 ROC curves of the MPLs with different number of
hidden neurons, trained to minimize the Cross-Entropy error for
detecting Swerling I targets with unknown Doppler shift in
Gassian clutter plus AWGN (CNR = 20dB, ρc= 0.995,
SIR = 1dB.

Figure 13 ROC curves of the MPLs with different number of
hidden neurons, trained to minimize the Cross-Entropy error for
detecting non-fluctuating targets in spiky K-distributed clutter
(SCR = 9dB, ρc= 0).

5 Conclusions
In this article, the possibility of approximating the NP
detector using learning machines trained in a supervised
manner to minimize the Cross-Entropy error has been
studied.
Conventional coherent radar detectors usually apply

Doppler processors (MTD, Moving Target Detectors, or
MTI, Moving target Indicators) to reduce the clutter in
the received signal. Most of these approaches assume

Figure 14 ROC curves of the MPLs with different number of
hidden neurons, trained to minimize the Cross-Entropy error for
detecting non-fluctuating targets in spiky K-distributed clutter
(SCR = −3dB, ρc= 0.9).
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Gaussian statistics, and are implemented with linear fil-
ters. The modulus of the filtered observation vector is
obtained, and finally compared to a detection threshold.
Due to clutter residuals, Constant False Alarm (CFAR)
techniques are applied to fulfil PFA requirements. Many
of the proposed solutions, assume a Gaussian distributed
background. In the literature, the detection of radar tar-
gets in non-Gaussian clutter has also been addressed,
but most of the approaches are based on the design of
CFAR detectors that assume a specific probability density
function of the clutter, and try to estimate the detection
threshold for maintaining the desired PFA. In this article,
the learning capabilities of supervised learning machines
are exploited to approximate the NP detector in cases
where not only the clutter but also target parameters,
are unknown. This is the general case study in a radar
problem, where detection is formulated as a compos-
ite hypothesis test. Instead of using the Sum-of-Squares
error, the Cross-Entropy error is considered for training,
in order to exploit its better properties with respect to the
sensitivity to the presence of outlayers in the training set.
The function approximated by the learning machine

after training has been calculated using the calculus of
variations, with the objective of finding the function that
minimises the formulated Cross-Entropy error.
Once the function the supervised learning machines

approximates to after training has been obtained, the
method proposed in [33] has been applied to demonstrate
that this function can be used to implement the NP detec-
tor by comparing the trained learning machine output to
a threshold, selected according to PFA requirements.
This theoretical result has been assessed with some

experiments. Neural networks based detectors have been
considered for detecting different types of signals in dif-
ferent types of interferences. Results prove that an MLP
trained to minimize the Cross-Entropy error, can imple-
ment a very good approximation to the NP detector
for the considered detection problems, even for low PFA
values.
Different experiments have been performed for detect-

ing fluctuating radar targets (Gaussian targets with
unknown correlation coefficient and Swerling I target
with unknown Doppler shift) in AWGN, and in corre-
lated Gaussian clutter plus AWGN. Also, the detection
of non-fluctuating targets in spiky K-distributed clutter
has been studied. In all the cases, the capability of learn-
ing machines (particularly, MLPs) trained to minimize the
Cross-Entropy error, to approximate the optimum detec-
tor in the NP sense, has been demonstrated. To obtain
a good approximation, the number of hidden neurons
must be high enough. This number is related to the min-
imum number of hyperplanes necessary to enclose the
acceptance regions of the detection problem, but this
theoretical study is beyond the objective of this article.

For comparison purposes, some experiments have been
carried out with MLPs trained to minimize the Sum-of-
Squares error, and the Minkowski error with R = 1. The
results obtained training with the Cross-Entropy error are
better than the results obtained training with the Sum-of-
Squares error, but both can be used to approximate the NP
detector. The detectors trained with the Minkowski error
with R = 1 are the worst, and this detector is very far from
the NP optimum detector.
Compared with conventional radar detectors, this

approach has the following advantages:

• Good approximations to the optimal NP detector can
be obtained if a suitable error function is selected, if a
representative training set is available, if the learning
machine architecture has a high enough number of
free parameters, and finally, if a good training
algorithm is used.

• No statistical models have to be assumed during the
design. On the contrary, most of the CFAR detectors
that can be found in the literature assume some
statistical model for the interference that is used to
adjust the detection threshold to maintain the desired
PFA.

• The implementation of the NP detector based on the
Average-Likelihood ratio, when some of the
parameters or the statistical models assumed in the
design are random, can lead to intractable integrals.
When supervised learning machines are used to
approximate the NP detector, only training data
obtained experimentally are necessary, without
knowledge of the statistical distributions, and without
solving those integrals.

Obviously, supervised learning machines are not an ideal
solution in radar detection problems. The main draw-
back is the difficulty of obtaining representative training
samples, and the definition of the most suitable learning
machine architecture.
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Ferreras. Neural network detectors for composite hypothesis tests. Lecture
Notes in Computer Science, vol. 4224 (Burgos, Spain, 2006), pp. 298–305

32. D Mata-Moya, P Jarabo-Amores, M Rosa-Zurera, J Nieto-Borge, F
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