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Abstract

In general, conventional error correction for inverse synthetic aperture radarimaging consists of range alignment
and phase adjustment, which compensate range shift and phase error, respectively. Minimum entropy-based
methods have been proposed to realize range alignment and phase adjustment. However, it becomes challenging
to align high-resolution profiles when strong noise presents, even using entropy minimization. Consequently, the
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subsequent phase adjustment fails to correct phase errors. In this article, we propose a novel method for
translational motion correction, where entropy minimization is utilized to achieve range alignment and phase
adjustment jointly. And, a coordinate descent algorithm is proposed to solve the optimization implemented by
quasi-Newton algorithm. Moreover, a method for coarse motion estimation is also proposed for initialization in
solving the optimization. Both simulated and real-measured datasets are used to confirm the effectiveness of the
joint motion correction in low signal-to-noise ratio situations.

Keywords: Inverse synthetic aperture radar (ISAR), Motion compensation, Low signal-to-noise ratio (low SNR),

1. Introduction

Inverse synthetic aperture radar (ISAR) imaging has
been a widely addressed topic in last few decades [1-3].
In order to achieve high-resolution both in range and
cross-range of target imagery, the ISAR imaging tech-
nique exploits both wideband characteristics of radar
waveform and the diversity of viewing aspect angle from
radar to the target. In general, the range resolution is
proportional to bandwidth of waveform, and the cross-
range resolution is dependent on both the coherent
processing interval (CPI) and the target rotational mo-
tion from variation of radar viewing angles. Therefore,
CPI should be long enough to achieve high cross-range
resolution by Doppler analysis. In ISAR scenarios, the
target is often engaged in complicated maneuvers and
the translational motion should be compensated before
performing imaging processing. Translational motion
introduces range misalignment and high-order phase
error. For ISAR imaging of a non-cooperative target, a
data-driven compensation procedure must be accounted,
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which generally consists of range alignment and phase
adjustment.

Range alignment is to compensate the range shifts of
profiles. Without priorknowledge available about the
range shifts, range alignment is usually realized based on
the similarity of high-resolution range profiles (HRRPs).
Typical methods for range alignment can be sorted into
three groups. The first class is based on a maximum cor-
relation between adjacent profiles [4]. The dominant
scatter method tracks a prominent scatter and estimates
the range shift. And, the maximum correlation method
[4] aligns each HRRP by using the principle that the en-
velope correlation of two adjacent profiles reaches a
maximum when they are aligned. Actually, the principle
of maximum correlation of two adjacent profiles can be
regarded as a local optimization of alignment. Because
the estimation of range shifts between every two adja-
cent envelopes is independent of each other. As a result,
this method is sensitive to target scintillation. And, it is
likely to fail when strong noise presents, as the coher-
ence of HRRPs is contaminated seriously. The other
group is optimization-based methods [5-9]. It is widely
accepted that global optimization methods are more
robust to reflectivity scintillation and additive noise than
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maximum correlation method, in which the problem of
ISAR range alignment is formulated by using some glo-
bal metrics. Minimum entropy or maximum contrast of
the synthetic profile, such as the average range profile
(ARP) of the aligned profiles, is used as the criterion to
evaluate the performance of range alignment. The syn-
thetic profile usually has the highest sharpness when the
profiles are aligned perfectly. Or else, the sharpness of syn-
thetic envelope reduces. It is reasonable to evaluate the
sharpness of the synthetic profile by contrast or entropy
and establish an optimization for range alignment. In gen-
eral, the synthetic profile is calculated as the mean of mag-
nitude of the aligned HRRPs. Therefore, the synthetic
profile can be viewed as a non-coherent energy accumula-
tion of aligned profiles, and it can overcome the noise
interference in some degree. However, in the situations of
low signal-to-noise ratio (SNR), the SNR gain from the
non-coherent integrant is not enough to overcome the
interference from noise on the synthetic profile, leading to
that the consistency between the sharpness of the syn-
thetic profile and the quality of range alignment is broken.
In this sense, it is still challenging to achieve optimal range
alignment in presence of strong noise.

If range alignment is done well, afterwards, phase ad-
justment is carried out to remove the error phase. There
are many different schemes to perform phase adjust-
ment, which can be sorted into different groups. The
first is based on tracking a phase of dominant scattering
centers. Phase gradient autofocus algorithm [10], the
multiple dominant scatters algorithm [11], and the
weighted least square phase estimation [12] can be clas-
sified into this group. These methods usually perform
well when dominant scattering centers can be extracted
from HRRPs. However, presence of strong noise brings
inherent difficulty to precise phase tracking through sev-
eral dominant scatters. Another group numerically
optimizes the phase error correction to improve a global
metric consistent with image focus, in which image con-
trast (IC) [13-16] and entropy [17-22] are utilized as the
cost function to optimize the phase error. Image metric-
based approaches are usually able to obtain an optimal
solution even in the presence of strong background
noise and clutter. However, successful phase adjustment
can only be ensured when perfect range alignment is
obtained, while if the profiles are misaligned in some
cases, such as strong noise situation, even the image
metric-based methods fail to correct phase errors. To
overcome this problem, in [14], a joint correction
scheme for simultaneous range alignment and phase ad-
justment was proposed based on a two-order polynomial
model of the translational range history, and a novel
coarse estimation of both velocity and acceleration was
also developed to accelerate the motion estimation. In
the issue of ISAR motion compensation, adaptive joint
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time-frequency algorithm (AJTFA) also plays a signifi-
cant role in ISAR motion compensation and imaging
processing [11,23,24]. Especially, AJTFA is inherently
suitable to dealing with maneuvering targets by
projecting the one-dimensional signal onto the two-
dimensional (2D) time-frequency plane, and the motion
parameters can be extracted from the time-frequency
spectrum of dominant scatters. However, strong noise
can easily submerge the time-frequency spectrum
degrading its performance in low SNR scenarios.

In radar remote sensing, strong noise usually presents,
due to the signal decay from long range and absorption of
transmit medium. The SNR problem is among the most
significant challenges that ISAR imaging systems fre-
quently face. In the presence of strong noise, motion com-
pensation for ISAR imaging inherently encounters some
difficulties. Therefore, the technique of motion compensa-
tion under low SNR is important, which may furnish im-
aging capability and improve the effective operating range
of some ISAR systems with low power. Based on the fact
that both range shift and phase error are directly related
to the quality of the focused image, in this article, we
present a novel entropy-based approach to joint range
alignment and phase adjustment. It should be emphasized
that the idea of joint correction of range shift and phase
error has been proposed in [14], which motivates this
study. In the joint correction, instead of separating motion
compensation into the two dependent steps, it estimates
the range shift and phase error simultaneously. Therefore,
high SNR gain from 2D coherent integrant is benefited by
both range alignment and phase adjustment.

In this article, the joint correction with entropy
minimization models the translational motion as a high-
order polynomial function [25], and 2D image entropy is
minimized to optimize the polynomial coefficients. A
novel coordinate descent algorithm is proposed to solve
the minimum entropy optimization. The coordinate des-
cent algorithm is implemented by the quasi-Newton al-
gorithm, yielding fast convergence. For an optimization
problem, the initialization is usually important to the ef-
ficiency and precision of the solutions. In this article, we
also propose a method to estimate a coarse motion,
which is effective to obtain the coarse coefficients effi-
ciently. They can be applied as additional information to
accelerate and promote the coordinate descent estima-
tion. By using real datasets, the effectiveness of the joint
motion compensation is validated.

The organization of this article is as follows. In “Signal
model and minimum entropy compensation methods”
section, we introduce the signal model and recall some
existing minimum entropy-based methods for transla-
tional motion correction. In “Joint range alignment and
phase adjustment by minimum entropy” section, algo-
rithm for joint range alignment and phase correction by
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minimum entropy is illustrated in detail. Experimental
results from both synthetic and real data processing are
given in “Performance analysis” section to illuminate the
effectiveness of the proposal. In the last section, some
conclusions are drawn and some future works are viewed.

2, Signal model and minimum entropy
compensation methods

2.1 Signal model

By referring to [14], a three-dimensional geometry is
developed as shown in Figure 1, where the system of
coordinates is denoted by (x1, x2, x3)- And, the target is
moving along an arbitrary trajectory together with angu-
lar motions. During a short dwell time, the effective an-
gular motion can be assumed constant, representing by
the effective rotational velocity w.g (Whose direction is
orthogonal to the line of radar sight). In this case, the ef-
fective angular motion of the target is restricted within a
plane orthogonal to the effective rotational velocity. As a
result, the geometry can be simplified into a 2D model
[17] as Figure 1b presents. In the 2D geometry, target
motion is divided into translation and rotation as shown
in Figure 1. And, translation is directly corresponding to
the radial range R(¢) from the target center to the radar.
The scattering field of the target is denoted as L. And,
the instantaneous rotational angle of target is defined as
0(t) = wegr £, and ¢ is the slow time with 0 << T,, where
T, is the CPL The instantaneous range from scattering
center at (x, y) to radar is given by

r(t) = R(t) + xsinf(¢) — y cosO(t) (1)

where R(f) denotes instantaneous distance from radar to
the rotation center, usually representing the translational
motion. 6(f) is the instantaneous rotation angle. Assum-
ing the radar transmits a chirp waveform that

51(5) = rect (- -exp(jmy ) @)

where 7 denotes the fast time, T, is the pulse duration,
and y is the chirp rate. Therefore, the received signal
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from the target after down-conversion to the base-band
is given by

sp(T,t) =

5 ate)sr|r =22 exp o 2 vy
(3)

where A(x, y) denotes the scattering coefficient at (x, y)
and c is the light speed and the carrier frequency is f;.
By applying Fourier transform with respect to 7 and
neglecting the introduced constants, we have

] A(x,y)‘sT(ﬂ)exp{—ﬂﬂzr—(t)(fr +f.) | dxdy

Sp(f;, t) =
(x,y)eL c
(4)

where st (f,)=rect L) ex 'lrfL2 is the Fourier trans-
Tyy pl/ Y

form of sy{(r) [26]. Applying the matched-filtering to s(f,
£) by multiplying with s7(f,) (s7(f;) denotes the conjugate
of s7{f;)) and omitting the introduced constant, the sig-
nal is expressed as

(20 = I _AGwy)-exp| - 4.1 | asay
(xy)el ¢
[ Alxy)-exp {ﬂzmx sinf(t) — y cos6(t) " +ﬂ):|
(®y)eL ¢
-exp {—jZn%(t) (fr +fc)} dxdy
(5)

Assuming the effective rotational velocity during the
CPI is weg; we have the rotation angle 6(f) = wegt. In gen-
eral, the rotation angle during CPI for ISAR imaging is
very small, such as 3—4°. Therefore, we have the approxi-
mation that

{ cosf(t)~1 (6)

SinB(t)~weg -

(a) " x
o '\)Y

X

(b)

Rotation Center

A

Figure 1 ISAR geometry. (a) Three-dimensional geometry. (b) Simplified 2D geometry.
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Based on this approximation, we have

XQefft —

s(fr,t)~ I A(x,y)-exp{ —jAr 2

(xy)el

2+ £0)]

oxp| ﬂn&” ()| sy

(7)

In general, during a short dwell-time the range cell mi-
gration (RCM) induced by rotation can be restricted
within a range cell. Otherwise, this RCM should be
compensated by the keystone transform-based method
[27,28]. Keystone transform is capable of removing the
linear RCM effectively by removing the first-order coup-
ling term in the frequency domain. And, it can be
implemented in a very efficient way. Assuming the RCM
caused by angular motion is corrected, we have

XWefft —

s(f0)= [ Alxy)-exp|—jan =t —

2+ £2)]
(xy)e

R(t)

-exp { ]27r— i +fc)} dxdy

(8)

In (8), the phase term exp [—j2n%(t)fr} causes mis-
alignment of range profiles in the range-compressed do-
main. And, the term exp{—ﬂn%(t)fc] stands for the

phase error. Unless an optimal translational motion
compensation is obtained, serious blurring can result in
the ISAR image formed by the inversed Fourier trans-
form, which assumes that the scatter behaves with only

the linear phase exp (—/471 xweﬂ) It should be noted that

compensations of the range misalignment and the phase
error require different precisions. To remove the profile
migration through range cells, the precision of the range
shift should be in the order of a fraction of a range cell,
such as a quarter of one range cell, which is typically
tens of centimeters. However, the phase error
corresponds to the radar operating wavelength, which is
typically only a few centimeters. Limited by the range
resolution, the motion estimate from range alignment is
insufficient to perform an optimal phase correction.
Moreover, due to the shortness of wavelength, the phase
errors are largely wrapped, resulting in the uncertainty
between the phase error and R(f). Therefore, transla-
tional motion compensation typically consists of two
steps: range alignment and phase adjustment [29]. And,
the range alignment is usually viewed as the coarse com-
pensation and phase adjustment as fine compensation.
For clarity, s(f,, ¢) is rewritten by
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fft) - exp <]47T%fr)
-exp|—j2m-At,(t) -f;]
-exp[—jAg(t)|dxdy

s(rt)= I Ax.y)-exp(

(xy)el

©)

In (9), the range migration and phase error are
represented by two independent variants, denoted by
At (t) :%(t) (range shift) and Ag¢(t) = 2R 2RO (phase
error), respectively. The phase in (9) is separated into
four parts: the first is the linear phase term
corresponding to the Doppler, the second term
corresponds to the range compression, the third term
corresponds to the range migration, and the last phase
term is the phase error from translational motion.
Considering the inevitable noise, the echoed signal is
expressed in a discrete form as

s(m,n) =s(m, n)- exp[—j2m-At.(n)-(m-Af,)]

. exp[—jA¢(ﬂ)] + SF(Vﬂ, I’l)
(10)

And, by neglecting the constant terms, we have

Smm)= [ A(x.y)-exp|—jan> -(m-Af,)
(xy)eL ¢
-exp|—j27nfy-(n-At)]dxdy and
fu=2m2
d = 47T 1

(11)

where ex(m, n) denotes the complex noise, and Az, (n) =

2R ”) and A¢(n) = 4n=" (") are the range migration and

phase error correspondmg to the nth pulse, which are
expected to be corrected in the range alignment and
phase adjustment, respectively.

2.2 Related works

We focus on motion compensation for ISAR imaging
under low SNR, which has been gained noticeable
interests till now. To overcome the interference of
strong noise and clutter, current methods are usually
following a similar principle, in which, estimation of
errors is converted into a problem of minimizing (or
maximizing) a cost function. And, the cost function is
selected such that when it is minimized (or maximized),
optimal focusing is achieved. Entropy is one of the most
primary function in error compensation for ISAR im-
aging. Entropy of 2D image (or one-dimensional syn-
thetic range profile) represents its sharpness, and
generally the “sharpest” image is corresponding to the
fully focused image (or aligned HRRPs). Before
presenting our method, herein, we introduce two typical
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entropy-based methods for range alignment and phase
adjustment, respectively.

2.2.1 Minimum entropy for range alignment (MERA)
Approaches to range alignment by minimum entropy of
synthetic range profile are discussed in [6-8]. Herein, we
introduce them briefly. Applying inversed discrete Fou-
rier transform (IDFT) to s(m, n) and taking the magni-
tude, the expression of range profile after compensating
the range shift by ¢, is given by

p(k,n;t,) abs{ Zexp(jzn@
-exp|—j2m-t,(n)- mAf,]}k M-1

= abs{ Z exp(
-expli2m-(Ate(n) — to(n))-(m-Af;)] + e(k, n)}
(12)

where abs[- | is the operator for magnitude. And, symbol
&(k, n) denotes the complex noise after IDFT. For sim-
plicity, we do not write &(k, n) as a function of ¢, since
range shift doesnot change the random statistics of
noise. It is notable that noise is coupled in the range
profile and distorts the range profile of target with in-
crease of its energy. And, the ARP after compensating
the ¢, is written as

N

Z (k,n;t,)

=0

parr(k; t.) (13)

The averaging processing is in some sense of non-
coherent accumulation, and the distortion from noise
can be suppressed by some degree. However, due to that
no phase information is utilized, this non-coherent
processing generally provides limited SNR gain compared
to coherent integral. The entropy of ARP is a function of
t,, which is given by

M-1

1
Expr(te) = TS Z [pavr (K, t.) > In|papr (k, )| + InSxpr
APR 45
(14)
The density of ARP is defined as
] M-l , ,
Eapr(te) = —572 |papr (K, t)|” In|papr (k. t.)|” + InSapr
APR £=5
(15)

The optimal solution of range shift is estimated by
minimizing the entropy of the synthetic profile.
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(te) = argmin Epg(te) (16)

2
In order to solve the optimization problem in (16),
many searching approaches have been proposed by
adopting exhaustive search or iterative search.

2.2.2 Minimum entropy for phase adjustment (MEPA)

Phase adjustment via minimum entropy is widely ap-
plied in issues of radar imaging [17-22]. It usually
performs well in presence of strong noise and clutter,
and it has no constraints on the error form. In minimum
entropy phase correction, the range shift is assumed to
be corrected, and then the entropy of 2D image is
utilized as the cost function of phase error. The
complex-valued HRRP after phase error compensation is
expressed as

1= km\
= Z exp (j2ﬂﬁm) s(m,n)

exp{j-[p(n) — Ap(m)]} + e(k,m)

se(k,n)

(17)

where ¢ denotes the compensated phase error. And, the
complex-valued 2D image is obtained by applying IDFT
to s, in cross-range direction, which is given by

1  hn
= ﬁz exp <]27Tﬁ> -sc(k,n)

n=0

gk, h; 9) (18)

The entropy of corrected image is defined as a func-
tion of ¢ and written as

] M=1N-1 , ,
Elp) =~ lg(k, ;)| " Injg(k, h; )[” + InS,
¢ k=0 h=0
(19)
The density of image is
M-1N-1 ,
S¢ = g(k, h;9)| (20)
k=0 h=0

It is performed to solve the following optimization to
estimate the phase error.

<g?)> = arg¢minEg(¢) (21)

Many searching approaches have been proposed to
solve the minimization problem in Equation (21). Espe-
cially, three schemes are introduced in [19] in detail. Al-
though they have different searching schemes and
efficiencies, their performances are similar as the under-
lying principle is the same. In general, minimum entropy
phase adjustment is implemented by an iterative solu-
tion, the image entropy decreases with the increase of
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iteration number until the estimate reaches an accept-
able optimal convergence.

3. Joint range alignment and phase adjustment
by minimum entropy

3.1 Algorithm description

In practice, due to the complex motion of the target and
the variance of the system and the environment, the
translational motion between the target and the radar
usually has high-order terms. Without loss of generality,
we model the translational motion error as a K-order
polynomial, i.e.,

K

R(n) = ax(n-At)*

k=1

(22)

where one notes that k begins from 1 to K. The first-
order term is corresponding to the velocity. Velocity
only induces an additional Doppler, causing a bulk shift
of the image in the Doppler domain. However, it brings
serious range migration, which is expected to be
corrected in the conventional range alignment step.
And, the presence of the high-order terms introduces
both range migration and phase errors. Based on the
polynomial translation model, we rewrite the signal in
(10) as follows.

R(n)

C

K
Zak (n-At)k

='s(m,n) exp | —jdmu =

s(m,n) =s(m,n)- exp | —jdn

(m.a, +fc>} +er(m,n)

(m-Afy + fo)

+€F(ma Vl)

(23)

For simplicity and clarity, we define the polynomial
coefficient vector as a = [a1, -, ax| .., and give
the complex image after error correction by
[a1 - ]k as follows.

a:

(24)

Therefore, the entropy of image is defined as function
of a, which is given by
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1 MoIN-1 , )
Eg(a) = -+ \g(k, hi; @)[" In|g(k, i @)|” + InS,
8 k=0 h=0
(25)
where the image intensity is rewritten by
M-1N-1 )
S¢ = lg(k, ;@) (26)
k=0 h=0

We note that as the motion correction in (24) is
performed on the phase of s(m, n). And, the signal en-
ergy holds constant according to the Parseval theorem
[30]. As a result, S, is independent of @. The estimate of
a is obtained by minimizing the image -entropy,
expressed as follows.

(&) = argmin Eg(a) (27)

a

To solve this optimization, many standard algorithms
are available, such as gradient-based algorithms, genetic
algorithms, and gold section search. Due to the random
characteristics of noise, it contributes little to the vari-
ance of entropy during the motion estimation [19,22].
And, some dominant scatters will exceed the noise in
amplitude distinctively due to energy accumulation
when optimal motion correction is achieved, enhancing
the sharpness of image significantly. Therefore, minimiz-
ing the entropy of 2D image for error correction is rea-
sonable. Due to the strong noise interference, the cost
function is usually not convex along with a lot of local
minimums. Straightforwardly, utilizing the standard
optimization algorithms encounters high risk that the it-
eration is trapped into a local minimum that far away
from the true solution. In this article, we propose a co-
ordinate descent algorithm implemented by quasi-
Newton algorithm. The coordinate descent algorithm
sequentially minimizes the objective function with
respect to a single parameter while holding the
remaining parameters constant. By this, coordinate de-
cent algorithms have monotone convergence in the ob-
jective function and trend to have the ability of
achieving the global optimization [19].

Leta! = |&’,....a7]

K Jixx
Ith iteration, and & "* be the estimate of the phase
parameters at the /th iteration where the first k-1 poly-
nomial coefficients have already been updated.

denote the estimate of the

~(Lk) _ |=(+1) ~(+1) ~() ~(I) ~()
qh = {al RN PN 7 S PN }ZLXK

(28)

where an iteration is defined as a complete cycle
through all K coefficients. The task in hand now is to
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update the kth coefficient. Assuming that the update is
denoted by a variable Aay, we have the corrected image
as follows.

(k ;! Acxk> = —Z exp <]27r ) Z exp
X (j2ﬂ%n) -Se (m, n; &(l‘k))

B k
M (m-Af, +£.)

(29)

- exp {}4}1

where

Se (m, n; &(l’k)) = s(m,n)

XK: a" (u)-(n-At)"

-exp|jAm = (mAf4£e)
(30)
And the entropy function is rewritten by
] M=1N-1
E, (&(l’k) Ax ) = ’ (k h;at Aak)‘
Se k=0 h=0

xln‘g /gh,oz Aak)‘ + InS,

(31)
The image intensity is
M—1N-1 )
]g (k, i 'o?”’k);A'&k) ‘ (32)
k=0 h=0

The estimates of update for aj in the [th iteration is
given by minimizing the image entropy, expressed as
follows

<A&,((l+1)> = argminE, (&U’k);A&k) and alﬂ)
Aay

=) + @™ (33)

To solve this one-dimensional optimization, we utilize
the quasi-Newton algorithm, where Aa; minimizing

E, (&(W : A&k> that the

Eg(b?(l’k);Ab?k> with respect to Aay equals zero. The

satisfies derivatives of

derivative of OE ( (1K) Ab?k> with respect to Aay is
given by
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oK, (&“v“ : A&k>
3har
1 M—-1IN-1

VE, (&W‘);A’ofk) -

ol (k. s ) ]2
. aA(Xk

(34)

‘g(k, h; ﬁ’(l"k>; A&k) ‘2 = g(k7 h; &(l’k);A&k) g

(k, h; atk) : A&k) , we have

Since

g k.,h;b?(l'k);A'&k)

a)g(k,h;ﬁab;Aﬁk) ‘2 :g* (k h'ﬁ(l'k)'A&k) 0 ( 5
Y ’ Abzk

oAay

og* (k. @™ 4. )
S

ag k. " Mk)}

+g (k, h; &(l‘k);A%()

= 2.Re |:g* (k, I &(l'k);A&k) T
k

(35)
where

W_% szl exp</2ﬂ ) (k ; al Arxk)

n=l

(36)
and
(k n; o, Arxk> :—Aifexp</2nk—> sc(m n; o:(lk))
-exp {]YLHM (m-Afy +12)
(37)

In order to implement the quasi-Newton algorithm,
we also need the second-order derivative of

E, (&(l’k); A&k) with respect to Aay, which is given by
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PE(te; 9)
P

o (),

V2E (&9 a0 ) =

22le (k. sa™; aa )|

L - EYAEVIA
- _S_kz::; 1 3)g<k~,h;&”’”;A&k>‘z ’
Te(kma )\
= (@ 45) + b (@ 4%
(38)

In Appendix, explicit expressions of a(&(l’k);A'dk> and

b('&a’k);Abfk) are deduced. Then, Aay is estimated itera-

tively, which is defined as the inner iteration of the joint
motion correction. It should be emphasized that, in the
quasi-Newton algorithm, all IDFT calculation can be
implemented by fast Fourier transform, yielding signifi-
cant efficiency improvement. The pth update is given by

A& = AGP) 4 q®+) (39)

d?) = ~[V2E,(&"; ag (")] VE, (@ 4a0) 1<psp
(40)
where P denotes the total number of iterations. In up-

dating of the kth coefficients in the /th outer iteration,
the corrected image yields

(k By @0, A~<”“>)

M-
exp (}21‘[ )
-

1

exp (]27‘[—) 8¢ <m m; a(lk)>

0

M (WlAfr +fc)

- exp []477
(41)

We increase p and go back to the update in (39) until
E, (&(l’k) A(x(p)> E, (&(l’k);A?x’,?H)) <p, where p is a par-

ameter small enough for the pre-determined threshold
or p reaches a pre-determined maximum iteration num-
ber P. For computational efficiency, fast Fourier trans-
form should be used in the implementation of the
calculation above.

With the polynomial coefficients being updated se-
quentially, the image entropy decreases stage-by-stage.
And, with the iteration number increases, convergence
can be obtained. The convergence of the outer loop can

be determined by E, (&(1)) —E, (&(Hl))gﬁ , where /5 is

the pre-set tolerance or / reaches a pre-set maximum
number L. For clarity, we present the flowchart of the
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coordinate descent motion correction in Figure 2, where
ai is the initialization of @, which will be discussed in the
following section. From Figure 2, we note the polyno-
mial coefficients are estimated iteratively by using an
outer loop and an inner loop. The outer loop
corresponds to the update of the polynomial coefficient
vector and the inner loop is implemented by the quasi-
Newton algorithm to update a single component in the
vector. In general, for this inner loop, we usually need

only several iterations for a single component a0 The
polynomial coefficients are updated by the quasi-
Newton algorithm sequentially, and for the update of
each coefficient, several iterations are needed. As a
result, we need to perform the translational motion
correction and image processing several times for every
component, and high computational load may be
involved. However, the monotone and fast conver-
gence is usually achieved by the coordinate descent
algorithm even under low SNR, and as we apply the
quasi-Newton algorithm in the inner loop, its fast
convergence also promotes the algorithm in effi-
ciency. It should be emphasized that we usually have
no additional knowledge of the translational motion
in reality, and the polynomial order K should be
selected manually or adaptively. A pre-determined
order should be high enough to model the real
motion, which causes high computational complexity.
In the following section, we will develop an adaptive
selection approach.

3.2 Coarse motion estimation for initialization
A significant aspect on the computational efficiency is
the initialization of @. Like any optimization algorithm, it
is beneficial to start as close to the correct solution as
possible to improve the convergence. However, this in-
formation is usually unavailable in reality. In this sense,
before performing the coordinate descent algorithm, we
can estimate a coarse candidate of a at a small computa-
tional price. Herein, we propose an efficient approach to
achieve the coarse estimate ai = [ai; i |y i »
where K is set large enough to model the real transla-
tional motion. Similar to the coordinate descent algo-
rithm, in the estimation of aiy, all rest components are
held constant. The coarse motion estimation is
implemented by means of an exhaustive linear search,
over the variable @iy, within a pre-defined interval [aig"™,
aif™]. Similar to the coarse acceleration estimation in
[14], the choice the search step is heuristic as a large
search step causes precision degradation and a small one
involves large computational load. In general, the image
entropy function with respect to @i is usually smooth,
and we can use only a number of discrete samples to re-
cover the entire entropy function by interpolation. In
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Figure 2 Flowchart of the coordinate descent algorithm.
.

this sense, the search interval should be large enough to
capture the true value, but the search step between two
discrete samples could be set large for high efficiency.
The coarse estimate of ai; is determined by finding the
minimum on the interpolated entropy function. It
should be emphasized that the smoothness of the image
entropy function is elementary to the interpolation. And
in reality, the function would fluctuate seriously under
strong noise, presenting several local minimums. In this
situation, the search step should be set narrow enough
to avoid missing the global minimum. For clarity, we
give an example of estimation of the velocity in Figure 3.
The velocity and acceleration of the target are 20 m/s
and 85 m/s’, and SNR=-7 dB. The curve is
interpolated from only 10 samples, which presents three
local minimums, and the estimate of 18.3 is close to the
ideal velocity. However, as the SNR further decreases,
the entropy function curve fluctuates more greatly,
leading to large bias of coarse motion estimation by the
interpolation. For performance enhancement, the coarse
motion estimation is implemented in an iterative
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Figure 3 Coarse estimation of ai.
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manner, as shown in Figure 4. In general, the method is
capable of providing the useful coarse translational mo-
tion compensation even if strong noise presents, and the
residual motion can be estimated by the coordinate des-
cent optimization. In terms of further accelerating the
minimum entropy approach, parallelized implementa-
tion of the linear search within the iteration can be ap-
plied as the calculation for each sample is independent
with of each other. Moreover, the search procedure in
[31] can be also applied. By decreasing both the search
interval and step with the increase of iteration number,
high accuracy and efficiency can be achieved. Another
important aspect should be taken into account, which is
the order selection of the polynomial model in (28).
Herein, the order estimation is embedded into the
coarse motion estimation. In general, for a rigid target,
the low-order motion terms take up the majority of the
translational motion, while the higher-order motion is
nominal. The order of @ is determined adaptively, and it
is assumed to be accurate enough when the estimates of
two consecutive ai; are smaller than a pre-determined
threshold. The threshold is so small that the motion
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under it does not change the image entropy. In general,
a threshold of 1e-3 is usually a good choice in reality.

In [14], a novel joint correction approach to motion
estimation is developed, which models the translational
motion as a two-order polynomial function determined
by the radial velocity and acceleration. And, a novel
coarse estimation method is also developed, where the
radial velocity and acceleration are estimated by Radon
Transform (RT) and IC, respectively. Utilizing RT for
velocity estimation is very similar to the Hough-based
range alignment approach [5]. Assuming the linear mi-
gration of the range profiles is mainly induced by the ra-
dial velocity, the velocity can be determined by the slope
of range profiles estimated by RT [14]. Subsequently,
maximum IC optimization is applied to obtain the radial
acceleration. RT is capable of providing precise estima-
tion of the radial velocity, as it accumulates energy of
signal in a non-coherent way. However, its precision
degrades with the increase of the noise. And, strong
noise can submerge the range profiles causing that the
SNR gain from non-coherent accumulation would not
be great enough to achieve accurate velocity estimation.

N
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Calculate a set of samples of

E, (di(”") i, )
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E, (di(”k);dik )

-1 k=k+1
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Figure 4 Flowchart of the coarse motion estimate.
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Subsequently, the acceleration estimation with contrast
maximization fails. Obviously, the proposed coarse mo-
tion estimation with minimum entropy achieves the
high-SNR gain from the coherent accumulation since it
evaluates the entropy of the final ISAR image. On the
other hand, the minimum entropy approach iteratively
estimates the motion coefficients in sequence via the lin-
ear search, which is deemed to involve relatively large
computational load. In this sense, the proposed coarse
estimation should be workable under lower SNR than
the RT and IC method at a price of increased computa-
tional load. To present the superiority and shortcoming
of the proposed approach for coarse motion estimation
under low-SNR conditions, herein we use synthetic data
for comparison. The synthetic data are generated by
adding different Gaussian white noise into the real Yak-
42 dataset (the dataset will be depicted in the following
section), yielding SNR = -7 dB and -10 dB. The velocity
and acceleration of the target are set as 20 m/s and
8.5 m/s%, respectively. Then, both of the coarse motion
estimation approaches are utilized to obtain the radial
motion coefficients. In the case of SNR = -7 dB, both of
them work well, providing precise estimation of both
velocity and acceleration. In Figure 5a, we plot the ideal
radial range together with the estimated ones. From
Figure 5a, one can note that the estimations are very close
to the idea radial range curves. And, the RT and IC-based
method performs only slightly worse than the minimum
entropy method. However, as shown in Figure 5b, when
SNR decreases down to -10 dB, the RT and IC-based
coarse estimation fails, while the performance of the mini-
mum entropy method maintains. It should be noted that
about five iterations are needed to ensure the convergence
of the minimum entropy-based initialization, and its com-
putational load is over five times that of the RT and IC-
based method. Both of them are coded in Matlab language
with the same computing environment. In experiments,
we find that the RT and IC-based coarse estimation fails
when SNR decreases below -8 dB, while the minimum
entropy-based coarse estimation is still workable until
SNR decreases down to -12 dB due to high-SNR gain
from the coherent accumulation. For both maximum con-
trast and minimum entropy optimization, the initialization
step is so essential that only an effective initialization
ensures precise estimation by using gradient-based optimi-
zation algorithms. And, the proposed coordinate descent
algorithm and the one utilized in [14] are not exceptions. In
this sense, the convergence of the optimization algorithms
to the global optimization depends on the coarse estimation
significantly. Because both entropy and contrast functions
show good convexity and smoothness only near to the
global extremum and strong multimodal behavior presents
in the position far from it. Moreover, the fluctuation
phenomenon of cost function becomes furthermore dis-
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tinctive when noise increases. In low-SNR situations, opti-
mal coarse estimation is capable of accelerating optimi-
zation algorithms to reach the global optimization. On
contrary, a bad initialization would lead the algorithms to
be trapped within a local optimal point far away from the
global optimization. To further demonstrate this, we pro-
vide the image results under different SNRs by using the
maximum IC method in [14] and the proposed minimum
entropy method. In the maximum IC method, after the RT
and IC initialization, maximum IC optimization is solved
by the Nelder and Meads method [14]. And, in our
scheme, the coordinate descent algorithm is applied after
the minimum entropy coarse compensation. In Figure 5c,
we present the ideal image and images obtained by the two
methods under SNR = -7 dB. They are arrayed from left to
right in sequence. And, Figure 5d shows the results with
SNR = -10 dB. In the case of SNR = -7 dB, since both the
initialization algorithms perform well, the starting guesses
are close to the global optimization, and we also find that it
is very flexible and simple to set parameters (such as reflec-
tion and expansion coefficients in Nelder and Mead’s
method) in both maximum IC and minimum entropy
optimizations. And, both of them achieve well-focused
images. However, in the case of SNR = -10 dB, as the RT
and IC initialization fails to provide an effective initiali-
zation for the Nelder and Mead’s approach, it consequently
fails to achieving the true motion coefficients, leading to
blurred image, while thanks to the 2D coherent integrant
SNR gain, minimum entropy initialization provides precise
coarse coefficients, and the coordinate decent algorithm
reaches the optimal convergence with only about three
iterations. And, the resulting RD image after correction is
very close to the ideal one as shown in Figure 5d. From the
comparison, we can conclude that, in low-SNR circum-
stances, initialization is essentially significant for metric
optimization-based motion compensation. Since strong
noise usually induces fluctuation in the cost function and it
is only smooth near to the global extremum. Only effective
initialization can support the following fine estimation by
deterministic optimization algorithms to get the global
optimization. And we should also note, this dependence of
initialization may be reduced by heuristic optimization
algorithms, such as genetic algorithm [32] and particle
swarm optimization [33] at a price of increased computa-
tional load.

Performance analysis

In this section, real datasets are used to evaluate the per-
formance of the joint range alignment and phase adjust-
ment for ISAR imaging. Contrast, entropy and peak value
of the focused RD images are used as the evaluation criter-
ion of the image quality. First, the Yak-42 data are utilized
to analyze the performance of the proposed method.
High-order polynomial motion and different noise are
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added into the data, and the motion compensation is
performed by both the conventional minimum entropy-
based methods and the proposal. Comparisons are also
provided to illuminate the improvement of our method. A
ship data with strong sea clutter is also used to confirm
the effectiveness of our method. All results illuminate that
the enhanced quality is achieved by the joint correction.
The dataset of the Yak-42 airplane is recorded by a C-
band (5.52 GHz) ISAR experimental system. The system
transmits 400 MHz linear modulated chirp signal with

25.6 ps pulse duration, providing a range resolution of
0.375 m. In the dataset, the pulse repetition frequency is
100 Hz, i.e., 128 pulses within dwell time [-0.64, 0.64]
(s) are used in the following experiment. Conventional
motion compensation, including MERA [9] and MEPA
[19], is performed to remove the translational motion.
Due to high SNR (up to 22 dB) of the raw data, both of
them perform well. The aligned profiles are shown in
Figure 6a. And RD image is shown in Figure 6b for
evaluating the experimental results.
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Rangs bins

Figure 6 Experimental dataset. (a) Aligned range profiles. (b) RD image via MERA + MEPA. (c) Range profiles with motion error.

Herein, we use the Yak-42 data to generate synthetic data
with different SNRs. The high-order motion error with a =
[1-3,5,10,30] is added into the corrected data causing mis-
alignment and phase error. The misaligned profiles are
shown in Figure 6c. Complex white Gaussian noise is
added to generate different SNRs (from 5 to —20 dB). For
comparison, conventional motion correction is implemen-
ted by the MERA and MEPA, where we use MEPA with
simultaneous update scheme [18] due to its computational
efficiency and robustness. As discussed before, MERA is

usually more sensitive to strong noise than MEPA. We per-
form MEPA to the aligned HRRPs as shown in Figure 6a
under different SNRs and then generate RD images.
Thanks to the robustness of MEPA, the images are
wellfocused and they can be regarded as the standards for
comparison. These standard images are shown in the left
column of Figure 7 corresponding to SNR equivalent to 5,
0, -5, and -10 dB by CPU times 2.00, 3.14, 6.71, and
10.04 s, respectively. RD images obtained by MERA and
MEPA are shown in the second column of Figure 7 corres-
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ponding to different SNRs. The images from the joint cor-
rection are given in the third column of Figure 7. And the
CUP time for the joint correction under different SNRs is
5.65, 8.09, 10.12, and 13.20 s (including the CPU time for
the initialization), respectively. And entropy against itera-

Table 1 Entropy evaluation

Table 2 Contrast evaluation

tion number in the descent coordinate optimization is
shown in the right column of Figure 7. As one can note,
the quasi-Newton-based coordinate descent optimization
usually achieves convergence within five iterations, taking
advantage of the high-accuracy initialization and the usage

5dB 0dB -5dB -10dB 5dB 0dB -5 dB -10dB
Ideal 7.170 8.169 8813 9.155 Ideal 0.806 0678 0599 0.548
MERA + MEPA 7.253 8211 8.861 9.201 MERA + MEPA 0.790 0.642 0.592 0538
Proposed method 7.181 8.173 8812 9.183 Proposed method 0.805 0677 0.599 0.544
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Table 3 Peak value evaluation
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correction needs only about three iterations to reach the

5 dB 0dB -5dB -10dB  convergence) with the help of high-precision initialization
|deal 43133 45324 43230 43379  estimation. We also note that both contrast and entropy
MERA + MEPA 47151 53098 60417 20012  of images after joint error corrected by the joint correction
are very close to those of standard images, which indicates

Proposed method 43130 44.725 41.384 40.719

of second-order derivative. For further comparison of the
two corrections, the range profiles from the translational
motion compensation under different SNRs are presented
in Figure 8. The arrangement of Figure 8 is corresponding
to that of Figure 7. What's more, we also use the image
entropy, contrast, and peak value to evaluate the focused
images in Figure 7, which are presented in Tables 1, 2, and
3, respectively. It is notable in Figure 7 that due to pres-
ence of strong noise, the correction by MERA and MEPA
is not precise enough, resulting in blurring and smearing
in the RD images. The proposed joint correction method
can generate better images after only several iterations (al-
though we pre-set the iteration number as 10, the joint

the effectiveness of the method in front of strong noise. In
the aspect of computational efficiency, as the coarse mo-
tion usually provides estimate with relatively high accur-
acy, the coordinate descent algorithm then compensates
the residual error efficiently. For the Yak-42 dataset, it is
competitive to the minimum entropy-based two-step
scheme in efficiency. From Figure 6b, we note two domin-
ant scatters are present in the range bin 61. We plot this
range bin corresponding to different SNRs (5, 0, -5, and
-10 dB) in Figure 9, in order to show the improvement on
the point spread function from the use of the joint motion
compensation. From Figure 9, we note that the compensa-
tion by MERA and MEPA is sensitive to the strong noise,
leading to serious distortion and blurring in the result.
The range profiles are misaligned under low SNRs, which
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Figure 9 Image corresponding to the range bin with two dominant scatters.
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Figure 10 MSE under different SNRs.

can be found from Figure 8. That is the reason why the
peak values of RD image from the two-step compensation
become larger than those from the joint correction in
Table 2. However, using a parametric motion model, the
joint compensation usually removes the motion optimally
and the two dominant scatters are separated distinctively.
The responses of them are also very close to the standard
ones. What's more, as Figure 8 shows, the range profiles
from joint correction are also very close to ideal ones. In
the experiments, it is found that when the SNR decreases
below -12 dB, both the initialization estimation and the
coordinate descent optimization fail to achieve an accur-
ate estimation of the motion error in the joint correction.
To show this, the mean square error between the
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estimated and the real polynomial coefficients is defined
by

K

MSE — 71(2 (k) — &)

k=1

(42)

The MSEs corresponding to different SNRs are plotted
in Figure 10 which presents that the joint correction
provides very small MSE only when SNR is above
-12 dB. As mentioned in the last section, in the joint
minimum entropy correction, coarse motion estimation
for initialization is very essential, as only good
initialization can avoid the coordinate descent algorithm
being trapped in a local minimum of the entropy
optimization. In these experiments, five iterations are
used in the initialization estimation and order determin-
ation according to the procedure in Figure 4, consuming
CUP time of coarse motion estimation corresponding to
different SNRs is 1.13, 1.16, 1.86, and 2.17 s, respectively.
For clarity, the estimated radial ranges from the coarse
motion estimation under different SNRs are presented
in Figure 11. From Figure 11, one can note that effective
coarse motion estimation is achievable even SNR
decreases down to —10 dB, and the estimate accuracy
degrades slightly with the increase of strong noise. For
this dataset, the initialized estimates give high accuracy
until SNR decreases below -12 dB, which also leads
to failure of the coordinate decent algorithm for fine
translational motion correction subsequently as we
mentioned before, because the relationship between
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focusing quality and image entropy is inconsistent when
very strong noise is involved into the data. And the entropy
of image almost relies on the strong noise only, which is in-
dependent of the motion correction. In this situation, one
can use more pulses to obtain high-SNR gain, and then op-
timal motion correction and well-focused image may be
generated by the proposed method. However, more pulses
means longer CPI, which may lead to the 2D rotation
model in Figure 1b being not rigid to apply. It should be
considered in extremely low SNR scenarios.

The generation of high-resolution ISAR images of
ships is usually challenging due to random perturbing
rotational motions in pitch, roll, and yaw [34]. Another
adverse factor relies on interference from strong clutter
noise, which is usually strong enough to degrade the
performance of conventional correction methods.
Herein, we demonstrate the enhanced performance of
joint range alignment and phase adjustment based on
minimum entropy to deal with real ship data. The
dataset is measured by an airborne synthetic aperture
radar system, some radar parameters are listed as
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follows: the signal carrier frequency is 15 GHz with a
bandwidth of 800 MHz to provide range resolution of
0.1875 m and the pulse repetition frequency is 125 Hz.
The numbers of pulse used in the experiment is 128.
Figure 12 shows the HRRPs with motion error. Clearly,
due to strong background clutter, the HRRPs are dim.
Figure 13a shows the RD image obtained by MERA and
MEPA with contrast equivalent to 0.577, and Figure 13b
shows the RD image generated by the joint correction,
with larger contrast equivalent to 0.589 at a price of a
little computation increase. From this comparison, we
believe that improvement is achieved by the joint correc-
tion and it is useful in processing the ship ISAR data.

Conclusions

In this article, we focus on the error correction under low
SNR for ISAR imaging. It is widely accepted that mini-
mum entropy-based phase correction is very robust to
noise due to the high-SNR gain from the 2D coherent in-
tegral in image generation. Inspired by this, a novel
scheme is established by using the 2D image entropy as
the penalty function to jointly optimize the range shift and
phase error. Implemented by quasi-Newton algorithm, a
coordinate descent algorithm is developed to estimate the
high-order coefficients of the translational motion. To
avoid being trapped into a local minimum far away from
the ideal solution, a novel method for coarse motion esti-
mation is also proposed. Coarse motion usually provides
solution close to the global optimization, leading to sig-
nificant iteration number decrease in the fine estimation.
Utilizing a parametric model on the range history, the
proposed method performs well under strong noise. How-
ever, this model restricts the translational motion model,
leading to limitations on specific scenarios. For example,
severe vibration of the target or radar platform could
induces random range shifts and phase errors. In this case,
random translational motion compensation for ISAR
imaging under low SNR is still open.
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Figure 13 RD image comparison. (a) RD image obtained by conventional minimum entropy methods. (b) RD image obtained after joint range
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Appendix
Based on Equation (34), we have
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By instituting (36), (45), and (46) into (44), the explicit
expression of a(&(l’k);A&k) is ready to obtain. And
b(&(l’k);Ab?k) is given by
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By instituting Equation (35) into (47), we can obtain
the analytic expression of b (BZ(W ; A&k)
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